Práctica de laboratorio: solución de problemas de EIGRP avanzado

Topología

Tabla de direccionamiento

Dispositivo	Interfaces	IP Address (Dirección IP)	Máscara de subred	Gateway predeterminado
R1	G0/0	192.168.1.1	255.255.255.0	N/D
	Lo1	172.16.11.1	255.255.255.0	N/D
	Lo2	172.16.12.1	255.255.255.0	N/D
	Lo3	172.16.13.1	255.255.255.0	N/D
	Lo4	172.16.14.1	255.255.255.0	N/D
	S0/0/0 (DCE)	192.168.12.1	255.255.255.252	N/D
	S0/0/1	192.168.13.1	255.255.255.252	N/D
R2	G0/0	192.168.2.1	255.255.255.0	N/D
	Lo0	209.165.200.225	255.255.255.252	N/D
	S0/0/0	192.168.12.2	255.255.255.252	N/D
	S0/0/1 (DCE)	192.168.23.1	255.255.255.252	N/D
R3	G0/0	192.168.3.1	255.255.255.0	N/D
	Lo3	172.16.33.1	255.255.255.0	N/D
	Lo4	172.16.34.1	255.255.255.0	N/D
	Lo5	172.16.35.1	255.255.255.0	N/D
	Lo6	172.16.36.1	255.255.255.0	N/D
	S0/0/0 (DCE)	192.168.13.2	255.255.255.252	N/D
	S0/0/1	192.168.23.2	255.255.255.252	N/D
PC-A	NIC	192.168.1.3	255.255.255.0	192.168.1.1
PC-B	NIC	192.168.2.3	255.255.255.0	192.168.2.1
PC-C	NIC	192.168.3.3	255.255.255.0	192.168.3.1

Objetivos

Parte 1. Armar la red y cargar las configuraciones de los dispositivos

Parte 2. Solucionar problemas de EIGRP

Aspectos básicos/situación

El protocolo EIGRP (Enhanced Interior Gateway Routing Protocol, protocolo mejorado de routing de gateway interior) cuenta con características avanzadas que permiten cambios relacionados con el resumen, la propagación de ruta predeterminada, el uso del ancho de banda, las métricas y la seguridad.

En esta práctica de laboratorio, resolverá problemas en una red que ejecuta EIGRP. Se implementaron características avanzadas de EIGRP, pero ahora la red presenta problemas. Su tarea es encontrar y corregir los problemas de red.

Nota: Los routers que se usan en las actividades prácticas de laboratorio de CCNA son routers de servicios integrados (ISR) Cisco 1941 con Cisco IOS versión 15.2(4)M3 (imagen universalk9). Se pueden utilizar otros routers y otras versiones de Cisco IOS. Según el modelo y la versión de Cisco IOS, los comandos disponibles y los resultados que se obtienen pueden diferir de los que se muestran en las prácticas de laboratorio. Consulte la tabla de resumen de interfaces del router que figura al final de esta práctica de laboratorio para obtener los identificadores de interfaz correctos.

Nota: asegúrese de que los routers se hayan borrado y no tengan configuraciones de inicio. Si no está seguro, consulte al instructor.

Recursos necesarios

- 3 routers (Cisco 1941 con Cisco IOS versión 15.2(4)M3, imagen universal o similar)
- 3 PC (Windows 7, Vista o XP con un programa de emulación de terminal, como Tera Term)
- Cables de consola para configurar los dispositivos con Cisco IOS mediante los puertos de consola
- Cables Ethernet, como se muestra en la topología

Parte 1: Armar la red y cargar las configuraciones de los dispositivos

Paso 1: Realizar el cableado de red tal como se muestra en la topología.

Paso 2: Configurar los equipos host.

Paso 3: cargar las configuraciones de los routers.

Cargue las siguientes configuraciones en el router correspondiente. Todos los routers tienen las mismas contraseñas. La contraseña de EXEC privilegiado es **class**, y la contraseña de consola y de vty es **cisco**.

Configuración del router R1:

```
conf t
hostname R1
enable secret class
no ip domain lookup
key chain EIGRP-KEYS
 key 1
  key-string cisco123
línea con O
 password cisco
 login
 logging synchronous
line vty 0 4
 password cisco
 login
banner motd @
  Se prohíbe el acceso no autorizado. @
interface lo1
 description Connection to Branch 11
 ip add 172.16.11.1 255.255.255.0
interface lo2
```

```
description Connection to Branch 12
 ip add 172.16.12.1 255.255.255.0
interface lo3
 description Connection to Branch 13
 ip add 172.16.13.1 255.255.255.0
interface lo4
 description Connection to Branch 14
 ip add 172.16.14.1 255.255.255.0
interface g0/0
 description R1 LAN Connection
 ip add 192.168.1.1 255.255.255.0
no shutdown
interface s0/0/0
 description Serial Link to R2
 clock rate 128000
 ip add 192.168.12.1 255.255.255.252
 ip authentication mode eigrp 1 md5
 ip authentication key-chain eigrp 1 EIGRP-KEYS
 ip hello-interval eigrp 1 30
 ip hold-time eigrp 1 90
 ip bandwidth-percent eigrp 1 40
no shutdown
interface s0/0/1
 description Serial Link to R3
bandwidth 128
 ip add 192.168.13.1 255.255.255.252
 ip authentication mode eigrp 1 md5
 ip authentication key-chain eigrp 1 EIGRP-KEYS
 ip bandwidth-percent eigrp 1 40
no shutdown
router eigrp 1
 router-id 1.1.1.1
 network 192.168.1.0 0.0.0.255
 network 192.168.12.0 0.0.0.3
 network 192.168.13.0 0.0.0.3
network 172.16.0.0 0.0.255.255
passive-interface g0/0
 auto-summary
end
```

Configuración del router R2:

conf t hostname R2 enable secret class no ip domain lookup key chain EIGRP-KEYS

```
key 1
  key-string Cisco123
línea con O
 password cisco
 login
 logging synchronous
line vty 0 4
password cisco
 login
banner motd @
  Se prohíbe el acceso no autorizado. @
interface g0/0
 description R2 LAN Connection
 ip add 192.168.2.1 255.255.255.0
 no shutdown
interface s0/0/0
 description Serial Link to R1
 bandwidth 128
 ip add 192.168.12.2 255.255.255.252
 ip authentication mode eigrp 1 md5
 ip authentication key-chain eigrp 1 EIGRP-KEYS
 ip bandwidth-percent eigrp 1 40
 ip hello-interval eigrp 1 30
 ip hold-time eigrp 1 90
 no shutdown
interface s0/0/1
 description Serial Link to R3
 bandwidth 128
 ip add 192.168.23.1 255.255.255.252
 ip authentication mode eigrp 1 md5
 ip bandwidth-percent eigrp 1 40
 ip hello-interval eigrp 1 30
 ip hold-time eigrp 1 90
 no shutdown
interface lo0
 ip add 209.165.200.225 255.255.255.252
 description Connection to ISP
router eigrp 1
 router-id 2.2.2.2
 network 192.168.2.0 0.0.0.255
 network 192.168.12.0 0.0.0.3
 network 192.168.23.0 0.0.0.3
passive-interface g0/0
ip route 0.0.0.0 0.0.0.0 lo0
end
```

conf t hostname R3 enable secret class no ip domain lookup key chain EIGRP-KEYS key 1 key-string Cisco123 línea con O password cisco login logging synchronous line vty 0 4 password cisco login banner motd @ Se prohíbe el acceso no autorizado. @ interface lo3 description Connection to Branch 33 ip add 172.16.33.1 255.255.255.0 interface lo4 description Connection to Branch 34 ip add 172.16.34.1 255.255.255.0 interface lo5 description Connection to Branch 35 ip add 172.16.35.1 255.255.255.0 interface lo6 description Connection to Branch 36 ip add 172.16.36.1 255.255.255.0 interface g0/0 description R3 LAN Connection ip add 192.168.3.1 255.255.255.0 no shutdown interface s0/0/0 description Serial Link to R1 ip add 192.168.13.2 255.255.255.252 ip authentication mode eigrp 1 md5 ip authentication key-chain eigrp 1 EIGRP-KEYS ip hello-interval eigrp 1 30 ip hold-time eigrp 1 90 clock rate 128000 bandwidth 128 no shutdown interface s0/0/1 description Serial Link to R2

Configuración del router R3:

```
bandwidth 128
 ip add 192.168.23.2 255.255.255.252
 ip authentication mode eigrp 1 md5
 ip authentication key-chain eigrp 1 eigrp-keys
! ip bandwidth-percent eigrp 1 40
ip hello-interval eigrp 1 30
ip hold-time eigrp 1 90
no shutdown
router eigrp 1
 router-id 3.3.3.3
network 192.168.3.0 0.0.0.255
network 192.168.13.0 0.0.0.3
 network 192.168.23.0 0.0.0.3
 network 172.16.0.0 0.0.255.255
passive-interface g0/0
auto-summary
end
```

Paso 4: Verificar la conectividad de extremo a extremo

Nota: puede ser necesario desactivar el firewall de las computadoras para hacer ping entre ellas.

Paso 5: Guardar la configuración en todos los routers.

Parte 2: Solución de problemas de EIGRP

En la parte 2, verifique que todos los routers hayan establecido adyacencias de vecinos y que todas las rutas de la red estén disponibles.

Requisitos adicionales de EIGRP:

- La frecuencia de reloj de todas las interfaces seriales debe establecerse en 128 Kb/s y debe haber un ajuste de ancho de banda coincidente disponible para permitir el cálculo correcto de las métricas de costo EIGRP.
- Se debe utilizar la sumarización manual de las rutas de las redes de las sucursales, que se simulan con interfaces loopback en el R1 y el R3. No se debe usar la característica de sumarización automática de EIGRP.
- EIGRP debe redistribuir la ruta estática predeterminada a Internet. Esto se simula mediante la interfaz de loopback R2.
- EIGRP debe configurarse para que use no más del **40%** del ancho de banda disponible en las interfaces seriales.
- Los intervalos del temporizador de saludo y de espera de EIGRP deben configurarse en **30/90** en todas las interfaces seriales.
- Todas las interfaces seriales deben configurarse con autenticación MD5, con el llavero **EIGRP-KEYS** y la cadena de clave **Cisco123**.

Indique los comandos que usó durante el proceso de resolución de problemas de EIGRP:

Indique los cambios que realizó para resolver problemas de EIGRP. Si no se encontraron problemas en el dispositivo, responda: "No se encontraron problemas".

Router R1:

Router R2:

Router R3:

© 2017 Cisco y/o sus filiales. Todos los derechos reservados. Este documento es información pública de Cisco.

Reflexión

- 1. ¿De qué forma ocasiona problemas de routing en EIGRP el comando auto-summary?
- 2. ¿Qué ventajas proporciona la sumarización manual de las rutas de las sucursales (interfaces loopback en el R1 y el R3) en esta red?

3. ¿Por qué querría cambiar los intervalos de saludo y de tiempo de espera EIGRP en una interfaz?

Tabla de resumen de interfaces del router

Resumen de interfaces de router						
Modelo de router	Interfaz Ethernet 1	Interfaz Ethernet 2	Interfaz serial 1	Interfaz serial 2		
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)		
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)		

Nota: Para conocer la configuración del router, observe las interfaces a fin de identificar el tipo de router y cuántas interfaces tiene. No existe una forma eficaz de confeccionar una lista de todas las combinaciones de configuraciones para cada clase de router. En esta tabla, se incluyen los identificadores para las posibles combinaciones de interfaces Ethernet y seriales en el dispositivo. En esta tabla, no se incluye ningún otro tipo de interfaz, si bien puede haber interfaces de otro tipo en un router determinado. La interfaz BRI ISDN es un ejemplo. La cadena entre paréntesis es la abreviatura legal que se puede utilizar en un comando de Cisco IOS para representar la interfaz.