
 

 

 

 
 

Study Guide 
Intro to Malware Analysis and Reverse Engineering 

Created By: Pratyay Milind, Teaching Assistant 
 

Module 1: Introduction 
Lesson 1.1: Intro Part 1  
Skills Learned From This Lesson:  Malware, Types of Malware, Analysis 

● About the Instructor:  
○ Sean Pierce  

■ Certifications: CISSP 
■ Twitter: @secure_sean 
■ He is a Malware Analyst 
■ Employer: iSIGHT Rep 

● What is Malware Analysis and why is it useful? 
○ Anti-Virus can’t be relied on  
○ 50% to 97% of Breaches involve malware 
○ Breach happens – Now what? 

■ Typical 
● Reimage the machine 

■ Advanced: Incident Response 
● Analyze Logs, network traffic, strange processes etc. 
● Is it any where else? 
● How did it get there? 

■ Mature: Gather Intelligence 
● What is the Impact? 
● What is the Risk? 
● Financially Motivated? Hacktivism? Opportunistic? Advanced 

Persistent Threat (APT)? 
● Scope 

○ Beginner’s intro to: 
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■ Windows Malware Analysis 
■ Basic Forensics / Incident Response / Malware Discovery 
■ Basic Reverse Engineering 

○ Recommended Background: 
■ Networking – TCP / IP 
■ Operating System Internals 
■ Programming (C, C++) 
■ Software Vulnerabilities 
■ Hacking 

● What is Malware 
○ Malicious Software 
○ Executes without permission or Knowledge 
○ Software Problems like every other product: 

■ Compatibility Issues 
■ Bugs 
■ Customer service 
■ Versions / Updating Issues 
■ Team Development / Source Code Control 

● Malware Types / Functionality 
○ General: 

■ Virus (File Infector Rare) 
■ Trojan (Common) 
■ Worm (Rare) 
■ Bot (Very Common) 
■ Rootkits (Uncommon) 
■ RAT (Very Common) 

○ More Specialized: 
■ Scareware 
■ Spyware 
■ Adware 
■ Backdoors 
■ Credential Stealers 
■ Anti-Analysis 
■ Defenses 
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■ Stealth 
■ Loader / Downloader 

● Other (Malicious) Software 
○ Builders 
○ Exploit Kit 
○ Packer / Crypter 

● Types of Analysis 
○ Dynamic Analysis 

■ Executing the Malware. Simple, Fast. Easy to miss things. 
○ Static Analysis 

■ Reverse Engineering. Slow, Deep technical knowledge. With enough time 
anything can be reversed. 

○ Hybrid Static / Dynamic 
■ Most Analysis is a mixture: You can find something in the disassembly 

then you confirm / investigate while the malware is executing. 
■ Memory Forensics. Can be very useful, but is not the end-all-be-all 

 
Lesson 1.2: Intro Part 2 
Skills Learned From This Lesson: Tools, Malware, Analysis 

● Basic Tools 
○ SysInternals - https://docs.microsoft.com/en-us/sysinternals/ 
○ MAP Pack – http://sandsprite.com/CodeStuff/map_setup.exe 
○ 010 – http://www.sweetscape.com/010editor/ 
○ PE viewer: CFF Explorer, PE Explorer, PE View, PE Studio 
○ Disassembler: IDA Pro, x64_dbg, Hopper, etc. 
○ Other: 

■ Cygwin – md5sum, gcc, xxd, file, strings, python 
https://cygwin.com/install.html 

■ Notepad++ - https://notepad-plus-plus.org/downloads/ 
■ 7zip 

 
Lesson 1.3: Intro Part 3 
Skills Learned From This Lesson: Malware Samples, Malware, Analysis 

● Get Samples 

 
Brought to you by: 
 

 

Develop your team with the fastest growing catalog in the 
cybersecurity industry. Enterprise-grade workforce development 
management, advanced training features and detailed skill gap and 
competency analytics. 

                                                                                                                                     3 

 

https://docs.microsoft.com/en-us/sysinternals/
https://cygwin.com/install.html
https://notepad-plus-plus.org/downloads/


 

 

 

 
 

○ Contagio Malware Dump: Free; password required 
■ http://contagiodump.blogspot.com/ 

○ KernelMode.info: Free; registration required 
■ https://www.kernelmode.info/ 

○ Malshare: Free 
■ https://malshare.com/ 

○ Malwares.Iu’s AVCaesar: Free; registration required 
■ https://avcaesar.malware.lu/ 

○ MalwareBlacklist: Free; registration required 
○ Malware DB: Free 

■ https://thezoo.morirt.com/ 
○ Malwr: Free; regisatration required 

■ https://malwr.com/ 
○ Open Malware: Free 
○ SecuBox Labs: Free 
○ VirusShare: Free 

■ https://virusshare.com/ 
○ Catch your own: Honey Pot 
○ Make your own: 

■ Program Based on Description 
■ Download a ‘Builder’ 

● Note for the Paranoid: 
○ Some Malware can Execute upon: 

■ Being Scanned 
■ Viewing Icon 

● Word 
● PDF 
● System Icon 

■ Extracting the file from an Archive  
○ MD5 vs. SHA256 

 
 

Module 2: Lab Setup 
Lesson 2.1: Lab Setup Part 1 
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Skills Learned From This Lesson: Lab, Analysis, Malware 

● Industry Standard Setup 

 
 

○ Basic Setup 
■ Install VMWare 
■ Install Windows XP 

● Install VMware tools 
● Install Analysis tools 

■ Setup Kali 
● Install VMWare tools 
● Setup Network 

 
Lesson 2.2: Lab Setup Part 2 
Skills Learned From This Lesson: Downloading, Malware, Setup 

● Steps: 
○ Download and Install VMWare WorkStation 

■ https://www.vmware.com/  
○ VM Notes provided by the instructor 
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Lesson 2.3: Lab Setup Part 3 
Skills Learned From This Lesson: Dynamic, Analysis, Tools,  

● Dynamic Analysis Tools for Virtual Machine 
○ For Dynamic Analysis 

■ Capture BAT 
■ RegShot 
■ PEid  
■ LordPE 
■ Import Reconstructor 
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■ OllyDbg 2.0 
● Levels of Automating / Outsourcing 

○ Local VM 
○ Scripting Local VM 
○ Automating ESX (i), Zen, Hyper-V 
○ Cuckoo Sandbox 
○ Malware Farm 
○ Virus Total, Anubis 
○ Joe Sandbox, Hybrid Analysis, ThreatGrid 
○ FireEye 

● Notes for the Paranoid 
○ Vulnerabilities in VMWare 
○ Some malware will detect it’s in a VM and act differently 

■ VMWare tools 
■ Easy: MAC address, timings. Advanced: v-instructions. Very Advanced: 

bluepill 
○ Some malware will check / rely on correct DNS resolutions 
○ Some malware will do an external IP check 
○ Checks name for ‘malware’, or ‘sample’ or username of ‘user’ 
○ You can route the connections through a logless VPN 

 

Module 3: Dynamic Analysis Part 1 
Lesson 3.1: Dynamic Analysis Part 1.1 
Skills Learned From This Lesson: Dynamic, Analysis, Malware 

● What is Dynamic Malware Analysis 
○ Execute the Malware 
○ First Response / Triage 
○ Virtual Machine vs. Native Hardware 
○ Characteristics: 

■ Easy 
■ Fast 
■ Code may not execute 

○ Goals: 
■ Generate Indicators of Compromise (IoC’s) 
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■ Determine Malware Type / Family 
■ Assess Risk and Impact 
■ Attribution  

 
Lesson 3.2: Dynamic Analysis Part 1.2 
Skills Learned From This Lesson: Snapshot, Dynamic Analysis, Malware Samples 

● Get Samples 
○ theZoo aka Malware DB: https://github.com/ytisf/theZoo 

■ Dyre: 
https://github.com/ytisf/theZoo/blob/master/malwares/Binaries/Dyre/Dyre.
zip 

 
 
Lesson 3.3: Dynamic Analysis Part 1.3 
Skills Learned From This Lesson: Dynamic, Analysis, Malware Samples 

● Demo 
○ Download Malware from https://malshare.com/ 

■ Snapshot 
● CaptureBAT 
● RegShot 
● Autoruns 

■ More Advanced: 
● SysAnalyzer 
● ProcMon 
● OllyDbg 

● Note for the Paranoid: 
○ Some Malware will detect: 

■ Executing / Installed Analysis Tools 
■ Virtual Machine Containment 
■ Sandbox Containment 
■ Security Products 

○ Other Reasons why it might not run correctly: 
■ Incorrect environment: 

● Software Versions 
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● Installed OS Language 
● Multiple components 
● Disabled networking 

■ Bugs in the Malware 
■ Dependencies not met 
■ ‘Kill dates’ 
■ Specific Target 

● Note for the Paranoid 
○ Malware Repo should be non-execute: 

■ Windows Host: 
● icacls C:\malware /deny “Everyone: (OI)(IO)(X)” 

■ Linux Host: 
● chmod 600 /malware <file_name> 

○ User interaction 
 

Module 4: Dynamic Analysis Part 2 
Lesson 4.1: Dynamic Analysis Part 2.1 
Skills Learned From This Lesson: Dynamic Analysis, Malware, Indicators of Compromise 

● Dynamic Malware Analysis 
■ Indicators of Compromise (IoC’s) 

● File Hashes 
● Strings 
● Registry Keys 
● File Names 
● File Paths 
● Process Names 
● IP Addresses 
● Domains 
● URLs 
● Network Traffic 

● OpenIoC 
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● Good Resources: 
o https://github.com/rshipp/awesome-malware-analysis 
o https://www.malware-analyzer.com/ 
o http://opensecuritytraining.info/MalwareDynamicAnalysis.html 

 
Lesson 4.2: Dynamic Analysis Part 2.2 
Skills Learned From This Lesson: Dynamic Analysis, Demo, Analyzing IllusionBot  

● Demo 
○ Download: 

■ https://github.com/ytisf/theZoo/blob/master/malwares/Binaries/IllusionBot_
May2007/IllusionBot_May2007.zip 

○ Network Traffic 
■ Wireshark 
■ Strings -> YARA sigs 
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Module 5: Basic Static Analysis 
Lesson 5.1: Basic Static Analysis Part 1 
Skills Learned From This Lesson: Static Analysis, Malware, Assembly Code 

● What is Static Analysis? 
○ Reading the assembly code 
○ Use tools such as  

■ Debuggers 
■ Disassemblers 

○ Characteristics: 
■ Slow 
■ Detail oriented 
■ Technical Knowledge Required 

○ Goals: 
■ Confirm Dynamic Analysis 
■ Understand Behavior 
■ Find more Indicators of Compromise 

● Encrypted Strings / Payloads 
● Domain Generation Algorithms (DGA’s) 
● Network Traffic Encryption Algorithms 

■ Determines Defenses 
● Anti-Debugging 
● Anti-VM 

■ Determine Capabilities for Assess Risk and Impact 
■ Determine Sophistication 
■ Attribution 

● What is Assembly? 
○ Human readable machine code for a particular chip 

■ Intel invented the 8086 chips in 1978 
● Used in the IBM PC 
● Originally 16-bit 

■ Focus on x86 code (aka ‘i486’ architecture or ’32-bit’) 
■ Examples of other Architectures: 

● AMD x64 – common in PC’s also known as ‘x64’ or ’64-bit’ most 
x64 chips also have the circuitry to execute x86 code 
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● ARM – common in phones and tablets 
● MIPS – common in printers 

● More Details about x86 Assembly 
○ 14 Instructions make up 90% of cache 
○ Syntax  

■ Intel  
● mov eax, 5 

●  
■ AT&T 

● mov $5, %eax 

●  
○ Programming Knowledge is needed 

■ Functions 
■ Local Variables 
■ Application Programming Interfaces (API’s) 

○ Math 
■ Binary 
■ Hex 
■ Decimal 

 
1. MOV  
2. PUSH 
3. CALL 
4. CMP 
5. ADD 
6. POP 
7. LEA 
8. TEST 
9. JE 
10. JMP 
11. RET 
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12. INC 
 
 

● Demo: Compiling ‘C’ Code 
o C is a lower level language 
o Demo: 

▪ gcc -S hello.c 
▪ cl /FA hello.c 
▪ Visual Studio 

● Project Settings -> C / C++ -> Output Files -> ASM List Location 
● Change “Assembly Output” to “Assembly With Source Code” 

▪ Place a break point in the debugger right click and find “Go to Assembly” 
▪ OllyDbg 
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Lesson 5.2: Basic Static Analysis Part 2 
Skills Learned From This Lesson: Static Analysis, PE, Malware, Assembly Code 
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● PE file Parsers 
o PE Explorer 
o COFF Explorer 
o PEiD 
o PE Studio 
o 010 Hexeditor with the PE Binary Templates 
o Make your own:  

▪ Malware Analysis Cookbook 
● Portable Executables 

o Most modern Windows executables use the ‘PE’ format 
▪ .exe 
▪ .dll 
▪ .src 
▪ .cpl 
▪ .ocx 
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▪ .sys 
▪ .drv 
▪ .efi 
▪ .fon 

● EFLAGs Register 
 

   

 
 
 

● The Stack 
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o At the top of the memory 
o Grows downward 
o Normally holds local variables 
o ESP Points the top of the stack (The lowest memory address) 
o EBP – Extended Base Pointer, always points to the bottom of the stack (The 

highest memory address) 
o PUSH Instruction – DECrements ESP (stack pointer) by 4, and MOV’es 4 bytes 

at that location. 
o POP – MOV’es the ESP value and increments the stack by 4. 
o CALL – PUSH’es EIP, and JMP’s to the function address. 
o RET – JMP’s to the return address which was pushed on to the stack during the 

CALL instruction just before the 
● Misc. 
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o NOP Instruction 
o Flags 

▪ Example: Zero Flag 
o Bit masks: 

▪ Example: 
● 0010 AND 1110 = 0010 
● 0x0000FF00 AND 0xA0AB2AA01 = 0X0000AA00 

o Endianness 
▪ Big Endian in Intel Registers. Little Endian in storage 

o Size of datatypes such as WORD, DWORD, QWORD 
o One’s Complement – flip all bits 
o Two’s Complement – flip all bits + 1 
o Negative numbers are the Two’s Complement of the positive number 

● Endian  
 

 
 

o Little Endian – 0x12345678 stored in RAM “little end” first. The least significant 
byte of a word or larger is stored in the lowest address. 

▪ E.g. 0x78563412 
● Intel is Little Endian 
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o Big Endian – 0x12345678 stored as is 
▪ Network traffic is Big Endian 
▪ Most everyone else you’ve heard of (PowerPC, ARM, SPARC, MIPS) is 

either Big Endian by default or can be configured as either (Bi-Endian) 
● Visual Representation 

 

 
 

● Little Endian Example 
o 11AB44FFAADD1221 
o 0x11AB44FF 0xAADD1221 
o 0xFF44AB11 0x2112DDAA 
o 0xFF44AB112112DDAA 

● Notes for the Paranoid 
o Disassemblers can be wrong 

▪ Without running the code it’s impossible to know what instructions will 
actually be executed 

▪ Malware will use code that tricks / breaks disassemblers / debuggers 
such as switching from x86 to x64 code. And JMP’ing into the middle of 
other instructions. 

▪ Malware will sometimes modify its own code while executing 
o Some malware will statically compile library’s in to itself. This will make the 

malware much larger and difficult to analyze. IDA Pro automatically tries to 
identify statically compiled libraries. 
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o Malware will have ‘junk code’ which does nothing or as no functional impact 
o Malware could not follow conventions. Such as using MOV’s and SUB’s instead 

of PUSH for API parameters 
o Malware sometimes corrupts its own stack to mess up disassemblers  

● Recap & List of Good Resources 
o Goals of Static Analysis 
o Assembly 
o The IDA Pro Book: The Unofficial Guide 

▪ Chris Edge 
o Professional Assembly Language 

▪ Richard Blum 
o Reversing: Secrets of Reverse Engineering 

▪ Eldad Eilam 
o Corkami 

▪ https://github.com/corkami 
o http://opensecuritytraining.info/IntroX86.html 

▪ https://www.youtube.com/playlist?list=PL038BE01D3BAEFDB0 
o https://en.wikipedia.org/wiki/X86_assembly_language 
o https://en.wikipedia.org/wiki/X86_calling_conventions 

 
 
Lesson 5.3: Basic Static Analysis Part 3 
Skills Learned From This Lesson: Static Analysis, PE, Malware, Assembly Code 

● Calling Conventions 
o cdecl 

▪ “C declaration” 
▪ Most common 
▪ Push reverse order parameters 
▪ Caller is responsible for cleaning up the stack 

o stdcall 
▪ Microsoft API 
▪ Push reverse order parameters 
▪ Callee is responsible for cleaning up the stack 

● Demo 
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o stdcall vs. cdecl 
o Different ways to put data on the stack 

▪ gcc 
▪ Visual studio (36:47) 

 
Lesson 5.5: Basic Static Analysis Part 4B 
Skills Learned From This Lesson: Static Analysis, Tricks, Malware 

● Tricks 
o Why are we doing this? 

▪ Understand the Malware 
▪ Discover Indicators of Compromise 
▪ Confirm Dynamic analysis 
▪ Discover Anti-Debugging code 

o Tricks used by Malware so far: 
▪ Stack Corruption 
▪ Import Hiding 

● Dynamic Function Resolving 
▪ String Obfuscation  

 
Lesson 5.6: Basic Static Analysis Part 5 
Skills Learned From This Lesson: Static Analysis, Basics, Tips 

● Tips and Tricks 
o Dealing with Obfuscated Strings 

▪ The Hard way: Fully reverse engineer the code, re-implement it, then 
apply the same process to the strings. 

▪ The Easy way: Use the native code. 
 
Lesson 5.7: Basic Static Analysis Part 6 
Skills Learned From This Lesson: Static Analysis, Basics, Tips 

● Enumerating Capabilities  
o Find Command Processing Subroutines 
o Configuration Processing Subroutines 
o Document everything! 
o Test afterwards via Dynamic Analysis 
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o Note: There is no ‘Undo’ in IDA! 
 

Module 6: Packers 
Lesson 6.1: Packers Part 1 
Skills Learned From This Lesson: Packers, Introduction, Theory 

● What are Packers? 
○ Self-decrypting executables 
○ Originally made for compressing code size 
○ Use tools such as  

■ Debuggers 
■ Memory Dumpers 

○ Characteristics: 
■ Packer strings/advertisements 
■ Few strings 
■ Few imports 
■ High entropy data 
■ Large virtual sections with small raw disk size 

○ Goals: 
■ Hide strings 
■ Change the hash 
■ Mask binary signatures 

● Legitimate Users 
○ Code Compression 
○ Intellectual Property Protection 
○ Anti-Reverse Engineering 
○ Anti-Cheat 
○ Digital Rights Management (DRM) 

■ Licensing 
● Common Packers 

○ UPX 
○ Armadillo 
○ ASPack 
○ VMProtect 
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○ Themida 

●  
 

● Changes in Code 
 

●   
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Lesson 6.3: Packers Part 3 
Skills Learned From This Lesson: Packers, Packing, Demo 

● Packing Example 
o Before Packing 

▪ Illusion Bot Strings 
▪ Illusion Bot AV Detections 
▪ Illusion Bot PE Sections 

o After Packing 
▪ No Strings 
▪ Fewer AV Detections 
▪ Different PE Sections 

 
Lesson 6.4: Packers Part 4 
Skills Learned From This Lesson: Packers, Unpacking, Demo 

● Unpacking Demo 
o UPX Packed Regshot 

▪ Strings 
▪ PEiD 

o Pack Regshot (run) 
▪ Strings after 
▪ PeiD -> deep. Data base from SANS 

o Unpack Regshot “upx -d” 
▪ OllyDbg 1.10 (OllyDbg 2 will auto unpack) 
▪ Find OEP 

o Dump 
▪ OllyDump or 
▪ OllyDbg PE Dumper 3.03 or 
▪ LordPE 

o Reconstruct IAT 
▪ ImpREC 1.7e 

 
Lesson 6.5: Packers Part 5 
Skills Learned From This Lesson: Packers, Advanced, Theory 
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● More Advanced Packers 
o Multiple Layers 
o Adds Junk Code 
o Built in defenses 

▪ Anti-Analysis Code 
▪ Anti-Debugging Code 

o Custom Encryption 
o Create Small Virtual Machine 

 

Module 7: Malware Defenses 
Lesson 7.1: Malware Defenses Part 1 
Skills Learned From This Lesson: Malware, Defenses, Introduction 

● Defense Categories 
○ Anti-Debugging 

■ API 
■ Process and Thread 
■ Hardware and Register Based 
■ Exception Based 
■ Modified Code Based 
■ Timing Based 

○ Anti-Virtual Machine 
■ API 
■ Memory Constants 
■ File/Process Names 

○ Anti-Disassembly 
■ Tricky Assembly 
■ Dynamic Code Generation/Calling 

○ Misc. 
■ Anti-Analysis Tools 

○ Malware Goals: 
■ Stop Automated Analysis 
■ Slow down Malware Analysts 

● Basic Anti-Debugging Example 
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○ if(IsDebuggerPresent() == TRUE) { 
■ exit(0); // Debugger is detected 

○ } 
 
Lesson 7.3: Malware Defenses Part 3 
Skills Learned From This Lesson: Malware, Anti-Debugging, Techniques 

● Anti-Debugging Techniques 
○ IsBeingDebugged() 
○ CheckRemoteDebuggerPresent() 
○ FindWindow() 
○ OutputDebugString() 
○ NtQueryInformationProcess(ProcessDebugFlags) 
○ NtQueryInformationProcess(ProcessDebugObjectHandle) 
○ NtQueryInformationProcess(ProcessDebugPort) 
○ NtSetInformationThreadDebuggerDetaching 
○ SeDebugPrivilege OpenProcess 
○ DebugActiveProcess() 
○ NtGlobalFlag 
○ PEB ProcessHeap Flag Debugger 
○ LDR_Module Flags 
○ Vista TEB System DLL Pointer 
○ GetTickCount and TimeGetTime 
○ Process names check 
○ int 0Xcc scanning 
○ and many more 

● Anti-Virtual Machine Techniques 
○ Process name check 
○ LDR_Module 
○ VMWare LDT Register Detection 
○ VMWare STR Register Detection 
○ VMWare special I/O instruction 
○ Checks special VT-x or VMM instructions 
○ Timing checks 
○ Registry Checks 
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○ Virtual MAC address 
○ Virtual hardware names 
○ Anti-Cuckoo 
○ Checks common VM drive ID’s 
○ And many more 

● Anti-Disassembly Examples 
○  From: https://blog.sevagas.com/?Fun-combining-anti-debugging-and 

○  
● Anti-Anti-Debugging Techniques 

○ Modify (Patch) the Malware 
■ Patch the memory 
■ Anti-Anti-Anti-Debugging: Integrity Checking Malware 

○ Hook Function Calls 
○ Run without a Debugger 

■ Log API calls 
■ Dumps memory 
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