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Chapter 18 
 
 

Improving security with patches 
 
 
 
 
Computer systems become safer and safer over the course of time. The 
security holes that are discovered are patched immediately, and as a result the 
code quality rises continuously. A hacker has very little time to exploit a gap 
in vulnerable software. If he doesn’t manage to do this before the security 
hole is patched by the administrator, his entire effort in writing an exploit will 
vanish into thin air. Even if the administrator is lazy and forgets to update the 
software, the ready-made scripts contained in current distributions will do it 
for him.  
 
But what happens if a hacker finds an error and doesn't tell anybody about it? 
In such a situation no update will protect us, nor will keeping up-to-date with 
security-related discussion boards. Only special patches can protect us against 
attacks on undocumented errors, increasing the overall security of our 
system, not just that of individual applications. 
 
As we already know, every operating system possesses a kernel. The kernel is 
responsible for communication with the hardware, allocation of memory, and 
other operations requiring full access to the processor. It’s the kernel that 
manages all system processes, performs memory operations, and classifies 
their execution. Let’s assume that a program that has been started up contains 
an error. A hacker exploits it, takes control over the program, and gains its 
rights. If the process was started up by a root user, the hacker gains 
administrator privileges. There are several things we can do to protect 
ourselves against such an incident: 
 
a) We can patch the program containing the error. 
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b) We can patch the system in such a way that it will protect against this type 
of attack. 
 
The first solution is effective if anybody, apart from the hacker, knows about 
the existence of the error. Otherwise, we won’t even be aware of the fact that 
the hacker has used this program to break in. The second possibility 
definitely gives better results. Instead of patching each program, we can 
obtain the same effect protecting the whole system against attacks of this 
kind. The term “system” instead of “kernel” has been used here on purpose, 
because we can divide this type of protection into several types: 
 
a) Protection on the system kernel level. 
b) Protection on the compiler level. 
c) Protection on the library level. 
 
Let’s stop and think how we can protect our program against attacks from the 
kernel level. The attack most frequently encountered against applications is 
the buffer overflow attack, which was described in an earlier chapter of this 
handbook. It consists in overwriting parts of the program memory and 
starting up one’s own code. This code is most frequently used to start up the 
shell with root privileges and is transferred to the program through its 
arguments. The arguments of each process are located in the memory area 
known as the stack. The hacker will aim to start up his code from this 
memory segment. As we know already, the kernel manages the process 
memory. The kernel defines some flags (tags) that specify whether a specific 
memory fragment can be written, read, or started up. In the standard 
configuration of the Linux kernel, the stack contains each of these flags. 
Therefore, there is nothing to stop someone from starting up their own code 
located on the stack. The main task of security patches written for the kernel 
is to configure the process memory to prevent the startup of user code on the 
process level. This and many other useful functions are contained in two 
popular patches, which will be described later on in this chapter. 
 
We know already that we can protect the process memory to prevent a 
hacker’s code from starting up. However, we can protect our programs so 
that it will generally be impossible to change the function of the process. The 
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most frequently overwritten memory area, which decides which code 
executes the program, is the stack frame. It contains information about from 
which function the currently running procedure was called. Because of this, a 
return to the main function, after terminating the one currently running, is 
possible. However, if for some reason, due to a programmer’s error, the 
hacker can manage to overwrite the stack frame with his own data, he can 
cause the program to jump to the harmful code, and not to the main 
function. The security patches applied to the compiler can protect us against 
overwriting of the frame. In this way, any program we compile won’t be 
susceptible to the buffer overflow error. We will have a closer look at this 
protection method a little bit later. 
 
When we program in the C language, we have many standard functions at 
our disposal, such as printf(), strcpy(), and gets(). They are not located in the 
code of our program, but in the library of the C language, which is libc. This 
is a dynamic library, which means that it is loaded automatically after starting 
up our program, so it can use the library functions. It is mainly because these 
functions don’t contain any protections that the buffer overflow and format 
string attacks are possible. There are libraries available that check the security 
of the transferred parameters of these functions, and by using them it is 
possible to avoid overwriting important data. We will discuss this method in 
more detail later in this chapter. 
 
The first method of system protection, which we will look at more closely, 
will be security patches applied to the kernel. These have become more and 
more popular, and are now standard in many distributions of the Linux 
system. 
 
Grsecurity 
 
Grsecurity is without doubt the most complex and popular patch for the 
system kernel. It uses a memory protection system called PaX. We can use it 
as a separate patch, downloading it from: 
 

 
http://pax.grsecurity.net/ 
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However, it’s better to invest in the whole grsecurity packet, of which the 
memory protection system is only a small part. The following are the main 
elements of this packet: 
 
a) Memory protection through PaX 
b) Randomization of memory and the TCP/IP stack 
c) Limited display of processes 
d) Increased protection in the chroot environment 
e) Protection against a race condition in /tmp 
 
We will have a closer look at each of these elements during the configuration 
of our patch. But first we will consider the installation process. 
 
Therefore, we download the newest version of the Linux kernel. It can be 
found at: 
 

 
Currently the newest version from the 2.6 branch is 2.6.29.4. Our tests will be 
performed on this kernel version. We go to the folder /usr/src, where we 
should store the system resources as standard. It is good to stick to this rule. 
Next, we download the compressed resources using the wget tool: 
 

 
After a while we will have the resources for our new kernel. Now it’s time to 
equip ourselves with the grsecurity patch. Therefore we go to the project page 
and download the patch appropriate for our kernel (that is, 2.6.29.4): 
 

 
 
 
 
 
 

http://www.kernel.org 

wget http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.29.4.tar.bz2 

wget http://www.grsecurity.net/grsecurity-2.1.14-2.6.29.4-200905292205.patch 
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Patching and configuring a new kernel  
 
We have now all the required elements. Now it’s time to unpack the system 
sources and to apply the patch: 
 

 
The patch program, logically enough, applies patches. We transfer the patch 
content to the patch program’s standard input (using the tag <), where it 
applies the patch to the application. If the program returns an error, it can 
mean that the version of our patch is different from the system version on 
which we want to install it. In such a case, we have to go the grsecurity page 
and make sure we have the appropriate patch. 
 
Now we go to the grsecurity configuration. The best solution will be to 
download an example configuration file from the page: 
 

 
This contains the most frequently used options. After downloading this file to 
the folder /usr/src we go to the directory with the system resources 
(/usr/src/linux-2.6.29.4) and call the command: 
 

 
 After terminating the compilation process we will see the console menu. At 
the very bottom we choose the option: 
 

 

bash-2.05b# tar xfj linux-2.6.29.4.tar.bz2 
bash-2.05b# patch -p0 < ./grsecurity-2.1.14-2.6.29.4-200905292205.patch 
patching file linux-2.6.29.4/Documentation/Configure.help 
patching file linux-2.6.29.4/Makefile 
patching file linux-2.6.29.4/arch/alpha/config.in 
patching file linux-2.6.29.4/arch/alpha/kernel/osf_sys.c 
(...) 
patching file linux-2.6.29.4/net/netsyms.c 
patching file linux-2.6.29.4/net/socket.c 
patching file linux-2.6.29.4/net/sunrpc/xprt.c 
patching file linux-2.6.29.4/net/unix/af_unix.c 
bash-2.05b# 

http://www.grsecurity.net/generic-config 

make menuconfig 

Load an Alternate Configuration File 
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Next, we enter the path to our configuration file (/usr/src/generic-config). We 
have to configure the kernel depending on the hardware that we have. It’s 
worth reviewing all the sections so we won’t forget to compile the services of 
important devices. We will focus on the last section, Grsecurity. The star 
between brackets [*] means that an option has to be selected. If there is no 
star, we deselect the option. The following fields are located in this sector: 
 
a) [*] Grsecurity – We select this to activate the grsecurity service in the kernel. 
b) (Customized) Security level – Options regarding the grsec protection level 
      ( ) Low – Low protection level 
      ( ) Medium – Medium protection level 
      ( ) High – High protection level – in this case some programs such as X      
          Window System can stop working. 
      (X) Customized – Protection level defined by the user. We select this one. 
c) PaX Control ---> These options adopt the loading of system binaries for the PaX 
patch. 
      [ ] Support soft mode 
      [*] Use legacy ELF header marking 
      [*] Use ELF program header marking 
          (none) MAC system integration 
d) Address Space Protection ---> This selection allows us to configure some patch 
options. 
      [*] Enforce Non-executable pages (NEW) – Forcibly creates non-executable areas  
          of memory. 
      [*] Paging based non-executable pages (NEW) – Method of creation of non-executable  
    memory pages. 
      [*] Segmentation based non-executable pages (NEW) – As above. 
      [ ] Emulate trampolines (NEW) 
      [*] Restrict mprotect() (NEW) – Does not allow programs to change the rights of  
          the memory pages (e.g., in order for them to be executable). 
      [ ] Disallow ELF text relocations (DANGEROUS) (NEW) 
      [*] Address Space Layout Randomization (NEW) – Randomization of addresses. 
      [*] Randomize kernel stack base (NEW) – Randomizes the address of the kernel           
          stack. 
      [*] Randomize user stack base (NEW) – Randomizes the address of the user stack.  
          In this way the exploitation of the stack overflow errors is rendered very 
   difficult. 
         At each startup of the program, the stack address changes, and at the same time 
         the address of the cracker’s injected code changes. 
      [*] Randomize mmap() base (NEW) – Randomizes the address returned by the    
          function mmap(). In this way the exploitation of heap overflow errors is 
          rendered very difficult. 
      [*] Randomize ET_EXEC base (NEW) – Randomizes the mapping location of the   
          program started up. As in the previous cases it serves to make the hacker's  
          actions more difficult. 
      [*] Deny writing to /dev/kmem, /dev/mem, and /dev/port – Using the devices  
          /dev/kmem, /dev/mem the root user has access to the system kernel memory, 
          which means that he can modify them freely. If an attacker manages to gain 
          such privileges, he can, using these devices, introduce a backdoor to the   
          kernel.  
          The device /dev/port makes possible the access to the computer hardware, as     
          well as to the disk and to the RAM memory. Exploitation of this file can also  
          contribute 
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    [ ] Disable privileged I/O 
    [*] Remove addresses from /proc/pid/[maps|stat] – In the file /proc/self/maps    
        the addresses of the uploaded libraries of the process currently started up, are   
        located. One of them is for example libc. Thanks to this address, it is  
        possible to perform the attack return into libc, against which even a non- 
        executable stack cannot protect fully. 
    [*] Deter exploit bruteforcing – Detects an attempt of use of brute-force  
        exploits. 
    [ ] Hide kernel symbols 
e) Role Based Access Control Options ---> Allows the configuration of the RBAC control  
        system. 
    [*] Hide kernel processes – Hides processes belonging to the system kernel. 
        (3) Maximum tries before password lockout – Maximum number of attempts to enter    
        the password before it is blocked. 
        (30) Time to wait after max password tries, in seconds - Time to wait to  
        introduce the password. 
f) Filesystem Protections ---> Functions related to the file system protection. 
    [*] Proc restrictions – Thanks to this option, users cannot spy on each other’s  
        processes through the /proc file system. 
    [ ] Restrict to user only 
    [*] Allow special group – Using this option, we will be able to choose a  
        group, whose users will see all processes in the system. 
        (1001) GID for special group – The number of this group is in our case 1001. 
 
    [*] Additional restrictions – Using this, normal users won’t be able to see 
 information on the hardware, which are located in the files in the folder 
        /proc (e.g., /proc/cpuinfo). 
    [*] Linking restrictions – This option forbids creating symbolic links in the  
        /tmp folder. This protects against race condition attacks. 
    [*] FIFO restrictions – As above, it protects against race condition, but this  
        time with use of FIFO queues. 
    [*] Chroot jail restrictions – Options restricting the rights of a user located  
        in a separated chroot environment. The information on using chroot can be  
        found on the system manual pages (man chroot). All options below concern it. 
    [*] Deny mounts – Disallows mounting devices. 
    [*] Deny double-chroots – Disallows executing a double chroot.  
    [*] Deny pivot_root in chroot – Disallows use of the pivot_root() function. 
    [*] Enforce chdir("/") on all chroots – Assumes „/” as main directory of each  
        chroot. 
    [*] Deny (f)chmod +s – Disallows setting of the suid and sgid bits. 
    [*] Deny fchdir out of chroot – Disallows using the fchdir function. Allows  
        preventing a situation, in which a chroot by-pass is possible. 
    [*] Deny mknod – Disallows creating devices. 
    [*] Deny shmat() out of chroot - The shmat() function is used to add a memory   
        segment. The program in chroot could add a program segment, which is not to be  
        found in it and draw information from it. Therefore, this function is blocked. 
    [*] Deny access to abstract AF_UNIX sockets out of chroot – Blocks access to  
        the AF_UNIX sockets, because they allow communication between processes. 
    [*] Protect outside processes – This function completely isolates the process  
        in the chroot environment. It cannot send signals or perform any other  
        operations on processes that are not within it. 
    [*] Restrict priority changes – Disallows changing the process priority. 
    [*] Deny sysctl writes in chroot – Disallows using the sysctl function. 
    [*] Capability restrictions within chroot – With this option the process  
        working in chroot will loose all privileges available to the root user. 



Improving security with patches 354 

 

g) Kernel Auditing ---> These options don’t grant security by themselves, however, using 
 them we can obtain a lot of useful information on the system functioning. 
     They allow logging various function calls (sometimes dangerous). 
     [ ] Single group for auditing – After selecting this option we can set the  

number of the group to be logged. 
     [ ] Exec logging – Enables logging of all calls of the exec() function. It is  

executed very frequently during the system functioning, therefore, it is not  
worth selecting it.  

        It will only cause us to be bombarded with useless information. 
      [*] Resource logging – Logs all cases, in which the process exceeds the access  

limit to the system resources. 
      [ ] Log execs within chroot – Logs start up of the programs in the chroot  

  environment. 
      [ ] Chdir logging – Logs changes to the current directory. 
      [ ] (Un)Mount logging – Logs mounting and unmounting of devices. 
      [ ] IPC logging – Logs when the IPC mechanisms are used by the processes (they     
   allow communication between processes). 
      [*] Signal logging – Logs all sent signals. 
      [*] Fork failure logging – Logs the calls of the fork() function, which end with  

  an error. 
      [*] Time change logging – Logs changes to the system time. 
      [ ] /proc/<pid>/ipaddr support – The option creates a new file in the /proc/pid  

 folder, which shows sockets opened by a given process. 
      [ ] ELF text relocations logging (READ HELP) – Option connected with the change  

  of the content of the programs compiled. 
h) Executable Protections ---> These functions regard the functioning of the system              
                               processes. 
      [*] Enforce RLIMIT_NPROC on execs – Checks if the process limit has been  
          exceeded when the exec() function has been called. As standard such a  
          test is performed only when using the fork() function. 
      [*] Destroy unused shared memory (NEW) – Destroys the shared memory, which is  not   
          used by any process. 
      [*] Dmesg(8) restriction – After switching on this option a normal user won’t be  

  able to display more than 4kb of the kernel message buffer. To display it  
  the dmesg program is used. 

      [*] Randomized PIDs – This option chooses a random PID number for the newly     
          created processes. As standard they are chosen in sequence. 
      [ ] Trusted path execution – After choosing this option, we can determine the   

  number of the group, which the set limits won’t regard. 
i) Network Protections ---> This section allows randomization of some elements of the   
                            TCP/IP stack. It can allow, for example, protection against  
                            the remote identification of the system version. 
        [*] Larger entropy pools – Increases the memory size used by the system, and is 
 useful for generating of random values. 
        [*] Truly random TCP ISN selection – After activation of this option the field  

initiating  the TCP sequence will be chosen randomly. 
        [*] Randomized IP IDs – The id field of the IP header will be chosen randomly. 
        [*] Randomized TCP source ports – The source ports will be random while making a 
 connection, not, as is standard, in sequence. 
        [*] Randomized RPC XIDs – The XID field of the RPC request will be chosen  

randomly. 
        [ ] Socket restrictions – These options will allow limitations on the creation  

of sockets. 
        We can for example define a group that will be able to create sockets for  
       servers or clients, whereas we can prevent the rest of the users from doing this. 
j) Sysctl support ---> This option allows activation of the sysctl service for  
   grsecurity. In this way we will be able to modify the functioning of the patch right  
   after compiling the kernel. 
        [ ] Sysctl support – At our discretion, we can activate this option or not. If  

we activate it the root user will be able to change the grsec configuration  
with use of the sysctl command, which also is potentially dangerous. 
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k) Logging options ---> Options related to the frequency of sending messages (logs). 
        (10) Seconds in between log messages (minimum) – Frequency of writing logs. 
        (4) Number of messages in a burst (maximum) – Maximum number of messages 
 given simultaneously. 

 
These are all the options of the grsecurity packet. As we can see it is a huge 
packet, significantly improving system security. We can quit the configurator, 
and when prompted we should save the configuration. 
 
In case we use a generic configuration file, before compiling we need to copy 
generic-config to the root directory /usr/src/linux-2.6.29.4/ under the name 
.config. 
 

 
Attention.  
To compile a new kernel with the grsecurity patch in Training Operating 
System successfully we also need to update binutils package to version 2.18. 
The latest version of the source can be found at: 
 

 
The process of configuring and compiling the binutils package can be 
conducted as follows: 
 

 

The Training Operating System includes a standard version of gcc v4.1.1 
compiler. However our 2.6.29.4 kernel requires a newer version of gcc (eg 
v4.4) or carrying out certain modifications in one of the headers. Therefore 
we can download a new version of gcc from repository or delete line 5, 6 and 
7 from the file /usr/src/linux-2.6.29.4/include/linux/compiler-gcc4.h. 
Nevertheless, please remember that this is an experimental modification and 
it is better to obtain the latest versions of the required applications. 
 
 

bash-2.05# cp /usr/src/generic-confi g /usr/src/linux-2.6.29.4/.confi g 

http://ftp.gnu.org/gnu/binutils/ 

bash-2.05b# tar xfj binutils-2.19.tar.bz2 
bash-2.05b# cd binutils-2.19 
bash-2.05b# ./configure --prefi x=/usr 
bash-2.05b# make 
bash-2.05b# make install 
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Compiling a kernel with grsecurity patch 
 
Now we can start the process of compilation of our new system. If the reader 
is familiar with the subject of kernel compilation, he can without hesitation 
skip this part.  
 
The compilation process can take several hours, depending on the speed of 
the computer. We give the command: 
 

 
After executing this command we can leave the machine alone for some time. 
The image of our kernel will be found in the directory /usr/src/linux-
2.6.29.4/arch/i386/boot/bzImage.  
 
Before we take care of this, we have to compile and install the kernel modules, 
executing a series of commands: 
 

 
The duration of this process depends on the number of modules selected 
during the kernel configuration. Next, we compile the kernel image to the 
/boot folder with the command: 
 

 
Depending on whether we compiled the modules into the kernel or not, we 
start up the geninitrd program. This creates a file with modules that should 
upload right after the kernel, before mounting the disk (i.e., the most 
important drivers). 
 

 
Next, depending on the bootloader used, we create an entry in the 
configuration file. Below an example entry to the file /etc/lilo.conf: 
 

make bzImage 

make modules  
make modules_install 

bash-2.05b# cp /usr/src/linux-2.6.29.4/arch/i386/boot/bzImage /boot/linux-2.6.29.4-grsec 

bash-2.05b# mkinitrd /boot/initrd-2.6.29.4-grsec 2.6.29.4-grsec 

image=/boot/linux-2.6.29.4-grsec 
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After adding an entry we start up the lilo program to confirm the changes: 
 

 
If you are using Grub boot loader, similar configuration entry in 
/boot/grub/menu.lst could look like this: 
 

 
All that’s left to do is give the reboot command. It is also good to leave the old 
kernel image in case the system won’t load, for example due to not selecting 
the appropriate drivers in the configuration file. Therefore we restart the 
system and load the new kernel: 
 

 
From outside, the new system doesn’t differ much from the old one. To test if 
the patch really works, we will use the PaXtest program. It will test the 
susceptibility of our system to various kinds of attacks. Currently its newest 
version is 0.9.7-pre4: 
 

 
Then we unpack the archive and compile the sources using a series of 
commands: 
 

root=/dev/hda1 
label=2.6.29.4-grsec 
initrd=/boot/initrd-2.6.29.4-grsec 

bash-2.05b# lilo 
Added 2.6.29.4-grsec * 
Added 2.6.29.4-old 

title 2.6.29.4-grsec 
root (hd0,0) 
kernel /boot/linux-2.6.29.4-grsec root=/dev/hda1 
initrd /boot/initrd-2.6.29.4-grsec 

bash-2.05b# reboot 
 
Broadcast message from root (pts/2) (Wed Jan 19 13:48:27 2009): 
The system is going down for reboot NOW! 
(...) 

bash-2.05b# wget http://pax.grsecurity.net/paxtest-0.9.7-pre4.tar.gz 

bash-2.05b# tar zxf paxtest-0.9.7-pre4.tar.gz 
bash-2.05b# cd paxtest-0.9.7-pre4 
bash-2.05b# make generic 
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make -f Makefile.generic 
make[1]: Entering directory '/home/user/paxtest-0.9.7-pre4' 
(...) 
(...) 
(...) 
sh genpaxtest anonmap execbss execdata execheap execstack mprotanon mprotbss mprotdata 
mprotheap mprotshbss mprotshdata mprotstack randamap randheap1 randheap2 randmain1 
randmain2 randshlib randstack1 randstack2 rettofunc1 rettofunc1x rettofunc2 rettofunc2x 
shlibbss shlibdata writetext 
make[1]: Leaving directory `/home/user/paxtest-0.9.7-pre4' 
bash-2.05b# 

 
So, let’s test the functionality of the newly applied patch. We start up the 
paxtest program located in the current directory: 
 

 

bash-2.05b# ./paxtest  
PaXtest - Copyright(c) 2003, 2004 by Peter Busser <peter@adamantix.org> 
Released under the GNU Public Licence version 2 or later 
 
It may take a while for the tests to complete 
Test results: 
 
 
Executable anonymous mapping               : Killed 
Executable bss                             : Killed 
Executable data                            : Killed 
Executable heap                            : Killed 
Executable stack                           : Killed 
Executable anonymous mapping (mprotect)    : Killed 
Executable bss (mprotect)                  : Killed 
Executable data (mprotect)                 : Killed 
Executable heap (mprotect)                 : Killed 
Executable shared library bss (mprotect)   : Killed 
Executable shared library data (mprotect)  : Killed 
Executable stack (mprotect)                : Killed 
Anonymous mapping randomisation test       : 16 bits (guessed) 
Heap randomisation test (ET_EXEC)          : 13 bits (guessed) 
Heap randomisation test (ET_DYN)           : 25 bits (guessed) 
Main executable randomisation (ET_EXEC)    : No randomisation 
Main executable randomisation (ET_DYN)     : 17 bits (guessed) 
Shared library randomisation test          : 16 bits (guessed) 
Stack randomisation test (SEGMEXEC)        : 23 bits (guessed) 
Stack randomisation test (PAGEEXEC)        : 23 bits (guessed) 
Return to function (strcpy)                : Vulnerable 
Return to function (strcpy, RANDEXEC)   : Vulnerable 
Return to function (memcpy)                : Vulnerable 
Return to function (memcpy, RANDEXEC)   : Vulnerable 
Executable shared library bss              : Killed 
Executable shared library data             : Killed 
Writable text segments                     : Killed 
bash-2.05b# 
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As we can see, PaX doesn’t allow us to start up the code in any segment of the 
memory. A program wanting to perform such an operation is immediately 
closed (killed). The only attack that could be executed is a return to the 
function belonging to the program (or its library). Unfortunately the 
grsecurity patch doesn’t protect us against an attack of this kind. If the 
program itself contains a code that could, for example, start up the bash shell, 
the attacker will be able to perform a jump into it and to start it up, after 
overwriting the required memory areas. PaX cannot forbid starting up 
potentially dangerous functions, because it is a part of the program code. The 
attack technique called return to libc library is based around this gap. Instead 
of overwriting memory with the address of his code, which won’t be started 
up anyway, the hacker overwrites it with the address of, for example, the 
system() function located in the libc library. In this way he can perform any 
command through the bash shell. Luckily, grsecurity contains a system of 
randomization of addresses of the loaded libraries, which makes the attack 
more difficult, although still possible – the hacker must only dedicate more 
time than usual to the attack. 
 
Now our system protects processes against buffer overflow attacks on the 
kernel level. It is time to secure the next important element – the compiler. 
 
Stack-Smashing Protector 
 
The C language is over 30 years old, and is one of the oldest programming 
languages. Despite its age it is still clearly the most frequently used language 
in big projects, where performance is a priority. This language is compiled, 
meaning converted by a program called a compiler to a language 
understandable to a processor. The compiler takes care so the code is the 
smallest possible and has the best performance. Therefore, it doesn’t contain 
any supplements, including those related to security. Many people think that 
we have to deal with so many errors because of the fact that many 
programmers still use C. There is some truth in this. Higher level languages, 
such as Java and Python, secure programs against overwriting the stack frame 
(or don’t use it at all). However, they themselves have many disadvantages, 
notably lower performance. So it is good to program both securely and 
effectively. But, as commonly known, this is a big challenge for the 
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programmer. Even programs like the Apache server and PHP, which are 
widely used and well respected, have had buffer overflow errors in their 
history. In certain situations they are difficult to avoid. Recently, patches for 
the C language compiler, GCC, protecting the program against such attacks, 
have become popular. Tests show only a marginal reduction in program 
performance, while providing much greater security. Therefore the Stack-
Smashing Protector patch has also been included in many distributions of the 
Linux system in which security has priority. 
 
So let’s apply this patch to our compiler and to see how it works. At the 
beginning we download it from the publisher’s page: 
 

 
On this page we can also find much useful information on the project. 
Currently the newest SSP version is 3.4.4; we have to put it on the GCC 
version with the same number. 
 

 
It doesn’t take a lot of space, and the downloading process is complete after a 
short while. Now, it’s time to download the GCC compiler sources. We get it 
from: 
 

 
We now have all the required sources. Now we have to unpack the 
downloaded GCC compiler sources and to apply the SSP patch: 
 

 
We have unpacked the GCC sources and transferred the patch into the folder 
where they are located.  
 
 

http://www.research.ibm.com/trl/projects/security/ssp/ 

bash-2.05b# wget 
http://www.research.ibm.com/trl/projects/security/ssp/gcc3_4_4/protector-3.4.4-1.tar.gz 

bash-2.05b# wget ftp://sunsite.icm.edu.pl/pub/gnu/gcc/gcc-3.4.4/gcc-3.4.4.tar.bz2 

bash-2.05b# tar jxf gcc-3.4.4.tar.bz2 
bash-2.05b# mv protector-3.4.4-1.tar.gz gcc-3.4.4 
bash-2.05b# cd gcc-3.4.4 
bash-2.05b# tar zxf protector-3.4.4-1.tar.gz 
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All that remains to be done is to apply the patch using the standard 
command: 
 

 
No information about any error has appeared, meaning that the patch has 
been applied correctly. Now we have to configure GCC so it uses the stack 
protection option. Therefore we create a folder in which the compiled files 
will be located and we go to it: 
 

 
Then we unload the configure program with the options described below: 
 
a) --enable-languages=c,c++,objc – We want GCC to compile the languages 

C, C++, and Object C. We use this option only to shorten the compilation 
time of the GCC itself. As standard it serves several languages. But to us 
the three most common will be sufficient. 

bash-2.05b# patch -p0 < gcc_3_4_4.dif 
patching file gcc/Makefile.in 
patching file gcc/c-cppbuiltin.c 
patching file gcc/calls.c 
patching file gcc/combine.c 
patching file gcc/common.opt 
patching file gcc/configure 
patching file gcc/cse.c 
patching file gcc/explow.c 
patching file gcc/expr.c 
patching file gcc/flags.h 
patching file gcc/function.c 
patching file gcc/gcse.c 
patching file gcc/integrate.c 
patching file gcc/libgcc-std.ver 
patching file gcc/libgcc2.c 
patching file gcc/loop.c 
patching file gcc/mklibgcc.in 
patching file gcc/optabs.c 
patching file gcc/opts.c 
patching file gcc/reload1.c 
patching file gcc/rtl.h 
patching file gcc/simplify-rtx.c 
patching file gcc/toplev.c 
patching file gcc/tree.h 
patching file gcc/config/t-linux 
patching file gcc/config/arm/arm.md 
patching file gcc/doc/invoke.texi 
bash-2.05b# 

bash-2.05b# mkdir obj; cd obj 
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b) --prefix=/usr/pp - Tells GCC to place its compiled binaries in the folder 
/usr/pp.  

c) --enable-stack-protector – The most important option for us. It 
configures GCC so it will be compiled with the stack protection that is 
using our patch. 

 

 
After configuration, the Makefile file has been created, which will be useful 
for the compilation of GCC. Now, all we need to do is to start up the 
compilation process: 
 

 
The compilation can take a relatively long time, depending on the 
performance of our computer. GCC is a huge application, and the size of its 
resources is comparable to that of the system kernel. We can therefore safely 
go away from the computer for several minutes. After terminating the 
compilation of our new compiler we can start the installation in the /usr/pp 
directory: 
 

 
This process shouldn’t take too long, because it consists only of copying files 
to the target folder.  

bash-2.05b# ../configure --enable-languages=c,c++,objc --prefix=/usr/pp  
                         --enable-stack-protector 
creating cache ./config.cache 
checking host system type... i686-pc-linux-gnu 
checking target system type... i686-pc-linux-gnu 
(...) 
updating cache ./config.cache 
creating ./config.status 
creating Makefile 
bash-2.05b# 

bash-2.05b# make bootstrap-lean 

bash-2.05b# make install prefix=/usr/pp 
/bin/sh ../mkinstalldirs /usr/pp /usr/pp 
make[1]: Entry to the directory `/usr/src/gcc-3.4.4/obj/gcc' 
(...) 
make[2]: There is nothing to do in `install'. 
make[2]: Directory abandonment `/usr/src/gcc-3.4.4/obj/i686-pc-linux-
gnu/libiberty/testsuite' 
make[1]: Directory abandonment `/usr/src/gcc-3.4.4/obj/i686-pc-linux-gnu/libiberty' 
bash-2.05b# 
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Let’s have a look which folders have been created in the /usr/pp directory: 
 

 
Their destination is the following: 
 

 
However, we are interested only in the functioning of our compiler. 
Therefore we go now to the bin directory and have a look at its content: 
 

 
Here the GCC binaries are located that we will use to compile the test 
program. The installation process has also created a source code with the 
name test.c. Let's have a look at it (/CD/Chapter18/Listings/test.c): 
 

 
This program creates a table of characters with eight elements (char buf[8]). 
Then it copies to it the content of the first argument transferred by the user, 
without checking its size. This is a standard example of buffer overflow, and 
an opportunity for an attack, against which the applied patch should protect 
us. We should test the program, compiling it using the standard GCC 
version. But we have to be sure that we have started up the old version of the 
compiler, and not the new one, which is located in the current directory.  
 

bash-2.05b# ls 
bin  include  info  lib  libexec  man  share 
bash-2.05b# 

a) bin            - This folder contains a compiled GCC version with a patch applied. 
b) include        - These are the header files for programs written in the language C++. 
c) info           - Here help files for the info program are located. 
d) lib & libexec  - Libraries necessary during GCC work. 
e) man    - Help pages of the compiler man. 
f) share   - Local files, used by GCC, e.g., when informing about errors. 

bash-2.05b# cd bin 
bash-2.05b# ls 
c++   cpp  gcc  gcov  i686-pc-linux-gnu-g++  i686-pc-linux-gnu-gcc-3.4.4  
test.c  core  g++ gccbug  i686-pc-linux-gnu-c++  i686-pc-linux-gnu-gcc  test 
bash-2.05b# 

int main(int argc, char *argv[]) 
{ 
    char buf[8]; 
    strcpy(buf, argv[1]); 
    return 0; 
} 
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We will refer to /usr/bin/gcc. 
 

 
We have compiled a test program using GCC without the patch. We don’t 
have to worry about the warning it returns, because this always appears when 
the source code doesn’t contain a new line character at the end. We will now 
try to transfer such a long character sequence to the test program that it will 
cause the overwriting of the stack frame: 
 

 
As we can see, we performed the ulimit command, which orders the 
programs to generate a memory discharge in the form of the core file after the 
appearance of an error. Our test application terminated with an error, after 
entering too many “A” characters in the first argument. Now we can check 
with gdb and the core file to see why this happened: 
 

 
We can see that our program overflowed when attempting to access the 
memory located at address 0x41414141, which corresponds to the “AAAA” 
characters.  
 

bash-2.05b# /usr/bin/gcc -o test test.c 
test.c:6:2: warning: no newline at end of file 

bash-2.05b# ulimit -c 1500000000 
bash-2.05b# ./test AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
Segmentation fault (core dumped) 

bash-2.05b# gdb test core 
GNU gdb 5.2.1 
Copyright 2002 Free Software Foundation, Inc. 
GDB is free software, covered by the GNU General Public License, and you are 
welcome to change it and/or distribute copies of it under certain conditions. 
Type "show copying" to see the conditions. 
There is absolutely no warranty for GDB. Type "show warranty" for details. 
This GDB was configured as "--host= --target=i686-pld-linux"... 
Core was generated by `./test AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'. 
Program terminated with signal 11, Segmentation fault. 
 
warning: current_sos: Can't read pathname for load map: Input/output error 
 
Reading symbols from /lib/libc.so.6...done. 
Loaded symbols for /lib/libc.so.6 
Reading symbols from /lib/ld-linux.so.2...done. 
Loaded symbols for /lib/ld-linux.so.2 
#0  0x41414141 in?? () 
(gdb)  
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Let’s check how our stack frame looks: 
 

 
After overwriting the frame of the main() function with the “A” values, the 
program returned to the previous function, thinking that the original frame 
was located right under this address. It happened this way, because we 
overwrote the copy of the EBP register that was responsible for this. The 
program also wanted to jump to the address 0x41414141, because we 
overwrote a copy of the EIP register. The processor executes the code from 
this address, which is located in this register. 
 

 
As we can see, thanks to overwriting the register copies located in the 
function frame, erroneous values were entered for both of them. If a code 
added by a hacker were located under the address 0x41414141, it would be 
executed. In our case the program terminated the action with an error, 
because the memory from this address is not available for the process. 
Attempting access to this memory area led to the process being killed by the 
system kernel. 
 
Now we know how easy it is to overwrite a function frame and which 
consequences it can have. The SSP patch should protect us against attacks of 
this type. Let’s check it. We compile our test program, this time using the 
patched GCC version (located in the directory /usr/pp/bin, our current path): 
 

 
As we can see, this time the program didn’t terminate with an error, but it 
interrupted itself. Thanks to the security patch, the program detected the 

(gdb) info frame 
Cannot access memory at address 0x41414141 
(gdb) 

(gdb) print $eip 
$1 = (void *) 0x41414141 
(gdb) print $ebp 
$2 = (void *) 0x41414141 

bash-2.05b# ./gcc -o test test.c 
test.c:6:2: warning: no newline at end of file 
bash-2.05b# ./test AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
test: stack smashing attack in function main 
Interrupted (core dumped) 
bash-2.05b# 
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overwriting of the function frame and sent a SIGKILL signal to itself, 
ordering itself to end the action immediately. In this case, a core file was also 
generated, so let’s investigate it: 
 

 
Our program terminated with the kill() function, which means that this 
function was the last to be performed. 
 
In the Training Operating System environment, the process of compiling 
using the SSP could look like this: 
 

 
The Stack-Smashing Protector security patch not only protects against the 
buffer overflow error, but also against exploiting this error. Because of this 
patch the attacker can, at most, only freeze the program using the error, 
which usually doesn’t give him any benefit. A significant security 
improvement, ensured by SSP, also brings a drop in performance. Therefore 
its authors decided that the only protected functions would be those that 
contain the char tables, because it’s mainly during operations performed on 
them that the buffer overflow error occurs. We will now try to modify our 
test program slightly, so the data are copied to the int table and not to char 
(/CD/Chapter18/Listings/test2.c): 
 
int main(int argc, char *argv[]) 
{ 
    int buf[8]; 
    strcpy((char*)buf, argv[1]); 
    return 0; 
} 

bash-2.05b# gdb test core 
GNU gdb 5.2.1 
(...) 
Reading symbols from /lib/libc.so.6...done. 
Loaded symbols for /lib/libc.so.6 
Reading symbols from /lib/ld-linux.so.2...done. 
Loaded symbols for /lib/ld-linux.so.2 
#0  0x40046841 in kill () from /lib/libc.so.6 
(gdb) 

bash-2.05b# gcc -fstack-protector -o test test.c 
test.c:6:2: warning: no newline at end of file 
bash-2.05b# ./test AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
*** stack smashing detected ***: ./test terminated 
Interrupted (core dumped) 
bash-2.05b# 
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The strcpy() function assumes only arguments being the char pointers, 
therefore we had to apply typecasting using (char*)buf in the first parameter. 
The int variables have the size of four bytes, whereas char has only one. The 
number of “A” characters we will enter in the test will also have to be greater 
to overflow the buffer and to overwrite the function frame. We compile and 
test our program: 
 

 
This time the program ended with a memory protection violation error.  
 
Let’s examine the core file: 
 

 
As we can see we managed to overwrite the registers’ copies without 
problems, despite using the GCC program with the applied security patch for 
the compilation. Luckily this can be remedied. Stack-Smashing Protector 
contains the compilation option -fstack-protector-all, which protects all 
functions, not just those containing the char tables. We will now compile our 
test program with its use and will test it again: 
 

 

bash-2.05b# ./gcc -o test2 test2.c 
test.c:6:2: warning: no newline at end of file 
bash-2.05b# ./test2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAA 
Segmentation fault (core dumped) 
bash-2.05b# 

bash-2.05b# gdb test2 core 
GNU gdb 5.2.1 
Copyright 2002 Free Software Foundation, Inc. 
(...) 
Reading symbols from /lib/libc.so.6...done. 
Loaded symbols for /lib/libc.so.6 
Reading symbols from /lib/ld-linux.so.2...done. 
Loaded symbols for /lib/ld-linux.so.2 
#0  0x41414141 in?? () 
(gdb) 

bash-2.05b# ./gcc -o test2 test2.c -fstack-protector-all 
test.c:6:2: warning: no newline at end of file 
bash-2.05b# ./test2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAA 
test: stack smashing attack in function main 
Interrupted (core dumped) 
bash-2.05b# 
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The program intercepted an attempt to overwrite the function frame and 
immediately terminated its action. We can check it also using gdb and the 
core file. The result will be exactly the same as in the case of the char table 
function. It is therefore good to add this option to each program that we 
compile. 
  
We now know how to use a patched version of our compiler. We have seen 
that the SSP patch protects effectively against buffer overflow attacks. 
However, it would also be good to discover how it really works. 
 
To detect the violation (overwriting) of the stack, SSP uses an additional 
variable called the guard. This variable is placed in each function, right before 
the data whose overwriting can have disastrous effects (e.g., the stack frame).  
 
This process progresses in the following way: 
 
a) Declaration of the guard variable immediately under the stack frame for 
the given function. 
 

         
b) At the beginning of the function body, a random value is assigned to the 
guard variable. This is a value generated by /dev/urandom or /dev/random. 
 

 
c) At the end of the function a comparison of the guard variable value with 
the original value occurs. If those values correspond to each other, it means 
that a buffer overflow has taken place in the program. In such a situation 
information about the incident is printed and program execution is 
interrupted. 
 

 

int guard; 

guard = guard_value; 

  if (guard != guard_value) { 
        /* informing about the incident */ 
        /* action termination */ 
  } 
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Let’s have a closer look at an example stack structure, right after starting the 
execution of a function: 
 

Function arguments 

Function return address 

Previous frame pointer 

Guard 

Tables 

Other local variables 
 
The overflow can happen only in the location marked “Tables.” The SSP 
patch is so clever that it alone changes the order of the local variables 
function so that it is impossible to overwrite anything else.  
 
We have an example of variable declaration below: 
 

         
If a buffer overflow error were to be found in the program code, it would be 
possible to overwrite the ok variable and the p pointer, which could have 
disastrous effects (depending on the function of these variables). Therefore 
the Stack-Smashing Protector changes the order of the local variables, so the 
tables will be located immediately under the guard variable – our guard. The 
code compiled in our new compiler looks then as follows: 
 

         
As we know already, buffer overwriting in the above case won’t do much, 
because the guard variable will be overwritten, and this will be detected at the 
end of the function. Bypassing this type of protection is almost impossible, 
and only errors enabling us to save data to any memory address (e.g., such as 
those exploited during a format string attack) can be exploited by the hacker. 

char *p; 
int ok; 
char buf[8]; 

char buf[8]; 
char *p; 
int ok; 



Improving security with patches 370 

 

Luckily they are rare. The protection method is also visible in the assembler 
code of each function. At the end it contains usually instructions of this type: 
 

 
At the beginning a comparison of the values located under the address 
0x8049e00 with the EDX register value takes place. If they agree with each 
other, a jump to the address 0x80487e8, the very end of the function (leave 
instruction), is performed. If these values differ, the __stack_smash_handler 
function located under the address 0x8048890 is performed. This tells us 
about the attempt to overwrite the stack. We’ll try using gdb to check how 
both of these cases look. We start up gdb, entering in the call parameter the 
name of our program (gdb test). We put a break under the address 
0x80487cd, where the comparison function is located.  
 

 
The program will stop running there, and we will check the values. Now we 
start up the program, with short arguments so as not to overwrite the guard 
variable: 
 

 
To display the given values we used the printf function, similar to that in the 
C language. As we can see, the read values are exactly the same.  
 

0x80487cd <main+73>:  cmp    0x8049e00,%edx 
0x80487d3 <main+79>:    je     0x80487e8 <main+100> 
0x80487d5 <main+81>:    mov    0xffffffe8(%ebp),%eax 
0x80487d8 <main+84>:    mov    %eax,0x4(%esp,1) 
0x80487dc <main+88>:    movl   $0x8048c38,(%esp,1) 
0x80487e3 <main+95>:    call    0x8048890 <__stack_smash_handler> 
0x80487e8 <main+100>:  leave 
0x80487e9 <main+101>:  ret 

(gdb) break *0x80487cd 
Breakpoint 1 at 0x80487cd 
(gdb) 

(gdb) r AAAA 
Starting program: /usr/pp/bin/test AAAA 
 
Breakpoint 1, 0x080487cd in main () 
(gdb) printf "0x%x\n", $edx 
0xc5f93634 
(gdb) printf "0x%x\n", *0x8049e00 
0xc5f93634 
(gdb) 
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So we continue running the program: 
 

 
Nothing happened, and the program terminated normally, according to our 
expectations. Now, we will try to transfer a long argument to the program, in 
order to overwrite the stack: 
 

 
We see that the EDX register was filled with the value that we entered in the 
program argument. The same number was also placed under the address 
0x8049e00. This is a global guard with a random value, and it is impossible to 
overwrite. The values are different; therefore, the condition was not met. Let’s 
try to continue running the program: 
 

 
The program started up the __stack_smash_handler function, which printed 
the information on the incident and sent the SIGKILL signal to itself, which is 
shown by gdb. 
 
LibSafe 
 
In the battle between performance and security in the development of a 
standard C library, performance won. The library itself is safe, but it makes 

(gdb) c 
Continuing. 
 
Program exited normally. 
(gdb) 

(gdb) r AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
Starting program: /usr/pp/bin/test AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
 
Breakpoint 1, 0x080487cd in main () 
(gdb) printf "0x%x\n", $edx 
0x41414141 
(gdb) printf "0x%x\n", *0x8049e00 
0xbda71c36 
(gdb) 

(gdb) c 
Continuing. 
test: stack smashing attack in function main 
Program received signal SIGABRT, Aborted. 
0x40046841 in kill () from /lib/libc.so.6 
(gdb) 
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many functions available that can prove dangerous in the hands of an 
inexperienced programmer. One of those potentially dangerous functions is 
gets(). To see for ourselves, we will now try to compile the program below 
(/CD/Chapter18/Listings/test3.c): 
 
int main(int argc, char* argv[]) 
{ 
    char buf[8]; 
    gets(buf); 
    return 0; 
} 

 
bash-2.05b# gcc -o test3 test3.c 
test.c:6:2: warning: no newline at end of file 
/tmp/ccj8vnHg.o(.text+0x17): In function `main': 
: warning: the `gets' function is dangerous and should not be used. 
bash-2.05b# 

 
The compiler has told us that the function is dangerous and we shouldn’t use 
it. Besides gets(), there are many other functions of the libc library that can 
threaten the program. An example is strcpy(), which also doesn’t check the 
size of the introduced buffer.  
 
Let’s enter a long character sequence into our program: 
 

 
We can assume that it was compiled without using the SSP patch. As we can 
see, the stack frame has been overwritten with our buffer. 
 
We’ll review the steps we have taken, bringing us slowly but surely to where 
the attack begins. First we protected the memory against the startup of the 
hacker’s code. Then we secured the program against jumping to an erroneous 
function by applying the SSP patch. Next, we should secure our programs so 
an overflow won’t happen.  
 
Linux has the ability to intercept references to the libc library functions. This 
means that we can create our own library containing functions with the same 
names as those in the libc library, and these will be used by our programs. 

bash-2.05b$ ./test3 
AAAAAAAAAAAAAAAAAAAAAAAAA 
Segmentation fault (core dumped) 
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LibSafe is an example of such a library. It filters all dangerous function calls. 
If it detects an attack, it tells us about it immediately and ends the program. 
Otherwise it transfers the action to the standard libc library. Now we will 
download, install, and test the safe library. It can be downloaded from: 
 

 
Information on the function, installation, and use of the library are also to be 
found there. In our example we will use version 2.0. So, we download its 
resources, as usual to the /usr/src directory: 
 

 
We unpack the archive and perform the compilation and installation process 
of the library: 
 

 
Due to its small size, this process will take at most a few seconds on a modern 
computer. 
 

 
 

http://directory.fsf.org/project/libsafe/ 

wget http://pubs.research.avayalabs.com/src/libsafe-2.0-16.tgz 

bash-2.05b# tar zxf libsafe-2.0-16.tgz 
bash-2.05b# cd libsafe-2.0-16 
bash-2.05b# make 
cd src; make 
make[1]: Entering directory `/usr/src/libsafe-2.0-16/src' 
gcc -M  util.c intercept.c > dep 
gcc -c -o util.o -O2 -Wall -fPIC -DLIBSAFE_VERSION=\"2.0.16\"  util.c 
(...) 
gcc -o canary-exploit -Wall  canary-exploit.c 
gcc -o exploit-non-exec-stack -Wall  exploit-non-exec-stack.c 
make[1]: Leaving directory `/usr/src/libsafe-2.0-16/exploits' 
bash-2.05b# 

bash-2.05b# make install 
cd src; make install 
make[1]: entering directory `/usr/src/libsafe-2.0-16/src' 
install libsafe.so.2.0.16 /lib 
(...) 
Type y for installing libsafe system wide?[default n] n 
install ../doc/libsafe.8 /usr/share/man/man8 
make[1]: leaving directory `/usr/src/libsafe-2.0-16/src' 
bash-2.05b# 
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After installation the library is ready to be used. In order for LibSafe to be 
loaded while starting up each program, we have to set the environment 
variable LD_PRELOAD, which will point to its access path. We do this using 
the export command: 
 

 
It is good to add this line to the /etc/profile file so it will be loaded at each 
login. We will now test the program below, which is susceptible to the buffer 
overflow attack in the strcpy() function (/CD/Chapter18/Listings/test.c): 
 

 
The first step is to compile the program: 
 

 
Now, let’s check if the LibSafe library will be uploaded at the startup of our 
program. We will use the ldd program for this purpose: 
 

 
We can see that our library is located at the very top of the list, so we can be 
sure it will be uploaded. We start up the program and transfer a long 
character sequence to it: 
 

 

bash-2.05b# export LD_PRELOAD=/lib/libsafe.so.2 

int main(int argc, char* argv[]) 
{ 
    char buf[8]; 
    strcpy(buf, argv[1]); 
    return 0; 
} 

bash-2.05b# gcc -o test test.c 

bash-2.05b# ldd test 
        /lib/libsafe.so.2  => /lib/libsafe.so.2 (0x40015000) 
        linux-gate.so.1   => (0xffffe000) 
        libc.so.6   => /lib/libc.so.6 (0x40024000) 
        libdl.so.2   => /lib/libdl.so.2 (0x40135000) 
        /lib/ld-linux.so.2  => /lib/ld-linux.so.2 (0x40000000) 
bash-2.05b# 

bash-2.05b# ./test AAAAAAAAAAAAAAAAAAAAAAAAAAA 
Libsafe version 2.0.16 
Detected an attempt to write across stack boundary. 
Terminating /usr/src/test. 
    uid=0  euid=0  pid=3131 
Call stack: 
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    0x40016b1c  /lib/libsafe.so.2.0.16 
    0x40016c4b  /lib/libsafe.so.2.0.16 
    0x80483c6   /usr/src/test 
    0x400390ad  /lib/libc-2.3.3.so 
Overflow caused by strcpy() 
Annihilated 
bash-2.05b# 

 
The overflow is identified before it calls the real strcpy() function in the libc 
library, which is as we expected. Owing to this, no memory area was ever 
overwritten, and the program terminated, giving the exact location where the 
error (strcpy() function) was, at 0x80483c6). This information has also been 
saved into the /var/log/secure file, giving us the ability to identify errors in 
programs working as invisible services (e.g., WWW server). 
 
a) strcpy(char *dest, const char *src) – Can overflow the dest buffer.  
b) strcat(char *dest, const char *src) – Can overflow the dest buffer. 
c) getwd(char *buf) – Can overflow the buf buffer. 
d) gets(char *s) – Can overflow the s buffer. 
e) [vf]scanf(const char *format, ...) - Can overflow the arguments of this 

function. 
f) realpath(char *path, char resolved_path[]) – Can overflow the path 

buffer. 
g) [v]sprintf(char *str, const char *format, ...) - Can overflow the str buffer. 
 
All the functions mentioned above are considered dangerous. Besides the 
functions listed above, LibSafe also checks the ones operating on formatting 
characters. An example of this kind is printf(). If, while using it, an attacker 
tries to change the way a program is executed, it will also be closed, and the 
user will be warned about the incident. 
 
As we can see, despite its small size the LibSafe library provides a 
considerable improvement in security and checks for cracker activity from 
the very beginning of the attack. It is thus worth keeping in the system for 
daily use. The performance penalty for programs is minimal. 
 
The principles grsecurity programmers apply, are: “People are usually the 
weakest link in security” and “We should ensure security at every level.” 
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Therefore, we should remember that security is a process and not a product. 
We should take care of it continuously. At the same time applying a patch is 
not enough; it can only make a cracker’s job more difficult.  
 
Not even memory protection and the randomization of addresses will ensure 
perfect security. We should therefore take care of it on many levels: 
 
a) Applying a patch to the kernel. 
b) Applying a patch to the compiler. 
c) Using security libraries. 
d) Activating software. 
 
Even if an attacker can somehow bypass the LibSafe library, he will encounter 
an error related to the Stack-Smashing Protector. In theory this can be 
bypassed only using a format string attack; however, it is not possible to 
perform this because of LibSafe. If, however, we come across a remarkable 
cracker and he passes through the first two barriers, he will then come across 
the problem that it is not possible to start up his own code. The protection 
levels are very interdependent, and each level determines the security of the 
others. After applying numerous protection systems, it becomes nearly 
impossible to exploit an error. After protecting the system in this way we can 
sleep more soundly, as we do not have to worry quite so much about the 
integrity of our data. 


