

Study Guide
Intro to Malware Analysis and Reverse Engineering

Created By: Pratyay Milind, Teaching Assistant

Module 1: Introduction
Lesson 1.1: Intro Part 1
Skills Learned From This Lesson: Malware, Types of Malware, Analysis

● About the Instructor:
○ Sean Pierce

■ Certifications: CISSP
■ Twitter: @secure_sean
■ He is a Malware Analyst
■ Employer: iSIGHT Rep

● What is Malware Analysis and why is it useful?
○ Anti-Virus can’t be relied on
○ 50% to 97% of Breaches involve malware
○ Breach happens – Now what?

■ Typical
● Reimage the machine

■ Advanced: Incident Response
● Analyze Logs, network traffic, strange processes etc.
● Is it any where else?
● How did it get there?

■ Mature: Gather Intelligence
● What is the Impact?
● What is the Risk?
● Financially Motivated? Hacktivism? Opportunistic? Advanced

Persistent Threat (APT)?
● Scope

○ Beginner’s intro to:

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 1

■ Windows Malware Analysis
■ Basic Forensics / Incident Response / Malware Discovery
■ Basic Reverse Engineering

○ Recommended Background:
■ Networking – TCP / IP
■ Operating System Internals
■ Programming (C, C++)
■ Software Vulnerabilities
■ Hacking

● What is Malware
○ Malicious Software
○ Executes without permission or Knowledge
○ Software Problems like every other product:

■ Compatibility Issues
■ Bugs
■ Customer service
■ Versions / Updating Issues
■ Team Development / Source Code Control

● Malware Types / Functionality
○ General:

■ Virus (File Infector Rare)
■ Trojan (Common)
■ Worm (Rare)
■ Bot (Very Common)
■ Rootkits (Uncommon)
■ RAT (Very Common)

○ More Specialized:
■ Scareware
■ Spyware
■ Adware
■ Backdoors
■ Credential Stealers
■ Anti-Analysis
■ Defenses

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 2

■ Stealth
■ Loader / Downloader

● Other (Malicious) Software
○ Builders
○ Exploit Kit
○ Packer / Crypter

● Types of Analysis
○ Dynamic Analysis

■ Executing the Malware. Simple, Fast. Easy to miss things.
○ Static Analysis

■ Reverse Engineering. Slow, Deep technical knowledge. With enough time
anything can be reversed.

○ Hybrid Static / Dynamic
■ Most Analysis is a mixture: You can find something in the disassembly

then you confirm / investigate while the malware is executing.
■ Memory Forensics. Can be very useful, but is not the end-all-be-all

Lesson 1.2: Intro Part 2
Skills Learned From This Lesson: Tools, Malware, Analysis

● Basic Tools
○ SysInternals - https://docs.microsoft.com/en-us/sysinternals/
○ MAP Pack – http://sandsprite.com/CodeStuff/map_setup.exe
○ 010 – http://www.sweetscape.com/010editor/
○ PE viewer: CFF Explorer, PE Explorer, PE View, PE Studio
○ Disassembler: IDA Pro, x64_dbg, Hopper, etc.
○ Other:

■ Cygwin – md5sum, gcc, xxd, file, strings, python
https://cygwin.com/install.html

■ Notepad++ - https://notepad-plus-plus.org/downloads/
■ 7zip

Lesson 1.3: Intro Part 3
Skills Learned From This Lesson: Malware Samples, Malware, Analysis

● Get Samples

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 3

https://docs.microsoft.com/en-us/sysinternals/
https://cygwin.com/install.html
https://notepad-plus-plus.org/downloads/

○ Contagio Malware Dump: Free; password required
■ http://contagiodump.blogspot.com/

○ KernelMode.info: Free; registration required
■ https://www.kernelmode.info/

○ Malshare: Free
■ https://malshare.com/

○ Malwares.Iu’s AVCaesar: Free; registration required
■ https://avcaesar.malware.lu/

○ MalwareBlacklist: Free; registration required
○ Malware DB: Free

■ https://thezoo.morirt.com/
○ Malwr: Free; regisatration required

■ https://malwr.com/
○ Open Malware: Free
○ SecuBox Labs: Free
○ VirusShare: Free

■ https://virusshare.com/
○ Catch your own: Honey Pot
○ Make your own:

■ Program Based on Description
■ Download a ‘Builder’

● Note for the Paranoid:
○ Some Malware can Execute upon:

■ Being Scanned
■ Viewing Icon

● Word
● PDF
● System Icon

■ Extracting the file from an Archive
○ MD5 vs. SHA256

Module 2: Lab Setup
Lesson 2.1: Lab Setup Part 1

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 4

Skills Learned From This Lesson: Lab, Analysis, Malware

● Industry Standard Setup

○ Basic Setup
■ Install VMWare
■ Install Windows XP

● Install VMware tools
● Install Analysis tools

■ Setup Kali
● Install VMWare tools
● Setup Network

Lesson 2.2: Lab Setup Part 2
Skills Learned From This Lesson: Downloading, Malware, Setup

● Steps:
○ Download and Install VMWare WorkStation

■ https://www.vmware.com/
○ VM Notes provided by the instructor

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 5

https://www.vmware.com/products/workstation-pro.html

Lesson 2.3: Lab Setup Part 3
Skills Learned From This Lesson: Dynamic, Analysis, Tools,

● Dynamic Analysis Tools for Virtual Machine
○ For Dynamic Analysis

■ Capture BAT
■ RegShot
■ PEid
■ LordPE
■ Import Reconstructor

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 6

■ OllyDbg 2.0
● Levels of Automating / Outsourcing

○ Local VM
○ Scripting Local VM
○ Automating ESX (i), Zen, Hyper-V
○ Cuckoo Sandbox
○ Malware Farm
○ Virus Total, Anubis
○ Joe Sandbox, Hybrid Analysis, ThreatGrid
○ FireEye

● Notes for the Paranoid
○ Vulnerabilities in VMWare
○ Some malware will detect it’s in a VM and act differently

■ VMWare tools
■ Easy: MAC address, timings. Advanced: v-instructions. Very Advanced:

bluepill
○ Some malware will check / rely on correct DNS resolutions
○ Some malware will do an external IP check
○ Checks name for ‘malware’, or ‘sample’ or username of ‘user’
○ You can route the connections through a logless VPN

Module 3: Dynamic Analysis Part 1
Lesson 3.1: Dynamic Analysis Part 1.1
Skills Learned From This Lesson: Dynamic, Analysis, Malware

● What is Dynamic Malware Analysis
○ Execute the Malware
○ First Response / Triage
○ Virtual Machine vs. Native Hardware
○ Characteristics:

■ Easy
■ Fast
■ Code may not execute

○ Goals:
■ Generate Indicators of Compromise (IoC’s)

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 7

■ Determine Malware Type / Family
■ Assess Risk and Impact
■ Attribution

Lesson 3.2: Dynamic Analysis Part 1.2
Skills Learned From This Lesson: Snapshot, Dynamic Analysis, Malware Samples

● Get Samples
○ theZoo aka Malware DB: https://github.com/ytisf/theZoo

■ Dyre:
https://github.com/ytisf/theZoo/blob/master/malwares/Binaries/Dyre/Dyre.
zip

Lesson 3.3: Dynamic Analysis Part 1.3
Skills Learned From This Lesson: Dynamic, Analysis, Malware Samples

● Demo
○ Download Malware from https://malshare.com/

■ Snapshot
● CaptureBAT
● RegShot
● Autoruns

■ More Advanced:
● SysAnalyzer
● ProcMon
● OllyDbg

● Note for the Paranoid:
○ Some Malware will detect:

■ Executing / Installed Analysis Tools
■ Virtual Machine Containment
■ Sandbox Containment
■ Security Products

○ Other Reasons why it might not run correctly:
■ Incorrect environment:

● Software Versions

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 8

https://github.com/ytisf/theZoo
https://github.com/ytisf/theZoo/blob/master/malwares/Binaries/Dyre/Dyre.zip
https://github.com/ytisf/theZoo/blob/master/malwares/Binaries/Dyre/Dyre.zip
https://malshare.com/

● Installed OS Language
● Multiple components
● Disabled networking

■ Bugs in the Malware
■ Dependencies not met
■ ‘Kill dates’
■ Specific Target

● Note for the Paranoid
○ Malware Repo should be non-execute:

■ Windows Host:
● icacls C:\malware /deny “Everyone: (OI)(IO)(X)”

■ Linux Host:
● chmod 600 /malware <file_name>

○ User interaction

Module 4: Dynamic Analysis Part 2
Lesson 4.1: Dynamic Analysis Part 2.1
Skills Learned From This Lesson: Dynamic Analysis, Malware, Indicators of Compromise

● Dynamic Malware Analysis
■ Indicators of Compromise (IoC’s)

● File Hashes
● Strings
● Registry Keys
● File Names
● File Paths
● Process Names
● IP Addresses
● Domains
● URLs
● Network Traffic

● OpenIoC

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 9

● Good Resources:
o https://github.com/rshipp/awesome-malware-analysis
o https://www.malware-analyzer.com/
o http://opensecuritytraining.info/MalwareDynamicAnalysis.html

Lesson 4.2: Dynamic Analysis Part 2.2
Skills Learned From This Lesson: Dynamic Analysis, Demo, Analyzing IllusionBot

● Demo
○ Download:

■ https://github.com/ytisf/theZoo/blob/master/malwares/Binaries/IllusionBot_
May2007/IllusionBot_May2007.zip

○ Network Traffic
■ Wireshark
■ Strings -> YARA sigs

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

10

https://github.com/rshipp/awesome-malware-analysis
https://www.malware-analyzer.com/
http://opensecuritytraining.info/MalwareDynamicAnalysis.html
https://github.com/ytisf/theZoo/blob/master/malwares/Binaries/IllusionBot_May2007/IllusionBot_May2007.zip
https://github.com/ytisf/theZoo/blob/master/malwares/Binaries/IllusionBot_May2007/IllusionBot_May2007.zip

Module 5: Basic Static Analysis
Lesson 5.1: Basic Static Analysis Part 1
Skills Learned From This Lesson: Static Analysis, Malware, Assembly Code

● What is Static Analysis?
○ Reading the assembly code
○ Use tools such as

■ Debuggers
■ Disassemblers

○ Characteristics:
■ Slow
■ Detail oriented
■ Technical Knowledge Required

○ Goals:
■ Confirm Dynamic Analysis
■ Understand Behavior
■ Find more Indicators of Compromise

● Encrypted Strings / Payloads
● Domain Generation Algorithms (DGA’s)
● Network Traffic Encryption Algorithms

■ Determines Defenses
● Anti-Debugging
● Anti-VM

■ Determine Capabilities for Assess Risk and Impact
■ Determine Sophistication
■ Attribution

● What is Assembly?
○ Human readable machine code for a particular chip

■ Intel invented the 8086 chips in 1978
● Used in the IBM PC
● Originally 16-bit

■ Focus on x86 code (aka ‘i486’ architecture or ’32-bit’)
■ Examples of other Architectures:

● AMD x64 – common in PC’s also known as ‘x64’ or ’64-bit’ most
x64 chips also have the circuitry to execute x86 code

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 11

● ARM – common in phones and tablets
● MIPS – common in printers

● More Details about x86 Assembly
○ 14 Instructions make up 90% of cache
○ Syntax

■ Intel
● mov eax, 5

●
■ AT&T

● mov $5, %eax

●
○ Programming Knowledge is needed

■ Functions
■ Local Variables
■ Application Programming Interfaces (API’s)

○ Math
■ Binary
■ Hex
■ Decimal

1. MOV
2. PUSH
3. CALL
4. CMP
5. ADD
6. POP
7. LEA
8. TEST
9. JE
10. JMP
11. RET

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

12

12. INC

● Demo: Compiling ‘C’ Code
o C is a lower level language
o Demo:

▪ gcc -S hello.c
▪ cl /FA hello.c
▪ Visual Studio

● Project Settings -> C / C++ -> Output Files -> ASM List Location
● Change “Assembly Output” to “Assembly With Source Code”

▪ Place a break point in the debugger right click and find “Go to Assembly”
▪ OllyDbg

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

13

Lesson 5.2: Basic Static Analysis Part 2
Skills Learned From This Lesson: Static Analysis, PE, Malware, Assembly Code

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

14

● PE file Parsers
o PE Explorer
o COFF Explorer
o PEiD
o PE Studio
o 010 Hexeditor with the PE Binary Templates
o Make your own:

▪ Malware Analysis Cookbook
● Portable Executables

o Most modern Windows executables use the ‘PE’ format
▪ .exe
▪ .dll
▪ .src
▪ .cpl
▪ .ocx

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

15

▪ .sys
▪ .drv
▪ .efi
▪ .fon

● EFLAGs Register

● The Stack

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

16

o At the top of the memory
o Grows downward
o Normally holds local variables
o ESP Points the top of the stack (The lowest memory address)
o EBP – Extended Base Pointer, always points to the bottom of the stack (The

highest memory address)
o PUSH Instruction – DECrements ESP (stack pointer) by 4, and MOV’es 4 bytes

at that location.
o POP – MOV’es the ESP value and increments the stack by 4.
o CALL – PUSH’es EIP, and JMP’s to the function address.
o RET – JMP’s to the return address which was pushed on to the stack during the

CALL instruction just before the
● Misc.

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

17

o NOP Instruction
o Flags

▪ Example: Zero Flag
o Bit masks:

▪ Example:
● 0010 AND 1110 = 0010
● 0x0000FF00 AND 0xA0AB2AA01 = 0X0000AA00

o Endianness
▪ Big Endian in Intel Registers. Little Endian in storage

o Size of datatypes such as WORD, DWORD, QWORD
o One’s Complement – flip all bits
o Two’s Complement – flip all bits + 1
o Negative numbers are the Two’s Complement of the positive number

● Endian

o Little Endian – 0x12345678 stored in RAM “little end” first. The least significant
byte of a word or larger is stored in the lowest address.

▪ E.g. 0x78563412
● Intel is Little Endian

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

18

o Big Endian – 0x12345678 stored as is
▪ Network traffic is Big Endian
▪ Most everyone else you’ve heard of (PowerPC, ARM, SPARC, MIPS) is

either Big Endian by default or can be configured as either (Bi-Endian)
● Visual Representation

● Little Endian Example
o 11AB44FFAADD1221
o 0x11AB44FF 0xAADD1221
o 0xFF44AB11 0x2112DDAA
o 0xFF44AB112112DDAA

● Notes for the Paranoid
o Disassemblers can be wrong

▪ Without running the code it’s impossible to know what instructions will
actually be executed

▪ Malware will use code that tricks / breaks disassemblers / debuggers
such as switching from x86 to x64 code. And JMP’ing into the middle of
other instructions.

▪ Malware will sometimes modify its own code while executing
o Some malware will statically compile library’s in to itself. This will make the

malware much larger and difficult to analyze. IDA Pro automatically tries to
identify statically compiled libraries.

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

19

o Malware will have ‘junk code’ which does nothing or as no functional impact
o Malware could not follow conventions. Such as using MOV’s and SUB’s instead

of PUSH for API parameters
o Malware sometimes corrupts its own stack to mess up disassemblers

● Recap & List of Good Resources
o Goals of Static Analysis
o Assembly
o The IDA Pro Book: The Unofficial Guide

▪ Chris Edge
o Professional Assembly Language

▪ Richard Blum
o Reversing: Secrets of Reverse Engineering

▪ Eldad Eilam
o Corkami

▪ https://github.com/corkami
o http://opensecuritytraining.info/IntroX86.html

▪ https://www.youtube.com/playlist?list=PL038BE01D3BAEFDB0
o https://en.wikipedia.org/wiki/X86_assembly_language
o https://en.wikipedia.org/wiki/X86_calling_conventions

Lesson 5.3: Basic Static Analysis Part 3
Skills Learned From This Lesson: Static Analysis, PE, Malware, Assembly Code

● Calling Conventions
o cdecl

▪ “C declaration”
▪ Most common
▪ Push reverse order parameters
▪ Caller is responsible for cleaning up the stack

o stdcall
▪ Microsoft API
▪ Push reverse order parameters
▪ Callee is responsible for cleaning up the stack

● Demo

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

20

https://github.com/corkami
http://opensecuritytraining.info/IntroX86.html
https://www.youtube.com/playlist?list=PL038BE01D3BAEFDB0
https://en.wikipedia.org/wiki/X86_assembly_language
https://en.wikipedia.org/wiki/X86_calling_conventions

o stdcall vs. cdecl
o Different ways to put data on the stack

▪ gcc
▪ Visual studio (36:47)

Lesson 5.5: Basic Static Analysis Part 4B
Skills Learned From This Lesson: Static Analysis, Tricks, Malware

● Tricks
o Why are we doing this?

▪ Understand the Malware
▪ Discover Indicators of Compromise
▪ Confirm Dynamic analysis
▪ Discover Anti-Debugging code

o Tricks used by Malware so far:
▪ Stack Corruption
▪ Import Hiding

● Dynamic Function Resolving
▪ String Obfuscation

Lesson 5.6: Basic Static Analysis Part 5
Skills Learned From This Lesson: Static Analysis, Basics, Tips

● Tips and Tricks
o Dealing with Obfuscated Strings

▪ The Hard way: Fully reverse engineer the code, re-implement it, then
apply the same process to the strings.

▪ The Easy way: Use the native code.

Lesson 5.7: Basic Static Analysis Part 6
Skills Learned From This Lesson: Static Analysis, Basics, Tips

● Enumerating Capabilities
o Find Command Processing Subroutines
o Configuration Processing Subroutines
o Document everything!
o Test afterwards via Dynamic Analysis

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

21

o Note: There is no ‘Undo’ in IDA!

Module 6: Packers
Lesson 6.1: Packers Part 1
Skills Learned From This Lesson: Packers, Introduction, Theory

● What are Packers?
○ Self-decrypting executables
○ Originally made for compressing code size
○ Use tools such as

■ Debuggers
■ Memory Dumpers

○ Characteristics:
■ Packer strings/advertisements
■ Few strings
■ Few imports
■ High entropy data
■ Large virtual sections with small raw disk size

○ Goals:
■ Hide strings
■ Change the hash
■ Mask binary signatures

● Legitimate Users
○ Code Compression
○ Intellectual Property Protection
○ Anti-Reverse Engineering
○ Anti-Cheat
○ Digital Rights Management (DRM)

■ Licensing
● Common Packers

○ UPX
○ Armadillo
○ ASPack
○ VMProtect

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

22

○ Themida

●

● Changes in Code

●

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

23

Lesson 6.3: Packers Part 3
Skills Learned From This Lesson: Packers, Packing, Demo

● Packing Example
o Before Packing

▪ Illusion Bot Strings
▪ Illusion Bot AV Detections
▪ Illusion Bot PE Sections

o After Packing
▪ No Strings
▪ Fewer AV Detections
▪ Different PE Sections

Lesson 6.4: Packers Part 4
Skills Learned From This Lesson: Packers, Unpacking, Demo

● Unpacking Demo
o UPX Packed Regshot

▪ Strings
▪ PEiD

o Pack Regshot (run)
▪ Strings after
▪ PeiD -> deep. Data base from SANS

o Unpack Regshot “upx -d”
▪ OllyDbg 1.10 (OllyDbg 2 will auto unpack)
▪ Find OEP

o Dump
▪ OllyDump or
▪ OllyDbg PE Dumper 3.03 or
▪ LordPE

o Reconstruct IAT
▪ ImpREC 1.7e

Lesson 6.5: Packers Part 5
Skills Learned From This Lesson: Packers, Advanced, Theory

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

24

● More Advanced Packers
o Multiple Layers
o Adds Junk Code
o Built in defenses

▪ Anti-Analysis Code
▪ Anti-Debugging Code

o Custom Encryption
o Create Small Virtual Machine

Module 7: Malware Defenses
Lesson 7.1: Malware Defenses Part 1
Skills Learned From This Lesson: Malware, Defenses, Introduction

● Defense Categories
○ Anti-Debugging

■ API
■ Process and Thread
■ Hardware and Register Based
■ Exception Based
■ Modified Code Based
■ Timing Based

○ Anti-Virtual Machine
■ API
■ Memory Constants
■ File/Process Names

○ Anti-Disassembly
■ Tricky Assembly
■ Dynamic Code Generation/Calling

○ Misc.
■ Anti-Analysis Tools

○ Malware Goals:
■ Stop Automated Analysis
■ Slow down Malware Analysts

● Basic Anti-Debugging Example

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

25

○ if(IsDebuggerPresent() == TRUE) {
■ exit(0); // Debugger is detected

○ }

Lesson 7.3: Malware Defenses Part 3
Skills Learned From This Lesson: Malware, Anti-Debugging, Techniques

● Anti-Debugging Techniques
○ IsBeingDebugged()
○ CheckRemoteDebuggerPresent()
○ FindWindow()
○ OutputDebugString()
○ NtQueryInformationProcess(ProcessDebugFlags)
○ NtQueryInformationProcess(ProcessDebugObjectHandle)
○ NtQueryInformationProcess(ProcessDebugPort)
○ NtSetInformationThreadDebuggerDetaching
○ SeDebugPrivilege OpenProcess
○ DebugActiveProcess()
○ NtGlobalFlag
○ PEB ProcessHeap Flag Debugger
○ LDR_Module Flags
○ Vista TEB System DLL Pointer
○ GetTickCount and TimeGetTime
○ Process names check
○ int 0Xcc scanning
○ and many more

● Anti-Virtual Machine Techniques
○ Process name check
○ LDR_Module
○ VMWare LDT Register Detection
○ VMWare STR Register Detection
○ VMWare special I/O instruction
○ Checks special VT-x or VMM instructions
○ Timing checks
○ Registry Checks

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

26

○ Virtual MAC address
○ Virtual hardware names
○ Anti-Cuckoo
○ Checks common VM drive ID’s
○ And many more

● Anti-Disassembly Examples
○ From: https://blog.sevagas.com/?Fun-combining-anti-debugging-and

○
● Anti-Anti-Debugging Techniques

○ Modify (Patch) the Malware
■ Patch the memory
■ Anti-Anti-Anti-Debugging: Integrity Checking Malware

○ Hook Function Calls
○ Run without a Debugger

■ Log API calls
■ Dumps memory

Brought to you by:

Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

27

https://blog.sevagas.com/?Fun-combining-anti-debugging-and

