
Improving security with patches 347

Chapter 18

Improving security with patches

Computer systems become safer and safer over the course of time. The
security holes that are discovered are patched immediately, and as a result the
code quality rises continuously. A hacker has very little time to exploit a gap
in vulnerable software. If he doesn’t manage to do this before the security
hole is patched by the administrator, his entire effort in writing an exploit will
vanish into thin air. Even if the administrator is lazy and forgets to update the
software, the ready-made scripts contained in current distributions will do it
for him.

But what happens if a hacker finds an error and doesn't tell anybody about it?
In such a situation no update will protect us, nor will keeping up-to-date with
security-related discussion boards. Only special patches can protect us against
attacks on undocumented errors, increasing the overall security of our
system, not just that of individual applications.

As we already know, every operating system possesses a kernel. The kernel is
responsible for communication with the hardware, allocation of memory, and
other operations requiring full access to the processor. It’s the kernel that
manages all system processes, performs memory operations, and classifies
their execution. Let’s assume that a program that has been started up contains
an error. A hacker exploits it, takes control over the program, and gains its
rights. If the process was started up by a root user, the hacker gains
administrator privileges. There are several things we can do to protect
ourselves against such an incident:

a) We can patch the program containing the error.

Improving security with patches 348

b) We can patch the system in such a way that it will protect against this type
of attack.

The first solution is effective if anybody, apart from the hacker, knows about
the existence of the error. Otherwise, we won’t even be aware of the fact that
the hacker has used this program to break in. The second possibility
definitely gives better results. Instead of patching each program, we can
obtain the same effect protecting the whole system against attacks of this
kind. The term “system” instead of “kernel” has been used here on purpose,
because we can divide this type of protection into several types:

a) Protection on the system kernel level.
b) Protection on the compiler level.
c) Protection on the library level.

Let’s stop and think how we can protect our program against attacks from the
kernel level. The attack most frequently encountered against applications is
the buffer overflow attack, which was described in an earlier chapter of this
handbook. It consists in overwriting parts of the program memory and
starting up one’s own code. This code is most frequently used to start up the
shell with root privileges and is transferred to the program through its
arguments. The arguments of each process are located in the memory area
known as the stack. The hacker will aim to start up his code from this
memory segment. As we know already, the kernel manages the process
memory. The kernel defines some flags (tags) that specify whether a specific
memory fragment can be written, read, or started up. In the standard
configuration of the Linux kernel, the stack contains each of these flags.
Therefore, there is nothing to stop someone from starting up their own code
located on the stack. The main task of security patches written for the kernel
is to configure the process memory to prevent the startup of user code on the
process level. This and many other useful functions are contained in two
popular patches, which will be described later on in this chapter.

We know already that we can protect the process memory to prevent a
hacker’s code from starting up. However, we can protect our programs so
that it will generally be impossible to change the function of the process. The

Improving security with patches 349

most frequently overwritten memory area, which decides which code
executes the program, is the stack frame. It contains information about from
which function the currently running procedure was called. Because of this, a
return to the main function, after terminating the one currently running, is
possible. However, if for some reason, due to a programmer’s error, the
hacker can manage to overwrite the stack frame with his own data, he can
cause the program to jump to the harmful code, and not to the main
function. The security patches applied to the compiler can protect us against
overwriting of the frame. In this way, any program we compile won’t be
susceptible to the buffer overflow error. We will have a closer look at this
protection method a little bit later.

When we program in the C language, we have many standard functions at
our disposal, such as printf(), strcpy(), and gets(). They are not located in the
code of our program, but in the library of the C language, which is libc. This
is a dynamic library, which means that it is loaded automatically after starting
up our program, so it can use the library functions. It is mainly because these
functions don’t contain any protections that the buffer overflow and format
string attacks are possible. There are libraries available that check the security
of the transferred parameters of these functions, and by using them it is
possible to avoid overwriting important data. We will discuss this method in
more detail later in this chapter.

The first method of system protection, which we will look at more closely,
will be security patches applied to the kernel. These have become more and
more popular, and are now standard in many distributions of the Linux
system.

Grsecurity

Grsecurity is without doubt the most complex and popular patch for the
system kernel. It uses a memory protection system called PaX. We can use it
as a separate patch, downloading it from:

http://pax.grsecurity.net/

Improving security with patches 350

However, it’s better to invest in the whole grsecurity packet, of which the
memory protection system is only a small part. The following are the main
elements of this packet:

a) Memory protection through PaX
b) Randomization of memory and the TCP/IP stack
c) Limited display of processes
d) Increased protection in the chroot environment
e) Protection against a race condition in /tmp

We will have a closer look at each of these elements during the configuration
of our patch. But first we will consider the installation process.

Therefore, we download the newest version of the Linux kernel. It can be
found at:

Currently the newest version from the 2.6 branch is 2.6.29.4. Our tests will be
performed on this kernel version. We go to the folder /usr/src, where we
should store the system resources as standard. It is good to stick to this rule.
Next, we download the compressed resources using the wget tool:

After a while we will have the resources for our new kernel. Now it’s time to
equip ourselves with the grsecurity patch. Therefore we go to the project page
and download the patch appropriate for our kernel (that is, 2.6.29.4):

http://www.kernel.org

wget http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.29.4.tar.bz2

wget http://www.grsecurity.net/grsecurity-2.1.14-2.6.29.4-200905292205.patch

Improving security with patches 351

Patching and configuring a new kernel

We have now all the required elements. Now it’s time to unpack the system
sources and to apply the patch:

The patch program, logically enough, applies patches. We transfer the patch
content to the patch program’s standard input (using the tag <), where it
applies the patch to the application. If the program returns an error, it can
mean that the version of our patch is different from the system version on
which we want to install it. In such a case, we have to go the grsecurity page
and make sure we have the appropriate patch.

Now we go to the grsecurity configuration. The best solution will be to
download an example configuration file from the page:

This contains the most frequently used options. After downloading this file to
the folder /usr/src we go to the directory with the system resources
(/usr/src/linux-2.6.29.4) and call the command:

 After terminating the compilation process we will see the console menu. At
the very bottom we choose the option:

bash-2.05b# tar xfj linux-2.6.29.4.tar.bz2
bash-2.05b# patch -p0 < ./grsecurity-2.1.14-2.6.29.4-200905292205.patch
patching file linux-2.6.29.4/Documentation/Configure.help
patching file linux-2.6.29.4/Makefile
patching file linux-2.6.29.4/arch/alpha/config.in
patching file linux-2.6.29.4/arch/alpha/kernel/osf_sys.c
(...)
patching file linux-2.6.29.4/net/netsyms.c
patching file linux-2.6.29.4/net/socket.c
patching file linux-2.6.29.4/net/sunrpc/xprt.c
patching file linux-2.6.29.4/net/unix/af_unix.c
bash-2.05b#

http://www.grsecurity.net/generic-config

make menuconfig

Load an Alternate Configuration File

Improving security with patches 352

Next, we enter the path to our configuration file (/usr/src/generic-config). We
have to configure the kernel depending on the hardware that we have. It’s
worth reviewing all the sections so we won’t forget to compile the services of
important devices. We will focus on the last section, Grsecurity. The star
between brackets [*] means that an option has to be selected. If there is no
star, we deselect the option. The following fields are located in this sector:

a) [*] Grsecurity – We select this to activate the grsecurity service in the kernel.
b) (Customized) Security level – Options regarding the grsec protection level
 () Low – Low protection level
 () Medium – Medium protection level
 () High – High protection level – in this case some programs such as X
 Window System can stop working.
 (X) Customized – Protection level defined by the user. We select this one.
c) PaX Control ---> These options adopt the loading of system binaries for the PaX
patch.
 [] Support soft mode
 [*] Use legacy ELF header marking
 [*] Use ELF program header marking
 (none) MAC system integration
d) Address Space Protection ---> This selection allows us to configure some patch
options.
 [*] Enforce Non-executable pages (NEW) – Forcibly creates non-executable areas
 of memory.
 [*] Paging based non-executable pages (NEW) – Method of creation of non-executable
 memory pages.
 [*] Segmentation based non-executable pages (NEW) – As above.
 [] Emulate trampolines (NEW)
 [*] Restrict mprotect() (NEW) – Does not allow programs to change the rights of
 the memory pages (e.g., in order for them to be executable).
 [] Disallow ELF text relocations (DANGEROUS) (NEW)
 [*] Address Space Layout Randomization (NEW) – Randomization of addresses.
 [*] Randomize kernel stack base (NEW) – Randomizes the address of the kernel
 stack.
 [*] Randomize user stack base (NEW) – Randomizes the address of the user stack.
 In this way the exploitation of the stack overflow errors is rendered very
 difficult.
 At each startup of the program, the stack address changes, and at the same time
 the address of the cracker’s injected code changes.
 [*] Randomize mmap() base (NEW) – Randomizes the address returned by the
 function mmap(). In this way the exploitation of heap overflow errors is
 rendered very difficult.
 [*] Randomize ET_EXEC base (NEW) – Randomizes the mapping location of the
 program started up. As in the previous cases it serves to make the hacker's
 actions more difficult.
 [*] Deny writing to /dev/kmem, /dev/mem, and /dev/port – Using the devices
 /dev/kmem, /dev/mem the root user has access to the system kernel memory,
 which means that he can modify them freely. If an attacker manages to gain
 such privileges, he can, using these devices, introduce a backdoor to the
 kernel.
 The device /dev/port makes possible the access to the computer hardware, as
 well as to the disk and to the RAM memory. Exploitation of this file can also
 contribute

Improving security with patches 353

 [] Disable privileged I/O
 [*] Remove addresses from /proc/pid/[maps|stat] – In the file /proc/self/maps
 the addresses of the uploaded libraries of the process currently started up, are
 located. One of them is for example libc. Thanks to this address, it is
 possible to perform the attack return into libc, against which even a non-
 executable stack cannot protect fully.
 [*] Deter exploit bruteforcing – Detects an attempt of use of brute-force
 exploits.
 [] Hide kernel symbols
e) Role Based Access Control Options ---> Allows the configuration of the RBAC control
 system.
 [*] Hide kernel processes – Hides processes belonging to the system kernel.
 (3) Maximum tries before password lockout – Maximum number of attempts to enter
 the password before it is blocked.
 (30) Time to wait after max password tries, in seconds - Time to wait to
 introduce the password.
f) Filesystem Protections ---> Functions related to the file system protection.
 [*] Proc restrictions – Thanks to this option, users cannot spy on each other’s
 processes through the /proc file system.
 [] Restrict to user only
 [*] Allow special group – Using this option, we will be able to choose a
 group, whose users will see all processes in the system.
 (1001) GID for special group – The number of this group is in our case 1001.

 [*] Additional restrictions – Using this, normal users won’t be able to see
 information on the hardware, which are located in the files in the folder
 /proc (e.g., /proc/cpuinfo).
 [*] Linking restrictions – This option forbids creating symbolic links in the
 /tmp folder. This protects against race condition attacks.
 [*] FIFO restrictions – As above, it protects against race condition, but this
 time with use of FIFO queues.
 [*] Chroot jail restrictions – Options restricting the rights of a user located
 in a separated chroot environment. The information on using chroot can be
 found on the system manual pages (man chroot). All options below concern it.
 [*] Deny mounts – Disallows mounting devices.
 [*] Deny double-chroots – Disallows executing a double chroot.
 [*] Deny pivot_root in chroot – Disallows use of the pivot_root() function.
 [*] Enforce chdir("/") on all chroots – Assumes „/” as main directory of each
 chroot.
 [*] Deny (f)chmod +s – Disallows setting of the suid and sgid bits.
 [*] Deny fchdir out of chroot – Disallows using the fchdir function. Allows
 preventing a situation, in which a chroot by-pass is possible.
 [*] Deny mknod – Disallows creating devices.
 [*] Deny shmat() out of chroot - The shmat() function is used to add a memory
 segment. The program in chroot could add a program segment, which is not to be
 found in it and draw information from it. Therefore, this function is blocked.
 [*] Deny access to abstract AF_UNIX sockets out of chroot – Blocks access to
 the AF_UNIX sockets, because they allow communication between processes.
 [*] Protect outside processes – This function completely isolates the process
 in the chroot environment. It cannot send signals or perform any other
 operations on processes that are not within it.
 [*] Restrict priority changes – Disallows changing the process priority.
 [*] Deny sysctl writes in chroot – Disallows using the sysctl function.
 [*] Capability restrictions within chroot – With this option the process
 working in chroot will loose all privileges available to the root user.

Improving security with patches 354

g) Kernel Auditing ---> These options don’t grant security by themselves, however, using
 them we can obtain a lot of useful information on the system functioning.
 They allow logging various function calls (sometimes dangerous).
 [] Single group for auditing – After selecting this option we can set the

number of the group to be logged.
 [] Exec logging – Enables logging of all calls of the exec() function. It is

executed very frequently during the system functioning, therefore, it is not
worth selecting it.

 It will only cause us to be bombarded with useless information.
 [*] Resource logging – Logs all cases, in which the process exceeds the access

limit to the system resources.
 [] Log execs within chroot – Logs start up of the programs in the chroot

 environment.
 [] Chdir logging – Logs changes to the current directory.
 [] (Un)Mount logging – Logs mounting and unmounting of devices.
 [] IPC logging – Logs when the IPC mechanisms are used by the processes (they
 allow communication between processes).
 [*] Signal logging – Logs all sent signals.
 [*] Fork failure logging – Logs the calls of the fork() function, which end with

 an error.
 [*] Time change logging – Logs changes to the system time.
 [] /proc/<pid>/ipaddr support – The option creates a new file in the /proc/pid

 folder, which shows sockets opened by a given process.
 [] ELF text relocations logging (READ HELP) – Option connected with the change

 of the content of the programs compiled.
h) Executable Protections ---> These functions regard the functioning of the system
 processes.
 [*] Enforce RLIMIT_NPROC on execs – Checks if the process limit has been
 exceeded when the exec() function has been called. As standard such a
 test is performed only when using the fork() function.
 [*] Destroy unused shared memory (NEW) – Destroys the shared memory, which is not
 used by any process.
 [*] Dmesg(8) restriction – After switching on this option a normal user won’t be

 able to display more than 4kb of the kernel message buffer. To display it
 the dmesg program is used.

 [*] Randomized PIDs – This option chooses a random PID number for the newly
 created processes. As standard they are chosen in sequence.
 [] Trusted path execution – After choosing this option, we can determine the

 number of the group, which the set limits won’t regard.
i) Network Protections ---> This section allows randomization of some elements of the
 TCP/IP stack. It can allow, for example, protection against
 the remote identification of the system version.
 [*] Larger entropy pools – Increases the memory size used by the system, and is
 useful for generating of random values.
 [*] Truly random TCP ISN selection – After activation of this option the field

initiating the TCP sequence will be chosen randomly.
 [*] Randomized IP IDs – The id field of the IP header will be chosen randomly.
 [*] Randomized TCP source ports – The source ports will be random while making a
 connection, not, as is standard, in sequence.
 [*] Randomized RPC XIDs – The XID field of the RPC request will be chosen

randomly.
 [] Socket restrictions – These options will allow limitations on the creation

of sockets.
 We can for example define a group that will be able to create sockets for
 servers or clients, whereas we can prevent the rest of the users from doing this.
j) Sysctl support ---> This option allows activation of the sysctl service for
 grsecurity. In this way we will be able to modify the functioning of the patch right
 after compiling the kernel.
 [] Sysctl support – At our discretion, we can activate this option or not. If

we activate it the root user will be able to change the grsec configuration
with use of the sysctl command, which also is potentially dangerous.

Improving security with patches 355

k) Logging options ---> Options related to the frequency of sending messages (logs).
 (10) Seconds in between log messages (minimum) – Frequency of writing logs.
 (4) Number of messages in a burst (maximum) – Maximum number of messages
 given simultaneously.

These are all the options of the grsecurity packet. As we can see it is a huge
packet, significantly improving system security. We can quit the configurator,
and when prompted we should save the configuration.

In case we use a generic configuration file, before compiling we need to copy
generic-config to the root directory /usr/src/linux-2.6.29.4/ under the name
.config.

Attention.
To compile a new kernel with the grsecurity patch in Training Operating
System successfully we also need to update binutils package to version 2.18.
The latest version of the source can be found at:

The process of configuring and compiling the binutils package can be
conducted as follows:

The Training Operating System includes a standard version of gcc v4.1.1
compiler. However our 2.6.29.4 kernel requires a newer version of gcc (eg
v4.4) or carrying out certain modifications in one of the headers. Therefore
we can download a new version of gcc from repository or delete line 5, 6 and
7 from the file /usr/src/linux-2.6.29.4/include/linux/compiler-gcc4.h.
Nevertheless, please remember that this is an experimental modification and
it is better to obtain the latest versions of the required applications.

bash-2.05# cp /usr/src/generic-confi g /usr/src/linux-2.6.29.4/.confi g

http://ftp.gnu.org/gnu/binutils/

bash-2.05b# tar xfj binutils-2.19.tar.bz2
bash-2.05b# cd binutils-2.19
bash-2.05b# ./configure --prefi x=/usr
bash-2.05b# make
bash-2.05b# make install

Improving security with patches 356

Compiling a kernel with grsecurity patch

Now we can start the process of compilation of our new system. If the reader
is familiar with the subject of kernel compilation, he can without hesitation
skip this part.

The compilation process can take several hours, depending on the speed of
the computer. We give the command:

After executing this command we can leave the machine alone for some time.
The image of our kernel will be found in the directory /usr/src/linux-
2.6.29.4/arch/i386/boot/bzImage.

Before we take care of this, we have to compile and install the kernel modules,
executing a series of commands:

The duration of this process depends on the number of modules selected
during the kernel configuration. Next, we compile the kernel image to the
/boot folder with the command:

Depending on whether we compiled the modules into the kernel or not, we
start up the geninitrd program. This creates a file with modules that should
upload right after the kernel, before mounting the disk (i.e., the most
important drivers).

Next, depending on the bootloader used, we create an entry in the
configuration file. Below an example entry to the file /etc/lilo.conf:

make bzImage

make modules
make modules_install

bash-2.05b# cp /usr/src/linux-2.6.29.4/arch/i386/boot/bzImage /boot/linux-2.6.29.4-grsec

bash-2.05b# mkinitrd /boot/initrd-2.6.29.4-grsec 2.6.29.4-grsec

image=/boot/linux-2.6.29.4-grsec

Improving security with patches 357

After adding an entry we start up the lilo program to confirm the changes:

If you are using Grub boot loader, similar configuration entry in
/boot/grub/menu.lst could look like this:

All that’s left to do is give the reboot command. It is also good to leave the old
kernel image in case the system won’t load, for example due to not selecting
the appropriate drivers in the configuration file. Therefore we restart the
system and load the new kernel:

From outside, the new system doesn’t differ much from the old one. To test if
the patch really works, we will use the PaXtest program. It will test the
susceptibility of our system to various kinds of attacks. Currently its newest
version is 0.9.7-pre4:

Then we unpack the archive and compile the sources using a series of
commands:

root=/dev/hda1
label=2.6.29.4-grsec
initrd=/boot/initrd-2.6.29.4-grsec

bash-2.05b# lilo
Added 2.6.29.4-grsec *
Added 2.6.29.4-old

title 2.6.29.4-grsec
root (hd0,0)
kernel /boot/linux-2.6.29.4-grsec root=/dev/hda1
initrd /boot/initrd-2.6.29.4-grsec

bash-2.05b# reboot

Broadcast message from root (pts/2) (Wed Jan 19 13:48:27 2009):
The system is going down for reboot NOW!
(...)

bash-2.05b# wget http://pax.grsecurity.net/paxtest-0.9.7-pre4.tar.gz

bash-2.05b# tar zxf paxtest-0.9.7-pre4.tar.gz
bash-2.05b# cd paxtest-0.9.7-pre4
bash-2.05b# make generic

Improving security with patches 358

make -f Makefile.generic
make[1]: Entering directory '/home/user/paxtest-0.9.7-pre4'
(...)
(...)
(...)
sh genpaxtest anonmap execbss execdata execheap execstack mprotanon mprotbss mprotdata
mprotheap mprotshbss mprotshdata mprotstack randamap randheap1 randheap2 randmain1
randmain2 randshlib randstack1 randstack2 rettofunc1 rettofunc1x rettofunc2 rettofunc2x
shlibbss shlibdata writetext
make[1]: Leaving directory `/home/user/paxtest-0.9.7-pre4'
bash-2.05b#

So, let’s test the functionality of the newly applied patch. We start up the
paxtest program located in the current directory:

bash-2.05b# ./paxtest
PaXtest - Copyright(c) 2003, 2004 by Peter Busser <peter@adamantix.org>
Released under the GNU Public Licence version 2 or later

It may take a while for the tests to complete
Test results:

Executable anonymous mapping : Killed
Executable bss : Killed
Executable data : Killed
Executable heap : Killed
Executable stack : Killed
Executable anonymous mapping (mprotect) : Killed
Executable bss (mprotect) : Killed
Executable data (mprotect) : Killed
Executable heap (mprotect) : Killed
Executable shared library bss (mprotect) : Killed
Executable shared library data (mprotect) : Killed
Executable stack (mprotect) : Killed
Anonymous mapping randomisation test : 16 bits (guessed)
Heap randomisation test (ET_EXEC) : 13 bits (guessed)
Heap randomisation test (ET_DYN) : 25 bits (guessed)
Main executable randomisation (ET_EXEC) : No randomisation
Main executable randomisation (ET_DYN) : 17 bits (guessed)
Shared library randomisation test : 16 bits (guessed)
Stack randomisation test (SEGMEXEC) : 23 bits (guessed)
Stack randomisation test (PAGEEXEC) : 23 bits (guessed)
Return to function (strcpy) : Vulnerable
Return to function (strcpy, RANDEXEC) : Vulnerable
Return to function (memcpy) : Vulnerable
Return to function (memcpy, RANDEXEC) : Vulnerable
Executable shared library bss : Killed
Executable shared library data : Killed
Writable text segments : Killed
bash-2.05b#

Improving security with patches 359

As we can see, PaX doesn’t allow us to start up the code in any segment of the
memory. A program wanting to perform such an operation is immediately
closed (killed). The only attack that could be executed is a return to the
function belonging to the program (or its library). Unfortunately the
grsecurity patch doesn’t protect us against an attack of this kind. If the
program itself contains a code that could, for example, start up the bash shell,
the attacker will be able to perform a jump into it and to start it up, after
overwriting the required memory areas. PaX cannot forbid starting up
potentially dangerous functions, because it is a part of the program code. The
attack technique called return to libc library is based around this gap. Instead
of overwriting memory with the address of his code, which won’t be started
up anyway, the hacker overwrites it with the address of, for example, the
system() function located in the libc library. In this way he can perform any
command through the bash shell. Luckily, grsecurity contains a system of
randomization of addresses of the loaded libraries, which makes the attack
more difficult, although still possible – the hacker must only dedicate more
time than usual to the attack.

Now our system protects processes against buffer overflow attacks on the
kernel level. It is time to secure the next important element – the compiler.

Stack-Smashing Protector

The C language is over 30 years old, and is one of the oldest programming
languages. Despite its age it is still clearly the most frequently used language
in big projects, where performance is a priority. This language is compiled,
meaning converted by a program called a compiler to a language
understandable to a processor. The compiler takes care so the code is the
smallest possible and has the best performance. Therefore, it doesn’t contain
any supplements, including those related to security. Many people think that
we have to deal with so many errors because of the fact that many
programmers still use C. There is some truth in this. Higher level languages,
such as Java and Python, secure programs against overwriting the stack frame
(or don’t use it at all). However, they themselves have many disadvantages,
notably lower performance. So it is good to program both securely and
effectively. But, as commonly known, this is a big challenge for the

Improving security with patches 360

programmer. Even programs like the Apache server and PHP, which are
widely used and well respected, have had buffer overflow errors in their
history. In certain situations they are difficult to avoid. Recently, patches for
the C language compiler, GCC, protecting the program against such attacks,
have become popular. Tests show only a marginal reduction in program
performance, while providing much greater security. Therefore the Stack-
Smashing Protector patch has also been included in many distributions of the
Linux system in which security has priority.

So let’s apply this patch to our compiler and to see how it works. At the
beginning we download it from the publisher’s page:

On this page we can also find much useful information on the project.
Currently the newest SSP version is 3.4.4; we have to put it on the GCC
version with the same number.

It doesn’t take a lot of space, and the downloading process is complete after a
short while. Now, it’s time to download the GCC compiler sources. We get it
from:

We now have all the required sources. Now we have to unpack the
downloaded GCC compiler sources and to apply the SSP patch:

We have unpacked the GCC sources and transferred the patch into the folder
where they are located.

http://www.research.ibm.com/trl/projects/security/ssp/

bash-2.05b# wget
http://www.research.ibm.com/trl/projects/security/ssp/gcc3_4_4/protector-3.4.4-1.tar.gz

bash-2.05b# wget ftp://sunsite.icm.edu.pl/pub/gnu/gcc/gcc-3.4.4/gcc-3.4.4.tar.bz2

bash-2.05b# tar jxf gcc-3.4.4.tar.bz2
bash-2.05b# mv protector-3.4.4-1.tar.gz gcc-3.4.4
bash-2.05b# cd gcc-3.4.4
bash-2.05b# tar zxf protector-3.4.4-1.tar.gz

Improving security with patches 361

All that remains to be done is to apply the patch using the standard
command:

No information about any error has appeared, meaning that the patch has
been applied correctly. Now we have to configure GCC so it uses the stack
protection option. Therefore we create a folder in which the compiled files
will be located and we go to it:

Then we unload the configure program with the options described below:

a) --enable-languages=c,c++,objc – We want GCC to compile the languages

C, C++, and Object C. We use this option only to shorten the compilation
time of the GCC itself. As standard it serves several languages. But to us
the three most common will be sufficient.

bash-2.05b# patch -p0 < gcc_3_4_4.dif
patching file gcc/Makefile.in
patching file gcc/c-cppbuiltin.c
patching file gcc/calls.c
patching file gcc/combine.c
patching file gcc/common.opt
patching file gcc/configure
patching file gcc/cse.c
patching file gcc/explow.c
patching file gcc/expr.c
patching file gcc/flags.h
patching file gcc/function.c
patching file gcc/gcse.c
patching file gcc/integrate.c
patching file gcc/libgcc-std.ver
patching file gcc/libgcc2.c
patching file gcc/loop.c
patching file gcc/mklibgcc.in
patching file gcc/optabs.c
patching file gcc/opts.c
patching file gcc/reload1.c
patching file gcc/rtl.h
patching file gcc/simplify-rtx.c
patching file gcc/toplev.c
patching file gcc/tree.h
patching file gcc/config/t-linux
patching file gcc/config/arm/arm.md
patching file gcc/doc/invoke.texi
bash-2.05b#

bash-2.05b# mkdir obj; cd obj

Improving security with patches 362

b) --prefix=/usr/pp - Tells GCC to place its compiled binaries in the folder
/usr/pp.

c) --enable-stack-protector – The most important option for us. It
configures GCC so it will be compiled with the stack protection that is
using our patch.

After configuration, the Makefile file has been created, which will be useful
for the compilation of GCC. Now, all we need to do is to start up the
compilation process:

The compilation can take a relatively long time, depending on the
performance of our computer. GCC is a huge application, and the size of its
resources is comparable to that of the system kernel. We can therefore safely
go away from the computer for several minutes. After terminating the
compilation of our new compiler we can start the installation in the /usr/pp
directory:

This process shouldn’t take too long, because it consists only of copying files
to the target folder.

bash-2.05b# ../configure --enable-languages=c,c++,objc --prefix=/usr/pp
 --enable-stack-protector
creating cache ./config.cache
checking host system type... i686-pc-linux-gnu
checking target system type... i686-pc-linux-gnu
(...)
updating cache ./config.cache
creating ./config.status
creating Makefile
bash-2.05b#

bash-2.05b# make bootstrap-lean

bash-2.05b# make install prefix=/usr/pp
/bin/sh ../mkinstalldirs /usr/pp /usr/pp
make[1]: Entry to the directory `/usr/src/gcc-3.4.4/obj/gcc'
(...)
make[2]: There is nothing to do in `install'.
make[2]: Directory abandonment `/usr/src/gcc-3.4.4/obj/i686-pc-linux-
gnu/libiberty/testsuite'
make[1]: Directory abandonment `/usr/src/gcc-3.4.4/obj/i686-pc-linux-gnu/libiberty'
bash-2.05b#

Improving security with patches 363

Let’s have a look which folders have been created in the /usr/pp directory:

Their destination is the following:

However, we are interested only in the functioning of our compiler.
Therefore we go now to the bin directory and have a look at its content:

Here the GCC binaries are located that we will use to compile the test
program. The installation process has also created a source code with the
name test.c. Let's have a look at it (/CD/Chapter18/Listings/test.c):

This program creates a table of characters with eight elements (char buf[8]).
Then it copies to it the content of the first argument transferred by the user,
without checking its size. This is a standard example of buffer overflow, and
an opportunity for an attack, against which the applied patch should protect
us. We should test the program, compiling it using the standard GCC
version. But we have to be sure that we have started up the old version of the
compiler, and not the new one, which is located in the current directory.

bash-2.05b# ls
bin include info lib libexec man share
bash-2.05b#

a) bin - This folder contains a compiled GCC version with a patch applied.
b) include - These are the header files for programs written in the language C++.
c) info - Here help files for the info program are located.
d) lib & libexec - Libraries necessary during GCC work.
e) man - Help pages of the compiler man.
f) share - Local files, used by GCC, e.g., when informing about errors.

bash-2.05b# cd bin
bash-2.05b# ls
c++ cpp gcc gcov i686-pc-linux-gnu-g++ i686-pc-linux-gnu-gcc-3.4.4
test.c core g++ gccbug i686-pc-linux-gnu-c++ i686-pc-linux-gnu-gcc test
bash-2.05b#

int main(int argc, char *argv[])
{
 char buf[8];
 strcpy(buf, argv[1]);
 return 0;
}

Improving security with patches 364

We will refer to /usr/bin/gcc.

We have compiled a test program using GCC without the patch. We don’t
have to worry about the warning it returns, because this always appears when
the source code doesn’t contain a new line character at the end. We will now
try to transfer such a long character sequence to the test program that it will
cause the overwriting of the stack frame:

As we can see, we performed the ulimit command, which orders the
programs to generate a memory discharge in the form of the core file after the
appearance of an error. Our test application terminated with an error, after
entering too many “A” characters in the first argument. Now we can check
with gdb and the core file to see why this happened:

We can see that our program overflowed when attempting to access the
memory located at address 0x41414141, which corresponds to the “AAAA”
characters.

bash-2.05b# /usr/bin/gcc -o test test.c
test.c:6:2: warning: no newline at end of file

bash-2.05b# ulimit -c 1500000000
bash-2.05b# ./test AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Segmentation fault (core dumped)

bash-2.05b# gdb test core
GNU gdb 5.2.1
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host= --target=i686-pld-linux"...
Core was generated by `./test AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'.
Program terminated with signal 11, Segmentation fault.

warning: current_sos: Can't read pathname for load map: Input/output error

Reading symbols from /lib/libc.so.6...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x41414141 in?? ()
(gdb)

Improving security with patches 365

Let’s check how our stack frame looks:

After overwriting the frame of the main() function with the “A” values, the
program returned to the previous function, thinking that the original frame
was located right under this address. It happened this way, because we
overwrote the copy of the EBP register that was responsible for this. The
program also wanted to jump to the address 0x41414141, because we
overwrote a copy of the EIP register. The processor executes the code from
this address, which is located in this register.

As we can see, thanks to overwriting the register copies located in the
function frame, erroneous values were entered for both of them. If a code
added by a hacker were located under the address 0x41414141, it would be
executed. In our case the program terminated the action with an error,
because the memory from this address is not available for the process.
Attempting access to this memory area led to the process being killed by the
system kernel.

Now we know how easy it is to overwrite a function frame and which
consequences it can have. The SSP patch should protect us against attacks of
this type. Let’s check it. We compile our test program, this time using the
patched GCC version (located in the directory /usr/pp/bin, our current path):

As we can see, this time the program didn’t terminate with an error, but it
interrupted itself. Thanks to the security patch, the program detected the

(gdb) info frame
Cannot access memory at address 0x41414141
(gdb)

(gdb) print $eip
$1 = (void *) 0x41414141
(gdb) print $ebp
$2 = (void *) 0x41414141

bash-2.05b# ./gcc -o test test.c
test.c:6:2: warning: no newline at end of file
bash-2.05b# ./test AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
test: stack smashing attack in function main
Interrupted (core dumped)
bash-2.05b#

Improving security with patches 366

overwriting of the function frame and sent a SIGKILL signal to itself,
ordering itself to end the action immediately. In this case, a core file was also
generated, so let’s investigate it:

Our program terminated with the kill() function, which means that this
function was the last to be performed.

In the Training Operating System environment, the process of compiling
using the SSP could look like this:

The Stack-Smashing Protector security patch not only protects against the
buffer overflow error, but also against exploiting this error. Because of this
patch the attacker can, at most, only freeze the program using the error,
which usually doesn’t give him any benefit. A significant security
improvement, ensured by SSP, also brings a drop in performance. Therefore
its authors decided that the only protected functions would be those that
contain the char tables, because it’s mainly during operations performed on
them that the buffer overflow error occurs. We will now try to modify our
test program slightly, so the data are copied to the int table and not to char
(/CD/Chapter18/Listings/test2.c):

int main(int argc, char *argv[])
{
 int buf[8];
 strcpy((char*)buf, argv[1]);
 return 0;
}

bash-2.05b# gdb test core
GNU gdb 5.2.1
(...)
Reading symbols from /lib/libc.so.6...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x40046841 in kill () from /lib/libc.so.6
(gdb)

bash-2.05b# gcc -fstack-protector -o test test.c
test.c:6:2: warning: no newline at end of file
bash-2.05b# ./test AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
*** stack smashing detected ***: ./test terminated
Interrupted (core dumped)
bash-2.05b#

Improving security with patches 367

The strcpy() function assumes only arguments being the char pointers,
therefore we had to apply typecasting using (char*)buf in the first parameter.
The int variables have the size of four bytes, whereas char has only one. The
number of “A” characters we will enter in the test will also have to be greater
to overflow the buffer and to overwrite the function frame. We compile and
test our program:

This time the program ended with a memory protection violation error.

Let’s examine the core file:

As we can see we managed to overwrite the registers’ copies without
problems, despite using the GCC program with the applied security patch for
the compilation. Luckily this can be remedied. Stack-Smashing Protector
contains the compilation option -fstack-protector-all, which protects all
functions, not just those containing the char tables. We will now compile our
test program with its use and will test it again:

bash-2.05b# ./gcc -o test2 test2.c
test.c:6:2: warning: no newline at end of file
bash-2.05b# ./test2 AA AAAAAAAAAAAAA
Segmentation fault (core dumped)
bash-2.05b#

bash-2.05b# gdb test2 core
GNU gdb 5.2.1
Copyright 2002 Free Software Foundation, Inc.
(...)
Reading symbols from /lib/libc.so.6...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x41414141 in?? ()
(gdb)

bash-2.05b# ./gcc -o test2 test2.c -fstack-protector-all
test.c:6:2: warning: no newline at end of file
bash-2.05b# ./test2 AA
AAAAAAAAAAAAAAAAAAAAAAAAAAA
test: stack smashing attack in function main
Interrupted (core dumped)
bash-2.05b#

Improving security with patches 368

The program intercepted an attempt to overwrite the function frame and
immediately terminated its action. We can check it also using gdb and the
core file. The result will be exactly the same as in the case of the char table
function. It is therefore good to add this option to each program that we
compile.

We now know how to use a patched version of our compiler. We have seen
that the SSP patch protects effectively against buffer overflow attacks.
However, it would also be good to discover how it really works.

To detect the violation (overwriting) of the stack, SSP uses an additional
variable called the guard. This variable is placed in each function, right before
the data whose overwriting can have disastrous effects (e.g., the stack frame).

This process progresses in the following way:

a) Declaration of the guard variable immediately under the stack frame for
the given function.

b) At the beginning of the function body, a random value is assigned to the
guard variable. This is a value generated by /dev/urandom or /dev/random.

c) At the end of the function a comparison of the guard variable value with
the original value occurs. If those values correspond to each other, it means
that a buffer overflow has taken place in the program. In such a situation
information about the incident is printed and program execution is
interrupted.

int guard;

guard = guard_value;

 if (guard != guard_value) {
 /* informing about the incident */
 /* action termination */
 }

Improving security with patches 369

Let’s have a closer look at an example stack structure, right after starting the
execution of a function:

Function arguments

Function return address

Previous frame pointer

Guard

Tables

Other local variables

The overflow can happen only in the location marked “Tables.” The SSP
patch is so clever that it alone changes the order of the local variables
function so that it is impossible to overwrite anything else.

We have an example of variable declaration below:

If a buffer overflow error were to be found in the program code, it would be
possible to overwrite the ok variable and the p pointer, which could have
disastrous effects (depending on the function of these variables). Therefore
the Stack-Smashing Protector changes the order of the local variables, so the
tables will be located immediately under the guard variable – our guard. The
code compiled in our new compiler looks then as follows:

As we know already, buffer overwriting in the above case won’t do much,
because the guard variable will be overwritten, and this will be detected at the
end of the function. Bypassing this type of protection is almost impossible,
and only errors enabling us to save data to any memory address (e.g., such as
those exploited during a format string attack) can be exploited by the hacker.

char *p;
int ok;
char buf[8];

char buf[8];
char *p;
int ok;

Improving security with patches 370

Luckily they are rare. The protection method is also visible in the assembler
code of each function. At the end it contains usually instructions of this type:

At the beginning a comparison of the values located under the address
0x8049e00 with the EDX register value takes place. If they agree with each
other, a jump to the address 0x80487e8, the very end of the function (leave
instruction), is performed. If these values differ, the __stack_smash_handler
function located under the address 0x8048890 is performed. This tells us
about the attempt to overwrite the stack. We’ll try using gdb to check how
both of these cases look. We start up gdb, entering in the call parameter the
name of our program (gdb test). We put a break under the address
0x80487cd, where the comparison function is located.

The program will stop running there, and we will check the values. Now we
start up the program, with short arguments so as not to overwrite the guard
variable:

To display the given values we used the printf function, similar to that in the
C language. As we can see, the read values are exactly the same.

0x80487cd <main+73>: cmp 0x8049e00,%edx
0x80487d3 <main+79>: je 0x80487e8 <main+100>
0x80487d5 <main+81>: mov 0xffffffe8(%ebp),%eax
0x80487d8 <main+84>: mov %eax,0x4(%esp,1)
0x80487dc <main+88>: movl $0x8048c38,(%esp,1)
0x80487e3 <main+95>: call 0x8048890 <__stack_smash_handler>
0x80487e8 <main+100>: leave
0x80487e9 <main+101>: ret

(gdb) break *0x80487cd
Breakpoint 1 at 0x80487cd
(gdb)

(gdb) r AAAA
Starting program: /usr/pp/bin/test AAAA

Breakpoint 1, 0x080487cd in main ()
(gdb) printf "0x%x\n", $edx
0xc5f93634
(gdb) printf "0x%x\n", *0x8049e00
0xc5f93634
(gdb)

Improving security with patches 371

So we continue running the program:

Nothing happened, and the program terminated normally, according to our
expectations. Now, we will try to transfer a long argument to the program, in
order to overwrite the stack:

We see that the EDX register was filled with the value that we entered in the
program argument. The same number was also placed under the address
0x8049e00. This is a global guard with a random value, and it is impossible to
overwrite. The values are different; therefore, the condition was not met. Let’s
try to continue running the program:

The program started up the __stack_smash_handler function, which printed
the information on the incident and sent the SIGKILL signal to itself, which is
shown by gdb.

LibSafe

In the battle between performance and security in the development of a
standard C library, performance won. The library itself is safe, but it makes

(gdb) c
Continuing.

Program exited normally.
(gdb)

(gdb) r AA
Starting program: /usr/pp/bin/test AA

Breakpoint 1, 0x080487cd in main ()
(gdb) printf "0x%x\n", $edx
0x41414141
(gdb) printf "0x%x\n", *0x8049e00
0xbda71c36
(gdb)

(gdb) c
Continuing.
test: stack smashing attack in function main
Program received signal SIGABRT, Aborted.
0x40046841 in kill () from /lib/libc.so.6
(gdb)

Improving security with patches 372

many functions available that can prove dangerous in the hands of an
inexperienced programmer. One of those potentially dangerous functions is
gets(). To see for ourselves, we will now try to compile the program below
(/CD/Chapter18/Listings/test3.c):

int main(int argc, char* argv[])
{
 char buf[8];
 gets(buf);
 return 0;
}

bash-2.05b# gcc -o test3 test3.c
test.c:6:2: warning: no newline at end of file
/tmp/ccj8vnHg.o(.text+0x17): In function `main':
: warning: the `gets' function is dangerous and should not be used.
bash-2.05b#

The compiler has told us that the function is dangerous and we shouldn’t use
it. Besides gets(), there are many other functions of the libc library that can
threaten the program. An example is strcpy(), which also doesn’t check the
size of the introduced buffer.

Let’s enter a long character sequence into our program:

We can assume that it was compiled without using the SSP patch. As we can
see, the stack frame has been overwritten with our buffer.

We’ll review the steps we have taken, bringing us slowly but surely to where
the attack begins. First we protected the memory against the startup of the
hacker’s code. Then we secured the program against jumping to an erroneous
function by applying the SSP patch. Next, we should secure our programs so
an overflow won’t happen.

Linux has the ability to intercept references to the libc library functions. This
means that we can create our own library containing functions with the same
names as those in the libc library, and these will be used by our programs.

bash-2.05b$./test3
AAAAAAAAAAAAAAAAAAAAAAAAA
Segmentation fault (core dumped)

Improving security with patches 373

LibSafe is an example of such a library. It filters all dangerous function calls.
If it detects an attack, it tells us about it immediately and ends the program.
Otherwise it transfers the action to the standard libc library. Now we will
download, install, and test the safe library. It can be downloaded from:

Information on the function, installation, and use of the library are also to be
found there. In our example we will use version 2.0. So, we download its
resources, as usual to the /usr/src directory:

We unpack the archive and perform the compilation and installation process
of the library:

Due to its small size, this process will take at most a few seconds on a modern
computer.

http://directory.fsf.org/project/libsafe/

wget http://pubs.research.avayalabs.com/src/libsafe-2.0-16.tgz

bash-2.05b# tar zxf libsafe-2.0-16.tgz
bash-2.05b# cd libsafe-2.0-16
bash-2.05b# make
cd src; make
make[1]: Entering directory `/usr/src/libsafe-2.0-16/src'
gcc -M util.c intercept.c > dep
gcc -c -o util.o -O2 -Wall -fPIC -DLIBSAFE_VERSION=\"2.0.16\" util.c
(...)
gcc -o canary-exploit -Wall canary-exploit.c
gcc -o exploit-non-exec-stack -Wall exploit-non-exec-stack.c
make[1]: Leaving directory `/usr/src/libsafe-2.0-16/exploits'
bash-2.05b#

bash-2.05b# make install
cd src; make install
make[1]: entering directory `/usr/src/libsafe-2.0-16/src'
install libsafe.so.2.0.16 /lib
(...)
Type y for installing libsafe system wide?[default n] n
install ../doc/libsafe.8 /usr/share/man/man8
make[1]: leaving directory `/usr/src/libsafe-2.0-16/src'
bash-2.05b#

Improving security with patches 374

After installation the library is ready to be used. In order for LibSafe to be
loaded while starting up each program, we have to set the environment
variable LD_PRELOAD, which will point to its access path. We do this using
the export command:

It is good to add this line to the /etc/profile file so it will be loaded at each
login. We will now test the program below, which is susceptible to the buffer
overflow attack in the strcpy() function (/CD/Chapter18/Listings/test.c):

The first step is to compile the program:

Now, let’s check if the LibSafe library will be uploaded at the startup of our
program. We will use the ldd program for this purpose:

We can see that our library is located at the very top of the list, so we can be
sure it will be uploaded. We start up the program and transfer a long
character sequence to it:

bash-2.05b# export LD_PRELOAD=/lib/libsafe.so.2

int main(int argc, char* argv[])
{
 char buf[8];
 strcpy(buf, argv[1]);
 return 0;
}

bash-2.05b# gcc -o test test.c

bash-2.05b# ldd test
 /lib/libsafe.so.2 => /lib/libsafe.so.2 (0x40015000)
 linux-gate.so.1 => (0xffffe000)
 libc.so.6 => /lib/libc.so.6 (0x40024000)
 libdl.so.2 => /lib/libdl.so.2 (0x40135000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
bash-2.05b#

bash-2.05b# ./test AAAAAAAAAAAAAAAAAAAAAAAAAAA
Libsafe version 2.0.16
Detected an attempt to write across stack boundary.
Terminating /usr/src/test.
 uid=0 euid=0 pid=3131
Call stack:

Improving security with patches 375

 0x40016b1c /lib/libsafe.so.2.0.16
 0x40016c4b /lib/libsafe.so.2.0.16
 0x80483c6 /usr/src/test
 0x400390ad /lib/libc-2.3.3.so
Overflow caused by strcpy()
Annihilated
bash-2.05b#

The overflow is identified before it calls the real strcpy() function in the libc
library, which is as we expected. Owing to this, no memory area was ever
overwritten, and the program terminated, giving the exact location where the
error (strcpy() function) was, at 0x80483c6). This information has also been
saved into the /var/log/secure file, giving us the ability to identify errors in
programs working as invisible services (e.g., WWW server).

a) strcpy(char *dest, const char *src) – Can overflow the dest buffer.
b) strcat(char *dest, const char *src) – Can overflow the dest buffer.
c) getwd(char *buf) – Can overflow the buf buffer.
d) gets(char *s) – Can overflow the s buffer.
e) [vf]scanf(const char *format, ...) - Can overflow the arguments of this

function.
f) realpath(char *path, char resolved_path[]) – Can overflow the path

buffer.
g) [v]sprintf(char *str, const char *format, ...) - Can overflow the str buffer.

All the functions mentioned above are considered dangerous. Besides the
functions listed above, LibSafe also checks the ones operating on formatting
characters. An example of this kind is printf(). If, while using it, an attacker
tries to change the way a program is executed, it will also be closed, and the
user will be warned about the incident.

As we can see, despite its small size the LibSafe library provides a
considerable improvement in security and checks for cracker activity from
the very beginning of the attack. It is thus worth keeping in the system for
daily use. The performance penalty for programs is minimal.

The principles grsecurity programmers apply, are: “People are usually the
weakest link in security” and “We should ensure security at every level.”

Improving security with patches 376

Therefore, we should remember that security is a process and not a product.
We should take care of it continuously. At the same time applying a patch is
not enough; it can only make a cracker’s job more difficult.

Not even memory protection and the randomization of addresses will ensure
perfect security. We should therefore take care of it on many levels:

a) Applying a patch to the kernel.
b) Applying a patch to the compiler.
c) Using security libraries.
d) Activating software.

Even if an attacker can somehow bypass the LibSafe library, he will encounter
an error related to the Stack-Smashing Protector. In theory this can be
bypassed only using a format string attack; however, it is not possible to
perform this because of LibSafe. If, however, we come across a remarkable
cracker and he passes through the first two barriers, he will then come across
the problem that it is not possible to start up his own code. The protection
levels are very interdependent, and each level determines the security of the
others. After applying numerous protection systems, it becomes nearly
impossible to exploit an error. After protecting the system in this way we can
sleep more soundly, as we do not have to worry quite so much about the
integrity of our data.

