
Securing the system step by step 309

Chapter 16

Securing the system step by step

The Linux system was created in 1991. It was already popular 15 years ago
due to its stability and simplicity. It is also considered to be one of the safest
operating systems. This doesn’t mean, however, that the security of the
system after installation can be ignored. This chapter contains several
fundamental steps that should be taken into consideration when installing
Linux. The system securing techniques presented here are relevant to each
popular distribution of the Linux system.

Preparation of the hard disk

During installation of the system we face the issue of disk partitioning. The
majority of beginning users leave the matter to the partition creator, which
will not always divide our disk as we would like it to. It is therefore worth
stopping here to think what would be the best way to partition the disk for a
system in which security has priority.

There are many reasons to create several partitions. Below we present a safe
way to divide the disk. There is no performance penalty in partitioning in this
way, and as the result of this we will obtain four partitions, which will help
increase the security of our environment. The partitions we should create are,
in sequence:

a) /swap

The swap partition is an exchange partition. When the system lacks RAM
memory it writes the information to disk, specifically to the swap file. The
size of the partition should, therefore, depend on the size of the operating

Securing the system step by step 310

memory available. It is a rule of thumb that the system works optimally when
the swap file is twice the size of available RAM.

b) /boot

The boot partition is the place where the kernel of our system and the so-
called “boot loader” are. The boot loader is a program that starts up right
after switching on the computer. It loads the kernel into memory and then it
starts it up. The boot partition shouldn’t have big dimensions. A frequent
habit of hackers is to place rootkits in this partition. Maintaining a small size
of the boot partition also develops good habits, such as optimal compilation
of the system kernel. The size of this partition can therefore vary within the
limits of around 20 to 40 MB.

c) /var

The var directory is a place where, for example, various kinds of system logs
are kept. A primitive hacker could clog our disk with unnecessary logs, and
consequently could cause system immobilization. If the /var directory is
located in a separate partition, and somebody performs such an attack, he will
not be able to fill up the whole disk, but only this partition, while the
computer will continue to work. The size of this partition should amount
from several to many gigabytes, depending on the general capacity of our disk
and the installed applications.

d) /

This is the main partition of our system. In this location the system, and the
programs that the reader chooses to add to the computer, will be installed. It
is good to dedicate the entire space remaining on the hard disk to this
partition.

If we install the system on the production server, to which many users will
have access, it is worth thinking about a separate partition for the folder
/home. Data belonging to the system users are located in it. Creating this

Securing the system step by step 311

partition can prove to be an efficient and safe move. If the reader is using the
Linux system on a home computer, a /home partition is superfluous.

Choice of installation

After partitioning the disk it is time to choose the programs to install on the
system. The “full installation” option is surely convenient. However, it is not a
secure solution. Each popular Linux distribution gives us the ability to choose
programs to install individually. Our first step should be to get to know all the
software programs and to decide if they are necessary for us or not. For each
of the programs (packages), a short description of its content and destination
should be available. We should remember that a smaller quantity of installed
software provides fewer opportunities to a hacker to gain control over the
system. If for some reason we have to choose the full installation, we should
be prepared for the fact that our system is not as safe as it could be. Most
distributions contain tools enabling us to add or remove programs, including
those that are already installed. It is good to review the list of installed
packages from time to time and to remove the ones that are not used often.

Administrator’s password

Creating an appropriate password is literally a key issue for the security of our
system. We cannot forget the great importance of having a difficult password.
Even the most complicated protection is superfluous if it is secured by an easy
password. Therefore in order for cracking of the password to be impossible it
has to have at least 12 characters, and must contain letters, numbers, and
special characters. We shouldn’t choose passwords that have any meaning.
The best password should be a random character sequence. Below are
examples of easy and difficult passwords:

Easy passwords: sex, security, 1234567890qwer
Difficult passwords: lD45&fG^%a, F6gV$xNio8&, 31##7cVvF69666

Securing the system step by step 312

Firewalls

A firewall is a mechanism to filter the traffic in the network. Let’s assume that
we want a WWW server (port 80) and FTP (port 21) to run on our computer.
We don’t want to install any other services. It would be good to filter all
incoming traffic directed to ports other than 80 and 21. That way, a cracker
will have fewer possibilities of performing an attack. The best tool working
under the Linux system that is suitable for this purpose is iptables.

Here is an example iptables script, which should start up each time the
computer is switched on (/CD/Chapter16/Listings/firewall.sh):

We will now try to write the above script and give it rights to execute:

Next, we need to start this up, like every other program, from the console
level:

#!/bin/bash

There are two rules determining typical behavior.
If the packet doesn’t meet any of the rules we reject all
incoming and redirected packets.
iptables -P INPUT DROP
iptables -P FORWARD DROP

Rules are added (-A) to the incoming network. They let through
packets coming from the established connection and packets of the interface
loopback.
iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A INPUT -s 127.0.0.1 -d 127.0.0.1 -i lo -j ACCEPT

This rule added to the INPUT network accepts WWW connections.
iptables -A INPUT -p tcp --dport 80 -i eth0 -j ACCEPT

This rule added to the INPUT network, accepts FTP connections.
iptables -A INPUT -p tcp --dport 21 -i eth0 -j ACCEPT
iptables -A INPUT -p tcp --dport 20 -i eth0 -j ACCEPT

[root@localhost]# chmod +x firewall.sh

[root@localhost]# ./firewall.sh

Securing the system step by step 313

To see if our firewall really works, we will now try to display all active iptables
rules:

We will now analyze in sequence the operations performed on the incoming,
outgoing, and redirected packets.

a) Incoming packets (INPUT)

As standard, all outgoing packets should be rejected (DROP), which is stated
in the line Chain INPUT (policy DROP). The next lines tell which packets
should be accepted (ACCEPT) for which host and port.

b) Outgoing packets (OUTPUT)

As standard, all outgoing packets should be let through (ACCEPT).
Otherwise our system couldn’t make any connections.

c) Redirected packets (FORWARD)

As standard, all redirected packets should be rejected (DROP). This is
important for the servers carrying network traffic. As for the home computer,
we should reject these packets, because in theory they shouldn’t be appearing.

A firewall of this type should be perfectly sufficient for a home machine.

[root@localhost]# iptables -L
Chain INPUT (policy DROP)
target prot opt source destination
ACCEPT all -- anywhere anywhere state RELATED,ESTABLISHED
ACCEPT all -- localhost localhost
ACCEPT tcp -- anywhere anywhere tcp dpt:http
ACCEPT tcp -- anywhere anywhere tcp dpt:ftp
ACCEPT tcp -- anywhere anywhere tcp dpt:ftp-data

Chain FORWARD (policy DROP)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Securing the system step by step 314

The xinetd superserver

Xinetd is an integral component of the Linux system. It is what is known as a
network superserver. Its task is to listen in on certain ports and to transfer
incoming connections to specific programs. We will now assume that we
have an FTP server. It can work in two modes: as a separate service or as a
service started up by xinetd. If many people use our FTP server, it would be
best to command it to run constantly in the background as a separate service.
However, if there are only a few logins, starting up our FTP server with each
connection would be better in terms of performance. The inetd configuration
file is /etc/xinetd.d. The syntax of its each line is:

service - Name of one of the services shown in the file /etc/services.
disable - Service is active (yes) or not (no)
socket_type - This can be either stream (for TCP sockets) or dgram (for

 UDP).
port - Port number on which server is waiting for connection
protocol - It is either TCP or UDP.
user/group - ID of user/group whose rights will be used by the process.
server - Access path to the proper server program

In the example mentioned above, xinetd daemon will start the Sane service,
using the stream socket type and TCP protocol. The calls are to be taken
immediately (wait = no), and the program /usr/sbin/saned will be executed
with saned user privileges. The service will be launched on 6566th port. We
can verify this in /etc/services file, which contains a list of all standard
services.

service sane
{

disable = no
port = 6566
socket_type = stream
protocol = tcp
wait = no
user = saned
group = saned
server = /usr/sbin/saned

}

$ cat /etc/services | grep sane
sane 6566/tcp #SANE Control Port

Securing the system step by step 315

Knowing the structure of the configuration file, we can check whether the
/etc/xinetd.d directory contains services that could be disabled (using disable
= yes option.) It is recommended to keep this directory clean. We should not
host the services we do not use.

SSH configuration

An advantage of Unix systems is their remote management ability. In the past
telnet was used for this purpose. However, it wasn’t encrypted, which was its
biggest weakness. Another communication method, SSH (secure shell), was
therefore developed, and it replaced telnet very rapidly. SSH is very secure
and cracking it is almost impossible. Its only weak point can be the client
program and servers that use it for communication. Therefore it’s worth
dedicating some time to configuring them safely.

The configuration file of the sshd server is by default /etc/ssh/sshd_config.
Data related to such things as the protocol version and how to login using
keys are found in it. Below is an example safe sshd configuration:

In order for sshd to reload its configuration, it is necessary to execute the
command below:

Use of the safer second version protocol.
Protocol 2

Don’t allow root to login remotely.
PermitRootLogin no

Request a password.
PasswordAuthentication yes

Don’t login users with an empty password.
PermitEmptyPasswords no

Other less important options.
StrictModes yes
X11Forwarding no
PrintMotd no

[root@localhost]# /etc/init.d/sshd restart

Securing the system step by step 316

This sends information about reloading to the process with the PID number
saved in the file /var/run/sshd.pid.

Hiding information and the SUID bit

We have to be sure that we don’t leave any gaps in the system. There is no
reason to give the user more information than he needs. A smart move is to
remove or change all welcome messages (e.g., /etc/motd). It would be a good
idea to change the content of the files /etc/issue and /etc/issue.net to, for
instance, “Welcome to Windows XP.” These files are printed on the screen by
the program “login” before the user logs into the system, and if they present
false system information they can mislead a potential cracker.

To change the current password the “passwd” command is used. This
program saves the new password in the file /etc/shadow, to which we don’t
have access in practice. To be more precise, we don’t have access, but the
program is able to change our password. This is caused by the assigning of a
so-called SUID bit to it.

This can be ascertained by looking at the sequence of its access rights, namely
“-r-s--x--x.” The “s” letter shows that the program has the SUID bit (+s) set.
This program also belongs to the root user, who has access to the file
/etc/shadow. Therefore, if we assign the bit +s to the program, it will work
with the rights of the owner of the file being executed, in our case the
administrator. Programs of this type often constitute a huge threat to the
system. They are to be found abundantly in each distribution and the user
should pay close attention to their function. Finding programs with the SUID
bit set and removing this bit from them can significantly reduce a hacker’s
chances. Below is an example perl script, which will help us to simplify the
process of removal of the SUID bits from the programs.

[root@localhost]# ls -l /usr/bin/passwd
-r-s--x--x 1 root root 26168 2010-06-29 12:01 /usr/bin/passwd

Securing the system step by step 317

Let’s save it as “sup.pl” (/CD/Chapter16/Listings/sup.pl).

We assign execution rights to our script:

Next, we start it up and wait for results.

The script has tracked down all the programs with the set SUID bit on the
disk and has written the result to the “suid.txt” file. Each of the programs
found, if it contains an error, can be used by the hacker to gain full control
over the system. Let’s have a look at the list content:

#!/usr/bin/perl

if ($#ARGV < 0)
{
 system("find / -perm +4000 2>/dev/null > suid.txt");
 exit;
}

if ($ARGV[0] =~ /-u/)
{
 open(UPDATE, "<suid.txt") or die "Can't read file: $!";

 while (<UPDATE>)

{
 if (/^#/)
 {

 s/#//;

 system("chmod -s $_");
 }
 }
 close(UPDATE);
}
{
 print "Usage: perl sup.pl <-u>n";
 exit;
}
 }

[root@localhost]# chmod +x sup.pl

[root@localhost] ./sup.pl

[root@localhost] cat suid.txt
/bin/su
/bin/mount
/bin/umount

Securing the system step by step 318

/bin/ping
/bin/ping6
/sbin/unix_chkpwd
/sbin/usernetctl
/usr/X11R6/bin/Xwrapper
/usr/bin/passwd
/usr/bin/sudoedit
/usr/bin/sudo
/usr/sbin/traceroute

If any of the programs doesn’t require the SUID bit or is unnecessary for us,
we can disable it with the # character. We only want users to have the ability
to change their own passwords. Therefore we disable everything except
“passwd.” The file after modification should look like this:

Next we start up our script with the -u parameter to get rid of unwanted bits:

The SUID bit has just been taken away from the disabled programs. Let’s
check to be sure. For this purpose we can scan the disk once again to look for
them:

Everything is running according to our expectations.

The last thing we will do will be to allow the administrator to log on only
from a specific terminal. The file /etc/securetty lists the devices on which the
administrator can log in.

[root@localhost] cat suid.txt
#/bin/su
#/bin/mount
#/bin/umount
#/bin/ping
#/bin/ping6
#/sbin/unix_chkpwd
#/sbin/usernetctl
#/usr/X11R6/bin/Xwrapper
/usr/bin/passwd
#/usr/bin/sudoedit
#/usr/bin/sudo
#/usr/sbin/traceroute

[root@localhost] ./sup.pl -u

[root@localhost] ./sup.pl
[root@localhost] cat suid.txt
/usr/bin/passwd

Securing the system step by step 319

Let’s have a look at the content of this file:

It is recommended that we disable (using the # character) all entries except
the chosen terminal (e.g. tty4). The chances of someone with physical access
to our computer being able to figure out the administrator’s password are
very low. It is likely that after the first unsuccessful attempt to log in on the
first terminal, the person will become discouraged and our system will
remain intact.

Software to improve system security

There are many applications created especially with the aim of improving the
security of our system. The best source for them is the site:

A useful program that can be found there is “ckrootkit.” It checks to be sure
our system is not infected with any rootkit and allows us to determine if there
has been a system violation.

We can also install an intrusion detection system. IDS programs, however,
are beyond the scope of this chapter and will be discussed separately.
However, the snort program is definitely worth a look. It can be found at:

This program is one of most popular and effective IDS tools. The installation
and use of snort with its default settings are not complicated. Unfortunately,
poor configuration can cause many false alarms.

[root@localhost]# cat /etc/securetty
tty1
…
tty11
ttyS0
ttyS1
vc/1
...
vc/11

http://packetstormsecurity.org

http://www.snort.org

Securing the system step by step 320

The kernel --- the system’s weak point

Each operating system contains a kernel, which has access rights to all data
located on the hard disk. If an attacker gains access to the kernel, he will also
gain access to all other computer resources. Linux, like any other system, is
not error-free. Once in a while, errors can occur in the system kernel itself.
Unfortunately we cannot fully protect ourselves against them. The only
solution is to follow the services that report errors in the software and to
update the system each time an irregularity in the kernel is reported. To
check the kernel version in use it is necessary to give the command:

As we can see, we have the kernel version number 2.6.29. It is a good idea to
look at the page containing kernel resources and to update the system as
often as possible. This is a very good habit to get into. The reader can find the
current version of the kernel under the address:

What next?

This chapter is only a short introduction to the methods of securing the
Linux system. We can do much more to make our system more secure.
Configuring snort and writing rules adapted to our network are a good place
to start. Writing complicated iptables scripts, verifying the integrity of the file
system, and custom modification of kernel resources can significantly
influence the security level of our system.

[root@localhost]# uname -a
Linux computer 2.6.29 #1 Tue Jul 29 15:55:20 CEST 2010 i686 GNU Linux

http://www.kernel.org

