Packet Tracer: configuración del protocolo OSPFv2 multiárea

Topología

Tabla de direccionamiento

Dispositivo	Interfaz	Dirección IP	Máscara de subred	Área del protocolo OSPFv2:
R1	G0/0	10.1.1.1	255.255.255.0	1
	G0/1	10.1.2.1	255.255.255.0	1
	S0/0/0	192.168.10.2	255.255.255.252	0
R2	G0/0	10.2.1.1	255.255.255.0	0
	S0/0/0	192.168.10.1	255.255.255.252	0
	S0/0/1	192.168.10.5	255.255.255.252	0
R3	G0/0	192.168.2.1	255.255.255.0	2
	G0/1	192.168.1.1	255.255.255.0	2
	S0/0/1	192.168.10.6	255.255.255.252	0

Objetivos

Parte 1. Configurar el protocolo OSPFv2 multiárea

Parte 2. Verificar y examinar el protocolo OSPFv2 multiárea

Aspectos básicos

En esta actividad, configurará el protocolo OSPFv2 multiárea. La red ya está conectada y las interfaces ya están configuradas con la asignación de direcciones IPv4. Su trabajo es habilitar el protocolo OSPFv2 multiárea, verificar la conectividad y examinar el funcionamiento del protocolo OSPFv2 multiárea.

Parte 1: Configurar OSPFv2

Paso 1: Configurar OSPFv2 en el R1.

Configure el protocolo OSPFv2 en el R1 con una ID de proceso de 1 y una ID del router de 1.1.1.1.

Paso 2: Anunciar cada red conectada directamente en OSPFv2 en el R1.

Configure cada red en el protocolo OSPFv2 mediante la asignación de áreas según la **Tabla de asignación de direcciones**.

```
R1(config-router)# network 10.1.1.0 0.0.0.255 area 1
R1(config-router)# network 10.1.2.0 0.0.0.255 area 1
R1(config-router)# network 192.168.10.0 0.0.0.3 area 0
```

Paso 3: Configurar OSPFv2 en el R2 y el R3.

Repita los pasos anteriores para el R2 y el R3 utilizando una ID del router 2.2.2.2 y 3.3.3.3, respectivamente.

Parte 2: Verificar y examinar OSPFv2 multiárea

Paso 1: Verificar la conectividad a cada una de las áreas OSPFv2.

En el R1, haga ping a cada uno de los dispositivos remotos en el área 0 y el área 2: 192.168.1.2, 192.168.2.2 y 10.2.1.2.

Paso 2: Utilizar los comandos show para examinar las operaciones de OSPFv2 actuales.

Utilice los siguientes comandos para recopilar información sobre la implementación del protocolo OSPFv2 multiárea.

```
show ip protocols
show ip route
show ip ospf database
show ip ospf interface
show ip ospf neighbor
```

Preguntas de reflexión

1. ¿Qué routers son routers internos?

- 3. ¿Cuáles de los routers son de área perimetral?
- 4. ¿Qué routers son routers del sistema autónomo? ____
- 5. ¿Qué routers generan anuncios de estado local (LSA, Link-State Advertisement) de tipo 1? _____
- 6. ¿Qué routers generan anuncios de estado local (LSA, Link-State Advertisement) de tipo 2?
- 7. ¿Qué routers generan anuncios de estado local (LSA, Link-State Advertisement) de tipo 3?

- 8. ¿Qué routers generan LSA de tipo 4 y 5? _____
- 9. ¿Cuántas rutas entre áreas tiene cada router? _____
- 10. ¿Por qué habría un ASBR en general en este tipo de red?

Tabla de calificación sugerida

La actividad Packet Tracer vale 80 puntos. Cada una de las preguntas de reflexión vale 2 puntos.