

Práctica de laboratorio: Visualización de direcciones MAC de dispositivos de red

Topología

Tabla de direccionamiento

Dispositivo	Interfaz	Dirección IP	Máscara de subred	Gateway predeterminado
S1	VLAN 1	192.168.1.1	255.255.255.0	N/D
PC-A	NIC	192.168.1.3	255.255.255.0	192.168.1.1

Objetivos

Parte 1: Configurar los dispositivos y verificar la conectividad

Parte 2: Mostrar, describir y analizar las direcciones MAC de Ethernet

Aspectos básicos/situación

Cada dispositivo de una LAN Ethernet se identifica con una dirección MAC de capa 2. Esta dirección es asignada por el fabricante y se almacena en el firmware de la NIC. En esta práctica de laboratorio, se explorarán y se analizarán los componentes de una dirección MAC y la manera en que puede encontrar esta información en un switch y en una PC.

Realizará el cableado de los equipos como se muestra en la topología. Configurará el switch y la PC según la tabla de direccionamiento. También probará la conectividad de red para verificar las configuraciones.

Una vez que los dispositivos estén configurados y que verifique la conectividad de red, utilizará diferentes comandos para recuperar la información de los dispositivos y responder preguntas sobre los equipos de red.

Nota: los switches que se utilizan son Cisco Catalyst 2960s con Cisco IOS versión 15.0(2) (imagen lanbasek9). Se pueden utilizar otros switches y otras versiones de Cisco IOS. Según el modelo y la versión de Cisco IOS, los comandos disponibles y los resultados que se obtienen pueden diferir de los que se muestran en las prácticas de laboratorio.

Nota: asegúrese de que los switches se hayan borrado y no tengan configuraciones de inicio. Si no está seguro, consulte al instructor.

Recursos necesarios

- 1 switch (Cisco 2960 con Cisco IOS versión 15.0(2), imagen lanbasek9 o similar)
- 1 PC (Windows 7 u 8 con un programa de emulación de terminal, como Tera Term)
- Cable de consola para configurar el switch Cisco mediante los puertos de consola
- Cables Ethernet, como se muestra en la topología

Parte 1: Configurar los dispositivos y verificar la conectividad

En esta parte, configurará la topología de la red y los parámetros básicos, como las direcciones IP de la interfaz y el nombre de los dispositivos. Para obtener información sobre nombres y direcciones de dispositivos, consulte la topología y la tabla de direccionamiento.

Paso 1: Realizar el cableado de red tal como se muestra en la topología.

- a. Conecte los dispositivos tal como se muestra en la topología y realice el cableado según sea necesario.
- b. Encienda todos los dispositivos de la topología.

Paso 2: Configurar la dirección IPv4 para la PC.

- a. Configure la dirección IPv4, la máscara de subred y la dirección del gateway predeterminado para la PC-A.
- b. En el símbolo del sistema en la PC-A, haga ping a la dirección del switch.
 ¿Fueron correctos los pings? Explique.

Paso 3: Configurar los parámetros básicos para el switch.

En este paso, configurará el nombre del dispositivo y la dirección IP, y desactivará la búsqueda de DNS en el switch.

a. Acceda al switch mediante el puerto de consola e ingrese al modo de configuración global.

```
Switch> enable
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#
```

b. Asigne un nombre de host al switch según la tabla de direccionamiento.

```
Switch(config) # hostname S1
```

c. Desactive la búsqueda de DNS.

```
S1(config)# no ip domain-lookup
```

d. Configure y active la interfaz virtual del switch (SVI) para la LAN virtual (VLAN) 1.

```
S1(config)# interface vlan 1
S1(config-if)# ip address 192.168.1.1 255.255.255.0
S1(config-if)# no shutdown
S1(config-if)# end
*Mar 1 00:07:59.048: %SYS-5-CONFIG_I: Configured from console by console
```

Paso 4: Verificar la conectividad de red.

De la PC-A, haga ping al switch. ¿Fueron correctos los pings?

Parte 2: Mostrar, describir y analizar las direcciones MAC de Ethernet

Cada dispositivo de una LAN Ethernet tiene una dirección MAC asignada por el fabricante y almacenada en el firmware de la NIC. Las direcciones MAC Ethernet tienen una longitud de 48 bits. Se muestran con seis conjuntos de dígitos hexadecimales que, a menudo, están separados por guiones, puntos o dos puntos. En el siguiente ejemplo, se muestra la misma dirección MAC utilizando los tres métodos de notación diferentes:

00-05-9A-3C-78-00

00:05:9A:3C:78:00

0005.9A3C.7800

Nota: las direcciones MAC también se llaman "direcciones físicas", "direcciones de hardware" o "direcciones de hardware Ethernet".

Emitirá comandos para que se muestren las direcciones MAC en una PC y en un switch, y analizará las propiedades de cada una.

Paso 1: Analizar la dirección MAC de la NIC de la PC-A.

Antes de analizar la dirección MAC de la PC-A, vea un ejemplo de la NIC de otra PC. Puede emitir el comando **ipconfig /all** para ver la dirección MAC de la NIC. Debajo se muestra un ejemplo de pantalla de resultados. Al usar el comando **ipconfig /all**, observe que se hace referencia a las direcciones MAC como "direcciones físicas". Al leer la dirección MAC de izquierda a derecha, los primeros seis dígitos hexadecimales se refieren al proveedor (fabricante) de este dispositivo. Estos primeros seis dígitos hexadecimales (3 bytes) también se conocen como "identificador único de organización (OUI)". El Instituto de Ingenieros Eléctricos y Electrónicos (IEEE) asigna este código de 3 bytes al proveedor. Para encontrar al fabricante, puede utilizar una herramienta como www.macvendorlookup.com o ir al sitio web del IEEE para encontrar los códigos OUI de los proveedores registrados. La dirección del sitio web del IEEE que contiene información sobre OUI es http://standards.ieee.org/develop/regauth/oui/public.html. Los últimos seis dígitos son el número de serie de la NIC, y los asigna el fabricante.

a. Con los resultados del comando **ipconfig /all**, responda las siguientes preguntas.

```
Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix .:
   Description . . . . . : Intel(R) 82577LM Gigabit Network Connection
   Physical Address . . . : 5C-26-0A-24-2A-60
   DHCP Enabled . . . . . : No
   Autoconfiguration Enabled . . : Yes
   Link-local IPv6 Address . . . : fe80::b875:731b:3c7b:c0b1x10(Preferred)
   IPv4 Address . . . : 192.168.1.3(Preferred)
   Subnet Mask . . . . . . : 255.255.255.0
   Default Gateway . . . . : 192.168.1.1
   DHCPu6 IAID . . : 240920074
```

¿Cuál es la porción del OUI de la dirección MAC de este dispositivo?

¿Cuál es la porción del número de serie de la dirección MAC de este dispositivo?

Con el ejemplo de arriba, encuentre el nombre del proveedor de esta NIC.

b. En el símbolo del sistema en la PC-A, emita el comando **ipconfig /all** e identifique la porción del OUI de la dirección MAC para la NIC de la PC-A.

Identifique la porción del número de serie de la dirección MAC para la NIC de la PC-A.

Identifique el nombre del proveedor que fabricó la NIC de la PC-A.

Paso 2: Analizar la dirección MAC de la interfaz F0/6 del S1.

Puede utilizar varios comandos para que se muestren las direcciones MAC en el switch.

a. Acceda al S1 mediante el puerto de consola y utilice el comando show interfaces vlan 1 para encontrar la información de la dirección MAC. Abajo se muestra un ejemplo. Utilice los resultados generados por el switch para responder las preguntas.

```
S1# show interfaces vlan 1
Vlan1 is up, line protocol is up
  Hardware is EtherSVI, address is 001b.0c6d.8f40 (bia 001b.0c6d.8f40)
  Internet address is 192.168.1.1/24
  MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive not supported
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input never, output 00:14:51, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     O packets input, O bytes, O no buffer
     Received 0 broadcasts (0 IP multicasts)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     34 packets output, 11119 bytes, 0 underruns
     0 output errors, 2 interface resets
     0 unknown protocol drops
     O output buffer failures, O output buffers swapped out
¿Cuál es la dirección MAC de la VLAN 1 en el S1?
¿Cuál es el número de serie MAC de la VLAN 1?
¿Cuál es el OUI de la VLAN 1?
Según este OUI, ¿cuál es el nombre del proveedor?
¿Qué significa "BIA"?
¿Por qué se muestra la misma dirección MAC dos veces en los resultados?
```

b. Otra manera de visualizar la dirección MAC en el switch es utilizar el comando **show arp**. Utilice el comando **show arp** para visualizar la información de la dirección MAC. Este comando asigna la dirección de capa 2 a su dirección de capa 3 correspondiente. Abajo se muestra un ejemplo. Utilice los resultados generados por el switch para responder las preguntas.

S1# show arp

```
Protocol Address Age (min) Hardware Addr Type Interface
Internet 192.168.1.1 - 001b.0c6d.8f40 ARPA Vlan1
Internet 192.168.1.3 0 5c26.0a24.2a60 ARPA Vlan1
```

¿Qué direcciones de capa 2 se muestran en el S1?

¿Qué direcciones de capa 3 se muestran en el S1?

Paso 3: Ver las direcciones MAC en el switch.

Emita el comando **show mac address-table** en el S1. Abajo se muestra un ejemplo. Utilice los resultados generados por el switch para responder las preguntas.

S1# show mac address-table

Mac Address Table

Vlan	Mac Address	Type	Ports
All	0100.0ccc.ccc	STATIC	CPU
All	0100.0ccc.cccd	STATIC	CPU
All	0180.c200.0000	STATIC	CPU
All	0180.c200.0001	STATIC	CPU
All	0180.c200.0002	STATIC	CPU
All	0180.c200.0003	STATIC	CPU
All	0180.c200.0004	STATIC	CPU
All	0180.c200.0005	STATIC	CPU
All	0180.c200.0006	STATIC	CPU
All	0180.c200.0007	STATIC	CPU
All	0180.c200.0008	STATIC	CPU
All	0180.c200.0009	STATIC	CPU
All	0180.c200.000a	STATIC	CPU
All	0180.c200.000b	STATIC	CPU
All	0180.c200.000c	STATIC	CPU
All	0180.c200.000d	STATIC	CPU
All	0180.c200.000e	STATIC	CPU
All	0180.c200.000f	STATIC	CPU
All	0180.c200.0010	STATIC	CPU
All	ffff.ffff.ffff	STATIC	CPU
1	5c26.0a24.2a60	DYNAMIC	Fa0/6

Total Mac Addresses for this criterion: 21

¿El switch mostró la dirección MAC de la PC-A? Si la respuesta es afirmativa, ¿en qué puerto estaba?

	•		. ,	
\mathbf{L}	∧ tl	lex	\sim	n
\mathbf{r}	C		w	

1.	¿Se puede utilizar la difusión en el nivel de capa 2? Si es posible, ¿cuál sería la dirección MAC?

2. ¿Por qué necesitaría conocer la dirección MAC de un dispositivo?