
Wireshark & TCPDump
Study Guide

Contents
Overview: Capture filters versus display filter 3
Display filters 3
Operators 3
Types 4
Functions 4
Examples 4
More information 5
Capture Filters 6
BPF Syntax overview 6
Qualifiers 7
Special Keywords 7
Examples 8
tcpdump 10
Syntax 10
Examples 11

Overview: Capture filters versus display filter
A Capture filter in Wireshark specifies which packets you would like to capture and keep. A filter of this
type needs to be set before you start capturing anything, and it can not be edited during a capture
session. Any packets that do not make it through this filter are essentially lost.

Display filters on the other hand, enable filtering of packets shown in the Wireshark UI. A packet that
matches a capture filter, but filtered away by a display filter will still be kept; it just won’t be visible so
long as the display filter is active.

Note: The display filters syntax can be used to apply Wireshark coloring rules.

Display filters

As mentioned, display filters are used to reduce the number of packets visible in GUI, as well as for
applying coloring rules. Every field under Packet Details can be used for filtering, and the comparison
operators listed below can be used. The filter itself is applied at the top of the Wireshark window:

Operators

These are logical and comparison-operators for use in display filters. Either the operators in the first
column, or the English word in the second column can be used in filter expressions:

Operator English Meaning
== eq Test for equality
!= ne Test for “not equal to”
< gt Greater than
> lt Less than
>= ge Greater than or equal to
<= le Less than or equal to
Contains contains Search for contained value
~ matches Match using Perl regular expressions
& bitwise_and Bit field value comparisons
&& And Both expressions must be true
|| or At least one expression must be true
^^ xor Logial Xor
! not Logical Not
[…] The slice-operator; Enables selection of a sub-sequence / a part

of a sequence.

In {} Membership; test if a value is represented in a set of values.

Types

Each field has a specific type, which has implications for how you can use it. You can find a list of
available fields for different protocols, and their types in the Display Filter Reference (see “more
information” below).

Available types are:

● Text strings.
● Integers (signed or unsigned). These can be compared to a value declared in decimal, octal, or

hexadecimal.
● Boolean: If the code for a flag is used as a filter, only packets which contain that flag will be visible

(whether or not the flag is actually set).
● Ethernet addresses
● IPv4 addresses (including a subnet-part)

Functions

These allow for manipulation of field values before a comparison is performed

Function Effect
Upper Converts all characters in a string field to uppercase
Lower Converts all characters in a string field to lowercase
Len Returns the byte length of a field
Count Returns the number of occurrences of a field in a frame
String Converts a field into a string, allowing for string comparisons.

Examples

Filter for a specific IP, for both source and destination:

ip.addr == 10.43.54.65

Filter for a specific IP, but only for source:

ip.src == 10.43.54.65

Filter for a specific IP, but only for destination:

ip.dst == 10.43.54.65

Filter away any traffic to or from a specific IP (i.e. packets with either src or dst IP matching):

! (ip.addr == 10.43.54.65)

Show only SMTP (port 25) and ICMP traffic:

tcp.port eq 25 or icmp

Show only traffic in the LAN (192.168.x.x), between workstations and servers -- no Internet::

ip.src==192.168.0.0/16 and ip.dst==192.168.0.0/16

Match packets containing the (arbitrary) 3-byte sequence 0x81, 0x60, 0x03 at the beginning of
the UDP payload, skipping the 8-byte UDP header. :

udp[8:3]==81:60:03

Using slice to filter on the vendor identifier part (OUI) of the MAC address to only packets from a specific
device manufacturer:

 eth.addr[0:3]==00:06:5B

Match packets that contains the 3-byte sequence 0x81, 0x60, 0x03 anywhere in the UDP header or
payload:

 udp contains 81:60:03

Match packets where SIP To-header contains the string "a1762" anywhere in the header:

sip.To contains "a1762"

Filter for packets with a destination IP matching one of three in a set:

ip.dst in {224.0.0.251 224.0.0.2 224.0.0.251}

Use RegEx to filter for HTTP requests where the last characters in the uri are "gl=se":

 http.request.uri matches "gl=se$"

More information

The examples above show some of what can be achieved using display filters. There are is a lot more
available at wireshark.org, including a detailed Display Filter Reference found at the following url:

● https://www.wireshark.org/docs/dfref/

This includes a list of all the available fields for the different protocols, as well as information about their
datatypes and a description. For more general information, see please refer to the documentation:

● https://wiki.wireshark.org/DisplayFilters
● https://www.wireshark.org/docs/man-pages/wireshark-filter.html

https://wiki.wireshark.org/SMTP
https://wiki.wireshark.org/ICMP
https://wiki.wireshark.org/UDP
https://www.wireshark.org/docs/dfref/
https://wiki.wireshark.org/DisplayFilters
https://www.wireshark.org/docs/man-pages/wireshark-filter.html

Capture Filters
While display filters are used to hide captured packets, Capture Filters actually limit the packets that are
captured in the first place. A capture filter must be applied before a capture session is started, and can
not be changed during the capture.

A capture filter can be entered right at the start, after opening Wireshark:

BPF Syntax overview

A Wireshark capture filter is declared using the Berkeley Packet Filter syntax (BPF), and will typically
consists of one or more Primitives .

A primitive consists of one or more qualifiers followed by an id. The id can be a name or number, such as
a hostname, an IP address, or a range of ports, for instance. The qualifier specifies which properties of
the id should be taken into account by the filter.

Several primitives can be combined using and (or “&&”), or (or “||”), or not (or “!”) .

Note: “ not “ or “! ” has a higher precedence than and and or.

A primitive with two qualifiers, and an IP address for an id:

src host 192.168.10.152

Two primitives combined using and :

dst host 192.168.10.152 and port 51020

Qualifiers
There are three different kinds of qualifiers :

Kind Available qualifiers Description
type host, net , port, portrange These declare what the id is pointing to; e.g. an ip address,

a hostname, or a range of ports. If no type qualifier is used,
host is assumed.

dir src, dst, src or dst, src and
dst, ra, ta, addr1, addr2,
addr3, addr4

These declare the direction to or from the id (source or
destination).
Note: ra, ta, and addr* are only for IEEE 802.11 Wireless
LAN link layers.

proto ether, fddi, tr, wlan, ip, ip6,
arp, rarp, decnet, tcp, udp

If used, limits the filter to the declared protocol(s). If no
protocol is specified, all will be accepted.
Note: ether, tr, wlan and fddi are effectively aliases here:
ether refers to the data link layer of a network; fddi is the
same, only for fiber-optic lines, while wlan and tr refer to
Wireless LAN’s and Token Rings, respectively. The
differences between these do not affect filtering here.

Special Keywords
In addition to the qualifiers above, there are a few special keywords:

Gateway: Checks if a package uses a specified host as gateway

gateway hostname

Broadcast: Checks if a package is a broadcast packet. This can be either an ethernet broadcast packet or
an IP broadcast packet. If neither ethernet or IP is specified, ethernet is assumed as a default:

ether broadcast
ip broadcast

Less: Check if the packet has a length less than or equal to a specified length

Less 128

Greater: Check if the packet has a length greater than or equal to a specified length:

greater 128

Examples

True if either source or destination is hostid, which can be a hostname or an address:

host hostid

True if source is hostid:

src host hostid

True if destination is hostid:

dst host hostid

True if destination is hostid, and the protocol of a packet is IP:

ip dst host hostid

True if the ethernet destination address for a packet matches hostid, which can be a MAC address given
in hexadecimal:

Ether dst hostid

True if a packet has an IP destination address that matches the network number net. net can be a name
or a network number. For IP version 4, it can be written as part of an ip address, such as 192.168.1.0,
192.168.1, or 192.168, for instance:

dst net net

To select all IP packets between host-one and any host except host-two:

ip host host-one and not host-two

True if a packet has a destination matching the network net with the specified network mask:

dst net net mask netmask

Select all FTP-traffic passing through gateway:

gateway gateway and (port ftp or ftp-data)

True if a packet has the given port as its destination

dst port portnr

True if the destination port for a package lies within the specified range:

dst portrange port1-port2

True if a packet is an IP v4 packet of protocol type protocol. Valid options for protocol are icmp, icmp6,
igmp, igrp, pim, ah, esp, vrrp, udp , or tcp.
Note: tcp , upd and icmp are keywords which need to be escaped using a backslash (\), as in the next
example. These are essentially abbreviations for “proto protocol”.

ip proto protocol

True for an IPv4 udp packet:

ip proto \udp

Equivalent to the line above; note that udp is a keyword here:

udp and ip

Like the above, but also for IP v6:

udp

Again; the equivalent of the previous example:

udp and (ip || ip6)

True for an IPv6 packet with a matching protocol:

ip6 proto protocol

True if a packet is of ether type protocol. Valid options for protocol are ip, ip6, arp, rarp, atalk, aarp,
decnet, sca, lat, mopdl, moprc, iso, stp, ipx, or netbeui.
Note: All of these are also keywords, and need to be escaped using a backslash.

ether proto protocol

True for arp-packets:

ether proto \arp

Equivalent to the previous line (now using the keyword instead of escaping it):

arp

Capture all packets to/from 10.10.10.10 that are not to/from 192.168.0.0:

host 10.10.10.10 && !net 192.168

Capture all packets going to or from the address 10.10.10.10 and to or from port 80:

host 10.10.10.10 && port 80

Go to byte 8 of the ip header and check one byte (TTL field)

ip[8]

Go to the start of the tcp header and check 2 bytes (source port)

tcp[0:2]

Select the start and end packets (SYN and FIN) of each TCP conversation that involves a non-local host.

tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and dst net localnet

 select IP packets longer than 576 bytes sent through gateway:

gateway snup and ip[2:2] > 576

All ICMP packets that are not echo requests/replies (i.e., not ping packets):

icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply

tcpdump
tcpdump is a command line packet analyzer which can capture and display various network traffic on
the computer on which it runs. Like Wireshark, it uses BPF filters to limit the packets captured.

Syntax

The basic syntax for running tcpdump with a BPF filter is as follows, where options are the command line
parameters for tcpdump, and filter is a filter in the format described previously:

root@kali:~# tcpdump options filter

To see a list of possible options, use “-help” , or ror a fuller description, refer to the tcpdump man pages:

root@kali:~# tcpdump –help

root@kali:~# man tcpdump

Examples

Capture up to five packets destined for the host cybrary.it:

root@kali:~# tcpdump -c 5 dst host cybrary.it

List available interfaces to listen to / capture from:

root@kali:~# tcpdump -D

Specify which interface to listen to (in this case lo, which is the Loopback; i.e.

root@kali:~# tcpdump -i lo

Capture without translating addresses to names (i.e. show IP addresses instead of hostnames)

root@kali:~# tcpdump -n

Capture all packets and write them to a file named capture-log:

root@kali:~# tcpdump -w capture-log

Capture the first 25 packets of TCP data destined for either port 80 or 8080, and write the contents of
those packets to the file capture-log:

root@kali:~# tcpdump -c 25 -w capture-log tcp dst port 80 or 8080

