CYBRARY

Study Guide

Assembly
Created By: Jose Llerena, Teaching Assistant

Module 1. Basic Assembly

Lesson 1.1: Template and Setup

Skills Learned From This Lesson: What the course is about, Basic requirements, Install
packages and create a Hello World program

Sudo apt install nasm gcc-multilib vim

To get the package: wget https://cs.unk.edu/~miller/templateMake.tar.gz
To extract: tar xzf templateMake.tar.gz

To install: ./templateMake/fix.sh

Create a project: genMake.sh MyProject

Vi or Vim can be used to edit text, but recommendation is to use nano
Open asm file to enter code

Lesson 1.2: Introduction to Assembly
Skills Learned From This Lesson: Architecture, Data Representation

Second lowest low level language

It is written for different architectures

Creates binary code

The assemblers are MASM, TASM, NASM, GNU

Some of data representation are Binary and Hexadecimal
Characters are ASCII or Unicode

Lesson 1.3: Architecture, Registers, and Protected Mode
Skills Learned From This Lesson: Organization, Registers, History and Modes, Paging and
Interrupts

Computer composes of registers, flags, memory addresses, 10 function, computing units
Computer memory: basic unit is the byte = 8 bits, ASCII chars, assembly units

CPU: Executes Machine Code

Arithmetic Logic Unit (ALU): Performs Arithmetic Operations

Floating Point Unit (FLU): Performs floating point math

Brought to you by: Develop your team with the fastest growing catalog in the

cybersecurity industry. Enterprise-grade workforce development

C Y B ? A? Y ‘ FOR BUSINESS management, advanced training features and detailed skill gap and

competency analytics.

1


https://cs.unk.edu/~miller/templateMake.tar.gz

CYBRARY

e Register: high speed, little memory, general purpose
e Flags store info about the previous executed instruction
e Paging: Not all memory is loaded or page is swapped to disk

Lesson 1.4: Binary, 2's Complement and Hexadecimal
Skills Learned From This Lesson: Calculate in binary, decimal and 2’s complement, convert to
decimal

e Binary uses 1’sand 0’s

e Hexadecimal uses letters A,B,C,D,E,F

e 2’'s complement is used by computer to store positive and negative numbers

Lesson 1.5: Assembly Template
Skills Learned From This Lesson: Understand the template,
e The template creates a directory and a make file for each project
e Main files: fix.sh, asm_io.asm, make file, genMake.sh, template.asm

Lesson 1.6: Instructions, Directives and Generating a Listing

Skills Learned From This Lesson: Assembly language, instructions, listing of a file
Assembler: Approximately 1 to 1 assembly to machine code and machine dependent
Compiler: High level lines generates many machine/assembly instructions

NASM: Netwide Assembler

Operands: Register, Memory Location, Immediate, Implied

Identifiers are used for vars, constants, procedures or labels

Listing gives info like offset, binary code for commands

Lesson 1.7: Logical Operators and Memory Layout
Skills Learned From This Lesson: Logical Operators, Memory Hierarchy
e Logical Operators: And, Or, Not, Xor
e Instruction Execution Cycle: Fetch, Decode, Execute, Store
e RISC: Reduced, smaller op codes, more instructions
e CISC: Complex, larger op codes, fewer instructions

Lesson 1.8: Segments and Functions
Skills Learned From This Lesson: Segments, Executing Functions

Brought to you by: Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development

C Y B ? A? Y ‘ FOR BUSINESS management, advanced training features and detailed skill gap and

competency analytics.
2



CYBRARY

e Segments: .data, .bss, .text
e Executing Functions: Use call mnemonic to call a function
e Practice with the examples
Lesson 1.9: Sign Extend, Zero Extend, Multiple, Divide
Skills Learned From This Lesson: Changing data sizes, multiplication, division
Making something smaller means moving to a smaller register
Converting word to byte means remove upper 8 bytes
Movsx: Move with sign extension
Multiplication: mul for unsigned numbers
Signed multiplication: imul
Division: div unsigned and idiv for signed

Lesson 1.10: Multiply and Divide Examples
Skills Learned From This Lesson: How to multiply and divide
e Multiplication implicitly uses eax, modifies eax and edx
e Division implicitly uses eax and edx, modifies eax and edx

Lesson 1.11: Compare, Conditionals and Jumps

Skills Learned From This Lesson: Control Structure, Looping
e Control Structure: compare - cmp, branching - jmp
e Looping: loop, loope, loopne
e Check the example

Lesson 1.12: Skeleton and Loop Example
Skills Learned From This Lesson: if translation, looping, and examples
e Jump Zero: jz
e Loop decrements ecx, checks for zero and if not zero jump to top

Lesson 1.13: Shift Left and Right
Skills Learned From This Lesson: Shifting left and right
e Logical shift: move all the bits to the left or the right, last bit moved out set the carry flag,
replaced with O’s

Lesson 1.14: Arithmetic Shift

Brought to you by: Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development

C Y B ? A? Y ‘ FOR BUSINESS management, advanced training features and detailed skill gap and

competency analytics.
3



CYBRARY

Skills Learned From This Lesson: Double Precision and examples in Arithmetic Shift
e The bits that slide off the end disappear

Shift arithmetic left -> sal, Shift arithmetic right -> sar

Double precision shifts: shrd dest, src, cnt, shid dest

Usage: SHLD/SHRD dest, src, count

Modifies flags CF, PF, SF, ZF

Lesson 1.15: Module 1 Review
Skills Learned From This Lesson: Review about module 1
e Answer Question: What is a mnemonic and operand
Answer Question: Smaller version of ebx register
Answer Question: Names of the 32 bit registers
Answer Question: What register is used for loop
Practice Shifting, multiplying and copying data from register to memory

Module 2. Indirect Addressing, Stack, Arrays and Strings

Lesson 2.1: Indirect Addressing and Variables Part 1
Skills Learned From This Lesson: Indirect addressing and variables
e Indirect addressing point to RAM
e Variables are defined in .bss or .data
e Check for string example and notation
Lesson 2.2: Indirect Addressing and Variables Part 2
Skills Learned From This Lesson: Define and modify a string
e Check the example
Lesson 2.3: Stack Intro Part 1
Skills Learned From This Lesson: What is the stack
e Stack is a region of RAM pointed to by the register ESP
e Push and pop things onto and off of the stack
e LIFO operations
e Used mostly for function calls
Lesson 2.4: Stack Intro Part 2
Skills Learned From This Lesson: Stack Operations
e Check for the examples
Lesson 2.5: Stack Usage

Brought to you by: Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development

C Y B ? A? Y ‘ FOR BUSINESS management, advanced training features and detailed skill gap and

competency analytics.
4



CYBRARY

Skills Learned From This Lesson: Using the stack and an example calling printf
e Saving Data: Enter, Exit
e Printf: push args on in reverse order
Lesson 2.6: Simple function example
Skills Learned From This Lesson: Create and debug a function
e Labelis function name
e Calinstruction calls a function
e Ret instruction returns from a function
Lesson 2.7: Function Prologue
Skills Learned From This Lesson: Function prologue and example code
e Setup entering a function, save the ebp register,
e EBP is extended base pointer
Lesson 2.8: Function Epilogue
Skills Learned From This Lesson: function epilogue and full example
e Check and practice the example
Lesson 2.9: Function Arguments
Skills Learned From This Lesson: How function arguments work
e Allow parameters to be passed to function
e Setup using an ebp based stack
e Restore using epilogue
e Prologue uses ebp to point to the base of our stack
Lesson 2.10: Saving Registers
Skills Learned From This Lesson: Saving register state and saving flags
e Current state of the CPU: When modifying registers or flags in a function
e Push modified, all or flags
e Commands: pushad, popad, pushfd, popfd
Lesson 2.11: More complicated function
Skills Learned From This Lesson: Create function from scratch using parameters, prologue,
epilogue, save registers, call external functions
e Check and follow the example
Lesson 2.12: Calling Conventions
Skills Learned From This Lesson: What calling conventions are
e Assumption about how the caller and callee work
e 32 and 64 bit calling conventions

Brought to you by: Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development

C Y B ? A? Y ‘ FOR BUSINESS management, advanced training features and detailed skill gap and

competency analytics.
5



CYBRARY

e 32 bit: cdecl, the caller cleans the stack, faster than STD call, parameters are pushed to
stack in right to left order
e Calling conventions: stdcall, cdecl, thiscall, fastcall
Lesson 2.13: Local Variables
Skills Learned From This Lesson: How local variables are used
e Used in function
e Value disappears or not accessible when the function is finished
e Local variables use the EBP registers
Lesson 2.14: Local Variables Examples
Skills Learned From This Lesson: Examples of local variables
e Example is about loop to sum numbers and using local variables in main and functions
Lesson 2.15: Enter and Leave
Skills Learned From This Lesson: enter and leave and useful macros
e |s better to use instead of prologue and epilogue
e Leave exits a function
Lesson 2.16: Enter and Leave example conversion
Skills Learned From This Lesson: Convert a program to use macros
e Sum program used hard coded offsets
e Convert to use parameters and arguments
Lesson 2.17: Floating Point
Skills Learned From This Lesson: Floating point numbers and operations
e There is single and double precision
e Floating point unit
e Commands: FLD, FILD, FST, FSTP, FIST, FISTP
e Math operations: FADD, FADDP, FSUB, FSUBP, FMUL, FMULP, FDIV, FDIVP
Lesson 2.18: Floating Point Circle Example
Skills Learned From This Lesson: Example program of a floating point
e Write a program to calculate area of circle and its circumference
Lesson 2.19: Floating Point Comparison
Skills Learned From This Lesson: floating point comparison and additional math instructions
e Fcomp allows to compare floating point numbers
e Commands: FCOM, FCOMP, FCOMPP, FICOM, FICOMP, FIST
e Flags commands: FSTSW, SAHF, LAHF
e Modern instructions: FCOMI, FCOMIP

Brought to you by: Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development

C Y B ? A? Y ‘ FOR BUSINESS management, advanced training features and detailed skill gap and

competency analytics.
6



CYBRARY

e Math instructions: FCHS, FABS, FSQRT, FSCALE, FCOS, FSIN, FPTAN
Lesson 2.20: Floating Point Comparison Example
Skills Learned From This Lesson: Example using floating point comparison and comparison
gone wrong
e Avoid comparing for equality
e Use greater than or less than or equal to
Lesson 2.21: Max of Three Numbers
Skills Learned From This Lesson: Example of three number max
e Read 3 numbers via scanf
e Return the max of those 3 and uses local variables
Lesson 2.22: Conditional Move
Skills Learned From This Lesson: Pipelines, Order Execution and Conditional Executing
Pipelines: Allow multiple instruction, fetching and storing are slow
Branching AKA jumping
In order processor: fetch instruction, execute and store
Out of order processor: fetch instruction, add to queue, wait for dependency, executes,
store
e Conditional Execution: Ability to execute instructions based on flag, compare and then
move data, reduces branching
Lesson 2.23: Conditional Move max example
Skills Learned From This Lesson: Convert the 3 number max program to use conditional
execution
e Follow the example in the video
Lesson 2.24: Arrays
Skills Learned From This Lesson: Pointers and arrays
e Pointers: points to a location in RAM
e Load using either mov or lea
e Offset represents how much from the beginning of the array to add
Lesson 2.25: Arrays Examples
Skills Learned From This Lesson: Example using an array
e Example to read a list of numbers, add all the numbers together and print it
Lesson 2.26: String Instructions
Skills Learned From This Lesson: String functions and operations

Brought to you by: Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development

C Y B ? A? Y ‘ FOR BUSINESS management, advanced training features and detailed skill gap and

competency analytics.
7



CYBRARY

e Functions: Length, scan instructions (CLD, STD, ESI, EDI), load and store (LODSB,
LODSW, LODSD, STOSB, STOSW, STOSD), move / copy (MOVSB, MOVSW,
MOVSD), scan string (SCASB, SCASW, SCASD, CMPSB, CMPSW, CMPSD)

e Another functions: Repeat (REP, REPE, REPZ, REPNE, REPNZ)

Lesson 2.27: Strings uppercase examples
Skills Learned From This Lesson: String example
e Example of program to read a string, convert it to uppercase and print it as uppercase

Module 3. ARM ARCHITECTURE

Lesson 3.1: ARM Intro
Skills Learned From This Lesson: Introduction to ARM Architecture
e ARM originally Acorn RISC Machine, later Advanced RISC Machine
e Less transistors, used on mobile phones, less heat
e ARM uses different system modes
Lesson 3.2: ARM Template
Skills Learned From This Lesson: Download and install the template
e Similar to the x86 template
e Follow the example
Lesson 3.3: ARM Math and Data Movement
Skills Learned From This Lesson: ARM Basics - Math and Data Movement
e Operations: ADD, ADC, SUB, RSB, SBC, RSC
e Move data: MOV, MVN
e Loading and storing data: LDR, STR
Lesson 3.4: Branching, if, while, shift
Skills Learned From This Lesson: Branching - If and while, shifting
e Conditional Branches: EQ, NE, GE, LE, LT, GT, MI, PL, VS, VC, HI, LS, CS, CC/LO
e Shifting: Rd, Rm, Rs, Sh, LSL, LSR, ASR, ROR
Lesson 3.5: Shift Example
Skills Learned From This Lesson: Loop and shift example
e Follow the example in the video
Lesson 3.6: Memory, Offsets, Debugging and Listing
Skills Learned From This Lesson: Memory offsets, Debugging and Disassembly
e Loading Registers: Load and store
e An offset of the PC can be used to store memory addresses and constants

Brought to you by: Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development

C Y B ? A? Y ‘ FOR BUSINESS management, advanced training features and detailed skill gap and

competency analytics.
8



CYBRARY

e Debugging tools: GEF, GDB, Strace
Lesson 3.7: Pushing and Popping
Skills Learned From This Lesson: What push and pop are about
e Allows to save the register onto the stack
e Calling functions can destroy registers
Lesson 3.8: Push Example
Skills Learned From This Lesson: Example using stack and saving registers
e Follow the example in the video
Lesson 3.9: Array Indexing
Skills Learned From This Lesson: ARM array and ARM indexing
e ARM Indexing Modes: Pre-Indexed and Post-Indexed
Lesson 3.10: Array Indexing Example
Skills Learned From This Lesson: ARM Array and index example
e Check the example in the video (copy data from 1 string to the other)
Lesson 3.11: ARM Multiple Load and Store
Skills Learned From This Lesson: How to do multiple load and multiple store
e ARM spec: Op, Cond, Rn, Reglist, addr_mode
e Load register module: I[dm
e Store Register: stm
e Store multiple: stmia
e Load multiple: Idmia
Lesson 3.12: ARM Load and Store Multiple Examples
Skills Learned From This Lesson: Write an example about ARM load and store multiple
e Problem to solve is to copy string to another buffer and load part of the string into
memory
Lesson 3.13: VFP and Neon
Skills Learned From This Lesson: Vector Register and Neon
e Vector Floating Point: Operations, separate co processor, deprecated in favor of neon,
uses larger registers
e Neon: Advanced SIMD for ARM, supports multiple data types, parallel processing,
Cortex A-8, 64 or 128 bit SIMD operations, can be used for GPS or MP3 decoding
Neon Instructions: VABS, VADD, VCEQ, VDUP, VLDn, VMAX, VMIN, VMOV, VMUL
Neon Instructions Vector Load: VLDR, cond, Dd or Sd, constant, datatype
Neon Instructions Vector Move: Vop, Op, Cond, Datatype, Qd or Dd, Imm

Brought to you by: Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development

C Y B ? A? Y ‘ FOR BUSINESS management, advanced training features and detailed skill gap and

competency analytics.
9



CYBRARY

e Neon Instructions Vector Move Long: VMOVL, VMOVN, VQMOVN, VQMOVUN, Q,
Cond, Qd, Dm, Dg, Qm
e Neon Vector Multiply: MUL, VMUL, Qd, Qm, Qn, Dd, Dn, Dm
Lesson 3.14: Neon Example
Skills Learned From This Lesson: Example program of Neon, using Neon registers for integer
operations
e Problem to be solver: Read to integers, multiply using Neon, print result
Lesson 3.15: Neon Floating Point
Skills Learned From This Lesson: Vector Floating Point and Neon on ARM, VFP and Neon
Floating Point Instructions
e Neon and VFP are optional extensions to the ARM Architecture
e VCVT: Between Single Precision and Double Precision
Lesson 3.16: Neon Floating Point Example
Skills Learned From This Lesson: Floating Point Example
e Problem to be Solved: Read radius from user, calculate and print area
Lesson 3.17: SIMD Load and Store Data
Skills Learned From This Lesson: Load and Store in Single Instruction Multiple Data (SIMD)
e Allow processors to operate more efficiently
e Load Data: VST and VLD
e Extension Register Load: VLDR
e Extension Register Store: VSTR
Lesson 3.18: SIMD Process Data
Skills Learned From This Lesson: Process Data of SIMD
e Vector Pairwise Maximum, Vector Pairwise Minimum
e Vector ADD: VADD
e Vector multiply by scalar and accumulate VMLA
e Vector Bitwise Exclusive OR: VEOR
Lesson 3.19: SIMD Encryption Example
Skills Learned From This Lesson: Example of SIMD using Encryption
e Read string from user and read key from user to encrypt data
Lesson 3.20: Thumb Mode
Skills Learned From This Lesson: Thumb Mode and Instructions, changing modes
e ARM Mode: Instructions are 32 bits wide
e Thumb Mode: Instructions are 16 bits wide, code is more compact, fetch and execute

Brought to you by: Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development

C Y B ? A‘ Y ‘ FOR BUSINESS management, advanced training features and detailed skill gap and

competency analytics.

10



CYBRARY

e Changing Mode: BLX - Branch with link and exchange, BX - Branch and Exchange
e Unified Assembler Language (UAL): One sintax for both ARM and Thumb
Lesson 3.21: Thumb Mode Example
Skills Learned From This Lesson: Example Using Thumb
e Problem: Create a program to print a tree of *’s and write a function to print a certain
number of *’s
Lesson 3.22: Conditional Execution
Skills Learned From This Lesson: Flags and Instructions in Conditional Execution
e Allows an instruction to be executed only when a condition is met
e Instruction updating flag: ADD - add without a carry
e Flags: Negative -> N, Zero -> Z, Carry -> C, Overflow -> V
Lesson 3.23: Conditional Execution Example
Skills Learned From This Lesson: Solving a problem using conditional execution
e Problem to solve: write a program to get a random number and guess it
Lesson 3.24: IT Block Assembly
Skills Learned From This Lesson: IT blocks in conditional execution
e Thumb-2 conditional execution: does not have the bits for stand alone conditional
instructions
e |T blocks available for both Thumb-2 and ARM mode
e |T Blocks allows up to 4 instructions to be conditionally executed
e |Txyz FLAG: xyz can be T->Then or E->Else
Lesson 3.25: IT Block Example
Skills Learned From This Lesson: Thumb conditional execution example
e Problem to be solved: Create a min/max functions using IT blocks

Module 4. C Constructs and Interrupts

Lesson 4.1: Tools for Code, Reverse Engineering
Skills Learned From This Lesson: Compilation process and tools
e Examples of compilers: GCC, Visual Studio, Mingw
e Compiler Process: Take high level program, generates an intermediate representation,
apply optimizations and generate an output program
Output file format: binary file format, readable by OS
Binary format readers: PEView, objdump, disassembler
Disassembler: Objdump, IDA Pro, Binary Ninja, Ghidra

Brought to you by: Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development

C Y B ? A? Y ‘ FOR BUSINESS management, advanced training features and detailed skill gap and

competency analytics.
11



CYBRARY

e Hex Editor: Allows to view, edit and save files using hex representation
Lesson 4.2: Reverse Engineering Process
Skills Learned From This Lesson: RE Process and simple example
e Disassembler is a computer program that translates machine language into assembly
language
e Disassembly process: Reads in binary data, determine layout and references,
instructions
e Reading binary data: Use magic numbers to guess at format, understand the OS method
of loading the binary; determine offsets, architecture and OS regarding memory locations
Determine layout and references: Entry point, dynamic libraries, and system calls
Disassemble instructions: start at entry point, look up the instruction length, disassemble
instruction, determine if a branch occurs, continue until all instructions in the queue are
processed
e Types of disassemblers: Linear sweep, recursive descent
Lesson 4.3: Setup Reverse Engineering Lab
Skills Learned From This Lesson: Methods to reverse programs online and local
e Online reversing: Online Disassembler, Compiler Explorer
e Setup: Determine target OS, install required compiler and disassembler
e Process: Edit and compile code, sync to disassembler, disassembler, repeat steps
Lesson 4.4: Structures and Unions
Skills Learned From This Lesson: Overview of C constructs and examples
e Constructs provide features to the programmer, allow programs to be created more
efficiently
Lesson 4.5: Structure Layout
Skills Learned From This Lesson: Structure of layouts and offsets
e Structure layout: Starts at first declaration, round to the nearest even byte boundary for
the next size
Lesson 4.6: Structure Creation: Reverse Engineering
Skills Learned From This Lesson: Using structures
e Example: program that reads in the time and prints out
Lesson 4.7: Structures, Unions and Malloc
Skills Learned From This Lesson: Memory allocation, structures and unions using malloc
e Memory allocation: allocates memory, dynamically allocates memory, give back to the
heap

Brought to you by: Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development

C Y B ? A‘ Y ‘ FOR BUSINESS management, advanced training features and detailed skill gap and

competency analytics.

12



CYBRARY

e Heap and stack use free memory and when they collide there is an error
Lesson 4.8: Structures, Unions and Malloc Example
Skills Learned From This Lesson: Example using malloc in assembly
e Example using structures and malloc: get the real time from the clock_gettime system
call and use the same structure as before, leverage malloc
Lesson 4.9: Jump Tables and Switch Statements
Skills Learned From This Lesson: Switch statement in C, jump tables
e Switch statement: allows a programmer to easily choose a block of code to execute,
easier to read syntax than if-else blocks, based on discrete cases, provides a default
case
Compiler determines when to build a jump table
Jump table: an array of pointers to program code, selection of a pointer is calculated
using math
Lesson 4.10: Jump Table Example
Skills Learned From This Lesson: Create a jump table in assembly
e Define data in code section
e Example is to calculate a schedule based on day of month
Lesson 4.11: Function Pointers
Skills Learned From This Lesson: How function pointers work
e Points to a function or subroutine, allows the functionality to be changed at runtime
Lesson 4.12: Function Pointers Example
Skills Learned From This Lesson: Create and use a function pointer in assembly
e Problem to be solved: Write assembly that reads a number, if number is 1 multiply
second input by 2, if is not 1 (else) multiply second input by 8
Lesson 4.13: Inline Assembly
Skills Learned From This Lesson: Inline Assembly, extra arguments, inline function call
e GNU Compiler Collection (GCC) uses AT&T syntax for x86/x64 code
e Variables substitution: variables can be passed in via symbolic names
Lesson 4.14: Inline Assembly Example
Skills Learned From This Lesson: Example of Inline Assembly
e Problem to solve: Capture the time using the Time Stamp Counter, save to a qword and
print the result
Lesson 4.15: Assembly with C
Skills Learned From This Lesson: Using Assembly and C together

Brought to you by: Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development

C Y B ? A‘ Y ‘ FOR BUSINESS management, advanced training features and detailed skill gap and

competency analytics.

13



CYBRARY

e GCC and NASM are going to be used
e Example about using a string length function
Lesson 4.16: SysCall and Interrupts
Skills Learned From This Lesson: How Interrupts and SysCall work
e Interrupts are events that signal to the CPU that something occurred
e Type of interrupts can be hardware, software and exceptions
e System Calls provide a way to interact with the OS kernel
Lesson 4.17: Interrupts Example Use Fork
Skills Learned From This Lesson: Write system calls using int 80
e Problem to solve: Use the fork system call to create 2 processes and each prints right
before it finishes
e There is also a Wait which waits for a process to finish
Lesson 4.18: Strings in C
Skills Learned From This Lesson: Strings in C in Assembly on the stack, heap and data
e C Strings: C allows string to allocated several different ways
Lesson 4.19: Integers in Assembly
Skills Learned From This Lesson: Standard Types; Integers, Long, Short, bytes in C
e Integers: Signed, Unsigned, DWORD size, whole numbers
e Shorts: Size of 16 bits, DWORD data movement
e Long: Provides 4-8 byte data types, depends on the architecture
Lesson 4.20: 64-Bit Assembly
Skills Learned From This Lesson: 64bit assembly, register, deprecated functions, calling
functions
e 64 bit references the number of bits used for memory addresses, registers and stack
operations are adjusted
Processor cores: Multiple CPUs per processor, core counts
Registers: R prefix
Deprecated Instructions: PUSHAD, POPAD, library functions will not work asm_io.inc
e Calling Functions: FastCall is used for newer OS
Lesson 4.21: MMX, SSE, AES-NI
Skills Learned From This Lesson: SSE and MMX extensions, AES-NI extensions
e MMX stands for MultiMedia eXtension
e SSE stands for Streaming SIMD Extensions which is of common use in multimedia
e AES-NI stands for Advanced Encryption Standard New Instructions

Brought to you by: Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development

C Y B ? A‘ Y ‘ FOR BUSINESS management, advanced training features and detailed skill gap and

competency analytics.

14



CYBRARY

Lesson 4.22: AES Implementations
Skills Learned From This Lesson: Cross Platform AES, Intrinsic Implementation and
disassemble AES intrinsics

e Investigate about the benefits of using AES-NI

e Pay special attention to the examples to have a good understanding

Lesson 4.23: Implement Dump Registers
Skills Learned From This Lesson: Write a 64 bit function
e Problem to solve: write a function to dump the registers
Lesson 4.24: Static and Dynamic Linking Assembly
Skills Learned From This Lesson: Static linking, Dynamic linking -> GOT, PLT

e Static Linking: Provides all code within a binary, uses more space, multiple programs
that use the same library

e Dynamic Linking: Linking library code at runtime, address space layout randomization
(ASLR)

e Global Offset Table (GOT): A table of addresses that point to dynamic addresses,
initially contains address of dynamic linker, updated by the dynamic linker to get actual
offset

e Procedure Linkage Table (PLT): Provides a mechanism to resolve dynamic memory
addresses, allows code to be PIC and PIE, determines the path to look for libraries

Lesson 4.25: Shared Library
Skills Learned From This Lesson: How shared library works

e Create using flags to gcc: -fPIC, -shared (name with .so)

e Creating main: -l -> header search path, -L -> directory to search for shared code, -la ->
library to add

Lesson 4.26: Shared Library Example
Skills Learned From This Lesson: Write a shared library in assembly

e Problem to solve: Write code and methods in assembly, use C method calls to setup
writable and executable memory, copy assembly bytes to memory. Use a function
pointer to execute memory in buffer

Brought to you by: Develop your team with the fastest growing catalog in the
cybersecurity industry. Enterprise-grade workforce development

C Y B ? A‘ Y ‘ FOR BUSINESS management, advanced training features and detailed skill gap and

competency analytics.

15



