

The first line of a function is its definition, marked by the
keyword def. The name of the function is followed by a set
of parentheses and a colon. A docstring, in triple quotes,
describes what the function does. The body of a function is
indented one level.
 To call a function, give the name of the function followed
by a set of parentheses.

Making a function

def greet_user():
 """Display a simple greeting."""
 print("Hello!")

greet_user()

The two main kinds of arguments are positional and
keyword arguments. When you use positional arguments
Python matches the first argument in the function call with
the first parameter in the function definition, and so forth.
 With keyword arguments, you specify which parameter
each argument should be assigned to in the function call.
When you use keyword arguments, the order of the
arguments doesn't matter.

Using positional arguments

def describe_pet(animal, name):
 """Display information about a pet."""
 print("\nI have a " + animal + ".")
 print("Its name is " + name + ".")

describe_pet('hamster', 'harry')
describe_pet('dog', 'willie')

Using keyword arguments

def describe_pet(animal, name):
 """Display information about a pet."""
 print("\nI have a " + animal + ".")
 print("Its name is " + name + ".")

describe_pet(animal='hamster', name='harry')
describe_pet(name='willie', animal='dog')

Covers Python 3 and Python 2

A function can return a value or a set of values. When a
function returns a value, the calling line must provide a
variable in which to store the return value. A function stops
running when it reaches a return statement.

Returning a single value

def get_full_name(first, last):
 """Return a neatly formatted full name."""
 full_name = first + ' ' + last
 return full_name.title()

musician = get_full_name('jimi', 'hendrix')
print(musician)

Returning a dictionary

def build_person(first, last):
 """Return a dictionary of information
 about a person.
 """
 person = {'first': first, 'last': last}
 return person

musician = build_person('jimi', 'hendrix')
print(musician)

Returning a dictionary with optional values

def build_person(first, last, age=None):
 """Return a dictionary of information
 about a person.
 """
 person = {'first': first, 'last': last}
 if age:
 person['age'] = age
 return person

musician = build_person('jimi', 'hendrix', 27)
print(musician)

musician = build_person('janis', 'joplin')
print(musician)

Functions are named blocks of code designed to do
one specific job. Functions allow you to write code
once that can then be run whenever you need to
accomplish the same task. Functions can take in the
information they need, and return the information they
generate. Using functions effectively makes your
programs easier to write, read, test, and fix.

You can provide a default value for a parameter. When
function calls omit this argument the default value will be
used. Parameters with default values must be listed after
parameters without default values in the function's definition
so positional arguments can still work correctly.

Using a default value

def describe_pet(name, animal='dog'):
 """Display information about a pet."""
 print("\nI have a " + animal + ".")
 print("Its name is " + name + ".")

describe_pet('harry', 'hamster')
describe_pet('willie')

Using None to make an argument optional

def describe_pet(animal, name=None):
 """Display information about a pet."""
 print("\nI have a " + animal + ".")
 if name:
 print("Its name is " + name + ".")

describe_pet('hamster', 'harry')
describe_pet('snake')

Information that's passed to a function is called an
argument; information that's received by a function is called
a parameter. Arguments are included in parentheses after
the function's name, and parameters are listed in
parentheses in the function's definition.

Passing a single argument

def greet_user(username):
 """Display a simple greeting."""
 print("Hello, " + username + "!")

greet_user('jesse')
greet_user('diana')
greet_user('brandon')

Try running some of these examples on pythontutor.com.

http://nostarchpress.com/pythoncrashcourse
http://nostarchpress.com/pythoncrashcourse

You can pass a list as an argument to a function, and the
function can work with the values in the list. Any changes
the function makes to the list will affect the original list. You
can prevent a function from modifying a list by passing a
copy of the list as an argument.

Passing a list as an argument

def greet_users(names):
 """Print a simple greeting to everyone."""
 for name in names:
 msg = "Hello, " + name + "!"
 print(msg)

usernames = ['hannah', 'ty', 'margot']
greet_users(usernames)

Allowing a function to modify a list
The following example sends a list of models to a function for
printing. The original list is emptied, and the second list is filled.

def print_models(unprinted, printed):
 """3d print a set of models."""
 while unprinted:
 current_model = unprinted.pop()
 print("Printing " + current_model)
 printed.append(current_model)

Store some unprinted designs,
and print each of them.
unprinted = ['phone case', 'pendant', 'ring']
printed = []
print_models(unprinted, printed)

print("\nUnprinted:", unprinted)
print("Printed:", printed)

Preventing a function from modifying a list
The following example is the same as the previous one, except the
original list is unchanged after calling print_models().

def print_models(unprinted, printed):
 """3d print a set of models."""
 while unprinted:
 current_model = unprinted.pop()
 print("Printing " + current_model)
 printed.append(current_model)

Store some unprinted designs,
and print each of them.
original = ['phone case', 'pendant', 'ring']
printed = []

print_models(original[:], printed)
print("\nOriginal:", original)
print("Printed:", printed)

Sometimes you won't know how many arguments a
function will need to accept. Python allows you to collect an
arbitrary number of arguments into one parameter using the
* operator. A parameter that accepts an arbitrary number of
arguments must come last in the function definition.
 The ** operator allows a parameter to collect an arbitrary
number of keyword arguments.

Collecting an arbitrary number of arguments

def make_pizza(size, *toppings):
 """Make a pizza."""
 print("\nMaking a " + size + " pizza.")
 print("Toppings:")
 for topping in toppings:
 print("- " + topping)

Make three pizzas with different toppings.
make_pizza('small', 'pepperoni')
make_pizza('large', 'bacon bits', 'pineapple')
make_pizza('medium', 'mushrooms', 'peppers',
 'onions', 'extra cheese')

Collecting an arbitrary number of keyword arguments

def build_profile(first, last, **user_info):
 """Build a user's profile dictionary."""
 # Build a dict with the required keys.
 profile = {'first': first, 'last': last}

 # Add any other keys and values.
 for key, value in user_info.items():
 profile[key] = value

 return profile

Create two users with different kinds
of information.
user_0 = build_profile('albert', 'einstein',
 location='princeton')
user_1 = build_profile('marie', 'curie',
 location='paris', field='chemistry')

print(user_0)
print(user_1)

More cheat sheets available at

You can store your functions in a separate file called a
module, and then import the functions you need into the file
containing your main program. This allows for cleaner
program files. (Make sure your module is stored in the
same directory as your main program.)

Storing a function in a module
File: pizza.py

def make_pizza(size, *toppings):
 """Make a pizza."""
 print("\nMaking a " + size + " pizza.")
 print("Toppings:")
 for topping in toppings:
 print("- " + topping)

Importing an entire module
File: making_pizzas.py
Every function in the module is available in the program file.

import pizza

pizza.make_pizza('medium', 'pepperoni')
pizza.make_pizza('small', 'bacon', 'pineapple')

Importing a specific function
Only the imported functions are available in the program file.

from pizza import make_pizza

make_pizza('medium', 'pepperoni')
make_pizza('small', 'bacon', 'pineapple')

Giving a module an alias

import pizza as p

p.make_pizza('medium', 'pepperoni')
p.make_pizza('small', 'bacon', 'pineapple')

Giving a function an alias

from pizza import make_pizza as mp

mp('medium', 'pepperoni')
mp('small', 'bacon', 'pineapple')

Importing all functions from a module
Don't do this, but recognize it when you see it in others' code. It
can result in naming conflicts, which can cause errors.

from pizza import *

make_pizza('medium', 'pepperoni')
make_pizza('small', 'bacon', 'pineapple')

As you can see there are many ways to write and call a
function. When you're starting out, aim for something that
simply works. As you gain experience you'll develop an
understanding of the more subtle advantages of different
structures such as positional and keyword arguments, and
the various approaches to importing functions. For now if
your functions do what you need them to, you're doing well.

http://ehmatthes.github.io/pcc/cheatsheets/README.html

