

Study Guide
Assembly

Created By: Jose Llerena, Teaching Assistant
Module 1. Basic Assembly
Lesson 1.1​: Template and Setup
Skills Learned From This Lesson: ​What the course is about, Basic requirements, Install
packages and create a Hello World program

● Sudo apt install nasm gcc-multilib vim
● To get the package: wget ​https://cs.unk.edu/~miller/templateMake.tar.gz
● To extract: tar xzf templateMake.tar.gz
● To install: ./templateMake/fix.sh
● Create a project: genMake.sh MyProject
● Vi or Vim can be used to edit text, but recommendation is to use nano
● Open asm file to enter code

Lesson 1.2​: Introduction to Assembly
Skills Learned From This Lesson: Architecture, Data Representation

● Second lowest low level language
● It is written for different architectures
● Creates binary code
● The assemblers are MASM, TASM, NASM, GNU
● Some of data representation are Binary and Hexadecimal
● Characters are ASCII or Unicode

Lesson 1.3​: Architecture, Registers, and Protected Mode
Skills Learned From This Lesson: Organization, Registers, History and Modes, Paging and
Interrupts

● Computer composes of registers, flags, memory addresses, IO function, computing units
● Computer memory: basic unit is the byte = 8 bits, ASCII chars, assembly units
● CPU: Executes Machine Code
● Arithmetic Logic Unit (ALU): Performs Arithmetic Operations
● Floating Point Unit (FLU): Performs floating point math

Brought to you by:

Develop your team with the ​fastest growing catalog​ in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 ​1

https://cs.unk.edu/~miller/templateMake.tar.gz

● Register: high speed, little memory, general purpose
● Flags store info about the previous executed instruction
● Paging: Not all memory is loaded or page is swapped to disk

Lesson 1.4​: Binary, 2's Complement and Hexadecimal
Skills Learned From This Lesson: Calculate in binary, decimal and 2’s complement, convert to
decimal

● Binary uses 1’s and 0’s
● Hexadecimal uses letters A,B,C,D,E,F
● 2’s complement is used by computer to store positive and negative numbers

Lesson 1.5​: Assembly Template
Skills Learned From This Lesson: Understand the template,

● The template creates a directory and a make file for each project
● Main files: fix.sh, asm_io.asm, make file, genMake.sh, template.asm

Lesson 1.6​: Instructions, Directives and Generating a Listing
Skills Learned From This Lesson: Assembly language, instructions, listing of a file

● Assembler: Approximately 1 to 1 assembly to machine code and machine dependent
● Compiler: High level lines generates many machine/assembly instructions
● NASM: Netwide Assembler
● Operands: Register, Memory Location, Immediate, Implied
● Identifiers are used for vars, constants, procedures or labels
● Listing gives info like offset, binary code for commands

Lesson 1.7​: Logical Operators and Memory Layout
Skills Learned From This Lesson: Logical Operators, Memory Hierarchy

● Logical Operators: And, Or, Not, Xor
● Instruction Execution Cycle: Fetch, Decode, Execute, Store
● RISC: Reduced, smaller op codes, more instructions
● CISC: Complex, larger op codes, fewer instructions

Lesson 1.8​: Segments and Functions
Skills Learned From This Lesson: Segments, Executing Functions

Brought to you by:

Develop your team with the ​fastest growing catalog​ in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 ​2

● Segments: .data, .bss, .text
● Executing Functions: Use call mnemonic to call a function
● Practice with the examples

Lesson 1.9​: Sign Extend, Zero Extend, Multiple, Divide
Skills Learned From This Lesson: Changing data sizes, multiplication, division

● Making something smaller means moving to a smaller register
● Converting word to byte means remove upper 8 bytes
● Movsx: Move with sign extension
● Multiplication: mul for unsigned numbers
● Signed multiplication: imul
● Division: div unsigned and idiv for signed

Lesson 1.10​: Multiply and Divide Examples
Skills Learned From This Lesson: How to multiply and divide

● Multiplication implicitly uses eax, modifies eax and edx
● Division implicitly uses eax and edx, modifies eax and edx

Lesson 1.11​: Compare, Conditionals and Jumps
Skills Learned From This Lesson: Control Structure, Looping

● Control Structure: compare - cmp, branching - jmp
● Looping: loop, loope, loopne
● Check the example

Lesson 1.12​: Skeleton and Loop Example
Skills Learned From This Lesson: if translation, looping, and examples

● Jump Zero: jz
● Loop decrements ecx, checks for zero and if not zero jump to top

Lesson 1.13​: Shift Left and Right
Skills Learned From This Lesson: Shifting left and right

● Logical shift: move all the bits to the left or the right, last bit moved out set the carry flag,
replaced with 0’s

Lesson 1.14​: Arithmetic Shift

Brought to you by:

Develop your team with the ​fastest growing catalog​ in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 ​3

Skills Learned From This Lesson: Double Precision and examples in Arithmetic Shift

● The bits that slide off the end disappear
● Shift arithmetic left -> sal, Shift arithmetic right -> sar
● Double precision shifts: shrd dest, src, cnt, shld dest
● Usage: SHLD/SHRD dest, src, count
● Modifies flags CF, PF, SF, ZF

Lesson 1.15​: Module 1 Review
Skills Learned From This Lesson: Review about module 1

● Answer Question: What is a mnemonic and operand
● Answer Question: Smaller version of ebx register
● Answer Question: Names of the 32 bit registers
● Answer Question: What register is used for loop
● Practice Shifting, multiplying and copying data from register to memory

Module 2. Indirect Addressing, Stack, Arrays and Strings
Lesson 2.1​: Indirect Addressing and Variables Part 1
Skills Learned From This Lesson: Indirect addressing and variables

● Indirect addressing point to RAM
● Variables are defined in .bss or .data
● Check for string example and notation

Lesson 2.2​: Indirect Addressing and Variables Part 2
Skills Learned From This Lesson: Define and modify a string

● Check the example
Lesson 2.3​: Stack Intro Part 1
Skills Learned From This Lesson: What is the stack

● Stack is a region of RAM pointed to by the register ESP
● Push and pop things onto and off of the stack
● LIFO operations
● Used mostly for function calls

Lesson 2.4​: Stack Intro Part 2
Skills Learned From This Lesson: Stack Operations

● Check for the examples
Lesson 2.5​: Stack Usage

Brought to you by:

Develop your team with the ​fastest growing catalog​ in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 ​4

Skills Learned From This Lesson: Using the stack and an example calling printf

● Saving Data: Enter, Exit
● Printf: push args on in reverse order

Lesson 2.6​: Simple function example
Skills Learned From This Lesson: Create and debug a function

● Label is function name
● Cal instruction calls a function
● Ret instruction returns from a function

Lesson 2.7​: Function Prologue
Skills Learned From This Lesson: Function prologue and example code

● Setup entering a function, save the ebp register,
● EBP is extended base pointer

Lesson 2.8​: Function Epilogue
Skills Learned From This Lesson: function epilogue and full example

● Check and practice the example
Lesson 2.9​: Function Arguments
Skills Learned From This Lesson: How function arguments work

● Allow parameters to be passed to function
● Setup using an ebp based stack
● Restore using epilogue
● Prologue uses ebp to point to the base of our stack

Lesson 2.10​: Saving Registers
Skills Learned From This Lesson: Saving register state and saving flags

● Current state of the CPU: When modifying registers or flags in a function
● Push modified, all or flags
● Commands: pushad, popad, pushfd, popfd

Lesson 2.11​: More complicated function
Skills Learned From This Lesson: Create function from scratch using parameters, prologue,
epilogue, save registers, call external functions

● Check and follow the example
Lesson 2.12​: Calling Conventions
Skills Learned From This Lesson: What calling conventions are

● Assumption about how the caller and callee work
● 32 and 64 bit calling conventions

Brought to you by:

Develop your team with the ​fastest growing catalog​ in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 ​5

● 32 bit: cdecl, the caller cleans the stack, faster than STD call, parameters are pushed to
stack in right to left order

● Calling conventions: stdcall, cdecl, thiscall, fastcall
Lesson 2.13​: Local Variables
Skills Learned From This Lesson: How local variables are used

● Used in function
● Value disappears or not accessible when the function is finished
● Local variables use the EBP registers

Lesson 2.14​: Local Variables Examples
Skills Learned From This Lesson: Examples of local variables

● Example is about loop to sum numbers and using local variables in main and functions
Lesson 2.15​: Enter and Leave
Skills Learned From This Lesson: enter and leave and useful macros

● Is better to use instead of prologue and epilogue
● Leave exits a function

Lesson 2.16​: Enter and Leave example conversion
Skills Learned From This Lesson: Convert a program to use macros

● Sum program used hard coded offsets
● Convert to use parameters and arguments

Lesson 2.17​: Floating Point
Skills Learned From This Lesson: Floating point numbers and operations

● There is single and double precision
● Floating point unit
● Commands: FLD, FILD, FST, FSTP, FIST, FISTP
● Math operations: FADD, FADDP, FSUB, FSUBP, FMUL, FMULP, FDIV, FDIVP

Lesson 2.18​: Floating Point Circle Example
Skills Learned From This Lesson: Example program of a floating point

● Write a program to calculate area of circle and its circumference
Lesson 2.19​: Floating Point Comparison
Skills Learned From This Lesson: floating point comparison and additional math instructions

● Fcomp allows to compare floating point numbers
● Commands: FCOM, FCOMP, FCOMPP, FICOM, FICOMP, FIST
● Flags commands: FSTSW, SAHF, LAHF
● Modern instructions: FCOMI, FCOMIP

Brought to you by:

Develop your team with the ​fastest growing catalog​ in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 ​6

● Math instructions: FCHS, FABS, FSQRT, FSCALE, FCOS, FSIN, FPTAN
Lesson 2.20​: Floating Point Comparison Example
Skills Learned From This Lesson: Example using floating point comparison and comparison
gone wrong

● Avoid comparing for equality
● Use greater than or less than or equal to

Lesson 2.21​: Max of Three Numbers
Skills Learned From This Lesson: Example of three number max

● Read 3 numbers via scanf
● Return the max of those 3 and uses local variables

Lesson 2.22​: Conditional Move
Skills Learned From This Lesson: Pipelines, Order Execution and Conditional Executing

● Pipelines: Allow multiple instruction, fetching and storing are slow
● Branching AKA jumping
● In order processor: fetch instruction, execute and store
● Out of order processor: fetch instruction, add to queue, wait for dependency, executes,

store
● Conditional Execution: Ability to execute instructions based on flag, compare and then

move data, reduces branching
Lesson 2.23​: Conditional Move max example
Skills Learned From This Lesson: Convert the 3 number max program to use conditional
execution

● Follow the example in the video
Lesson 2.24​: Arrays
Skills Learned From This Lesson: Pointers and arrays

● Pointers: points to a location in RAM
● Load using either mov or lea
● Offset represents how much from the beginning of the array to add

Lesson 2.25​: Arrays Examples
Skills Learned From This Lesson: Example using an array

● Example to read a list of numbers, add all the numbers together and print it
Lesson 2.26​: String Instructions
Skills Learned From This Lesson: String functions and operations

Brought to you by:

Develop your team with the ​fastest growing catalog​ in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 ​7

● Functions: Length, scan instructions (CLD, STD, ESI, EDI), load and store (LODSB,
LODSW, LODSD, STOSB, STOSW, STOSD), move / copy (MOVSB, MOVSW,
MOVSD), scan string (SCASB, SCASW, SCASD, CMPSB, CMPSW, CMPSD)

● Another functions: Repeat (REP, REPE, REPZ, REPNE, REPNZ)
Lesson 2.27​: Strings uppercase examples
Skills Learned From This Lesson: String example

● Example of program to read a string, convert it to uppercase and print it as uppercase

Module 3. ARM ARCHITECTURE
Lesson 3.1​: ARM Intro
Skills Learned From This Lesson: Introduction to ARM Architecture

● ARM originally Acorn RISC Machine, later Advanced RISC Machine
● Less transistors, used on mobile phones, less heat
● ARM uses different system modes

Lesson 3.2​: ARM Template
Skills Learned From This Lesson: Download and install the template

● Similar to the x86 template
● Follow the example

Lesson 3.3​: ARM Math and Data Movement
Skills Learned From This Lesson: ARM Basics - Math and Data Movement

● Operations: ADD, ADC, SUB, RSB, SBC, RSC
● Move data: MOV, MVN
● Loading and storing data: LDR, STR

Lesson 3.4​: Branching, if, while, shift
Skills Learned From This Lesson: Branching - If and while, shifting

● Conditional Branches: EQ, NE, GE, LE, LT, GT, MI, PL, VS, VC, HI, LS, CS, CC/LO
● Shifting: Rd, Rm, Rs, Sh, LSL, LSR, ASR, ROR

Lesson 3.5​: Shift Example
Skills Learned From This Lesson: Loop and shift example

● Follow the example in the video
Lesson 3.6​: Memory, Offsets, Debugging and Listing
Skills Learned From This Lesson: Memory offsets, Debugging and Disassembly

● Loading Registers: Load and store
● An offset of the PC can be used to store memory addresses and constants

Brought to you by:

Develop your team with the ​fastest growing catalog​ in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 ​8

● Debugging tools: GEF, GDB, Strace
Lesson 3.7​: Pushing and Popping
Skills Learned From This Lesson: What push and pop are about

● Allows to save the register onto the stack
● Calling functions can destroy registers

Lesson 3.8​: Push Example
Skills Learned From This Lesson: Example using stack and saving registers

● Follow the example in the video
Lesson 3.9​: Array Indexing
Skills Learned From This Lesson: ARM array and ARM indexing

● ARM Indexing Modes: Pre-Indexed and Post-Indexed
Lesson 3.10​: Array Indexing Example
Skills Learned From This Lesson: ARM Array and index example

● Check the example in the video (copy data from 1 string to the other)
Lesson 3.11​: ARM Multiple Load and Store
Skills Learned From This Lesson: How to do multiple load and multiple store

● ARM spec: Op, Cond, Rn, Reglist, addr_mode
● Load register module: ldm
● Store Register: stm
● Store multiple: stmia
● Load multiple: ldmia

Lesson 3.12​: ARM Load and Store Multiple Examples
Skills Learned From This Lesson: Write an example about ARM load and store multiple

● Problem to solve is to copy string to another buffer and load part of the string into
memory

Lesson 3.13​: VFP and Neon
Skills Learned From This Lesson: Vector Register and Neon

● Vector Floating Point: Operations, separate co processor, deprecated in favor of neon,
uses larger registers

● Neon: Advanced SIMD for ARM, supports multiple data types, parallel processing,
Cortex A-8, 64 or 128 bit SIMD operations, can be used for GPS or MP3 decoding

● Neon Instructions: VABS, VADD, VCEQ, VDUP, VLDn, VMAX, VMIN, VMOV, VMUL
● Neon Instructions Vector Load: VLDR, cond, Dd or Sd, constant, datatype
● Neon Instructions Vector Move: Vop, Op, Cond, Datatype, Qd or Dd, Imm

Brought to you by:

Develop your team with the ​fastest growing catalog​ in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 ​9

● Neon Instructions Vector Move Long: VMOVL, VMOVN, VQMOVN, VQMOVUN, Q,
Cond, Qd, Dm, Dq, Qm

● Neon Vector Multiply: MUL, VMUL, Qd, Qm, Qn, Dd, Dn, Dm
Lesson 3.14​: Neon Example
Skills Learned From This Lesson: Example program of Neon, using Neon registers for integer
operations

● Problem to be solver: Read to integers, multiply using Neon, print result
Lesson 3.15​: Neon Floating Point
Skills Learned From This Lesson: Vector Floating Point and Neon on ARM, VFP and Neon
Floating Point Instructions

● Neon and VFP are optional extensions to the ARM Architecture
● VCVT: Between Single Precision and Double Precision

Lesson 3.16​: Neon Floating Point Example
Skills Learned From This Lesson: Floating Point Example

● Problem to be Solved: Read radius from user, calculate and print area
Lesson 3.17​: SIMD Load and Store Data
Skills Learned From This Lesson: Load and Store in Single Instruction Multiple Data (SIMD)

● Allow processors to operate more efficiently
● Load Data: VST and VLD
● Extension Register Load: VLDR
● Extension Register Store: VSTR

Lesson 3.18​: SIMD Process Data
Skills Learned From This Lesson: Process Data of SIMD

● Vector Pairwise Maximum, Vector Pairwise Minimum
● Vector ADD: VADD
● Vector multiply by scalar and accumulate VMLA
● Vector Bitwise Exclusive OR: VEOR

Lesson 3.19​: SIMD Encryption Example
Skills Learned From This Lesson: Example of SIMD using Encryption

● Read string from user and read key from user to encrypt data
Lesson 3.20​: Thumb Mode
Skills Learned From This Lesson: Thumb Mode and Instructions, changing modes

● ARM Mode: Instructions are 32 bits wide
● Thumb Mode: Instructions are 16 bits wide, code is more compact, fetch and execute

Brought to you by:

Develop your team with the ​fastest growing catalog​ in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

10

● Changing Mode: BLX - Branch with link and exchange, BX - Branch and Exchange
● Unified Assembler Language (UAL): One sintax for both ARM and Thumb

Lesson 3.21​: Thumb Mode Example
Skills Learned From This Lesson: Example Using Thumb

● Problem: Create a program to print a tree of *’s and write a function to print a certain
number of *’s

Lesson 3.22​: Conditional Execution
Skills Learned From This Lesson: Flags and Instructions in Conditional Execution

● Allows an instruction to be executed only when a condition is met
● Instruction updating flag: ADD - add without a carry
● Flags: Negative -> N, Zero -> Z, Carry -> C, Overflow -> V

Lesson 3.23​: Conditional Execution Example
Skills Learned From This Lesson: Solving a problem using conditional execution

● Problem to solve: write a program to get a random number and guess it
Lesson 3.24​: IT Block Assembly
Skills Learned From This Lesson: IT blocks in conditional execution

● Thumb-2 conditional execution: does not have the bits for stand alone conditional
instructions

● IT blocks available for both Thumb-2 and ARM mode
● IT Blocks allows up to 4 instructions to be conditionally executed
● ITxyz FLAG: xyz can be T->Then or E->Else

Lesson 3.25​: IT Block Example
Skills Learned From This Lesson: Thumb conditional execution example

● Problem to be solved: Create a min/max functions using IT blocks

Module 4. C Constructs and Interrupts
Lesson 4.1​: Tools for Code, Reverse Engineering
Skills Learned From This Lesson: Compilation process and tools

● Examples of compilers: GCC, Visual Studio, Mingw
● Compiler Process: Take high level program, generates an intermediate representation,

apply optimizations and generate an output program
● Output file format: binary file format, readable by OS
● Binary format readers: PEView, objdump, disassembler
● Disassembler: Objdump, IDA Pro, Binary Ninja, Ghidra

Brought to you by:

Develop your team with the ​fastest growing catalog​ in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

 ​11

● Hex Editor: Allows to view, edit and save files using hex representation
Lesson 4.2​: Reverse Engineering Process
Skills Learned From This Lesson: RE Process and simple example

● Disassembler is a computer program that translates machine language into assembly
language

● Disassembly process: Reads in binary data, determine layout and references,
instructions

● Reading binary data: Use magic numbers to guess at format, understand the OS method
of loading the binary; determine offsets, architecture and OS regarding memory locations

● Determine layout and references: Entry point, dynamic libraries, and system calls
● Disassemble instructions: start at entry point, look up the instruction length, disassemble

instruction, determine if a branch occurs, continue until all instructions in the queue are
processed

● Types of disassemblers: Linear sweep, recursive descent
Lesson 4.3​: Setup Reverse Engineering Lab
Skills Learned From This Lesson: Methods to reverse programs online and local

● Online reversing: Online Disassembler, Compiler Explorer
● Setup: Determine target OS, install required compiler and disassembler
● Process: Edit and compile code, sync to disassembler, disassembler, repeat steps

Lesson 4.4​: Structures and Unions
Skills Learned From This Lesson: Overview of C constructs and examples

● Constructs provide features to the programmer, allow programs to be created more
efficiently

Lesson 4.5​: Structure Layout
Skills Learned From This Lesson: Structure of layouts and offsets

● Structure layout: Starts at first declaration, round to the nearest even byte boundary for
the next size

Lesson 4.6​: Structure Creation: Reverse Engineering
Skills Learned From This Lesson: Using structures

● Example: program that reads in the time and prints out
Lesson 4.7​: Structures, Unions and Malloc
Skills Learned From This Lesson: Memory allocation, structures and unions using malloc

● Memory allocation: allocates memory, dynamically allocates memory, give back to the
heap

Brought to you by:

Develop your team with the ​fastest growing catalog​ in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

12

● Heap and stack use free memory and when they collide there is an error
Lesson 4.8​: Structures, Unions and Malloc Example
Skills Learned From This Lesson: Example using malloc in assembly

● Example using structures and malloc: get the real time from the clock_gettime system
call and use the same structure as before, leverage malloc

Lesson 4.9​: Jump Tables and Switch Statements
Skills Learned From This Lesson: Switch statement in C, jump tables

● Switch statement: allows a programmer to easily choose a block of code to execute,
easier to read syntax than if-else blocks, based on discrete cases, provides a default
case

● Compiler determines when to build a jump table
● Jump table: an array of pointers to program code, selection of a pointer is calculated

using math
Lesson 4.10​: Jump Table Example
Skills Learned From This Lesson: Create a jump table in assembly

● Define data in code section
● Example is to calculate a schedule based on day of month

Lesson 4.11​: Function Pointers
Skills Learned From This Lesson: How function pointers work

● Points to a function or subroutine, allows the functionality to be changed at runtime
Lesson 4.12​: Function Pointers Example
Skills Learned From This Lesson: Create and use a function pointer in assembly

● Problem to be solved: Write assembly that reads a number, if number is 1 multiply
second input by 2, if is not 1 (else) multiply second input by 8

Lesson 4.13​: Inline Assembly
Skills Learned From This Lesson: Inline Assembly, extra arguments, inline function call

● GNU Compiler Collection (GCC) uses AT&T syntax for x86/x64 code
● Variables substitution: variables can be passed in via symbolic names

Lesson 4.14​: Inline Assembly Example
Skills Learned From This Lesson: Example of Inline Assembly

● Problem to solve: Capture the time using the Time Stamp Counter, save to a qword and
print the result

Lesson 4.15​: Assembly with C
Skills Learned From This Lesson: Using Assembly and C together

Brought to you by:

Develop your team with the ​fastest growing catalog​ in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

13

● GCC and NASM are going to be used
● Example about using a string length function

Lesson 4.16​: SysCall and Interrupts
Skills Learned From This Lesson: How Interrupts and SysCall work

● Interrupts are events that signal to the CPU that something occurred
● Type of interrupts can be hardware, software and exceptions
● System Calls provide a way to interact with the OS kernel

Lesson 4.17​: Interrupts Example Use Fork
Skills Learned From This Lesson: Write system calls using int 80

● Problem to solve: Use the fork system call to create 2 processes and each prints right
before it finishes

● There is also a Wait which waits for a process to finish
Lesson 4.18​: Strings in C
Skills Learned From This Lesson: Strings in C in Assembly on the stack, heap and data

● C Strings: C allows string to allocated several different ways
Lesson 4.19​: Integers in Assembly
Skills Learned From This Lesson: Standard Types; Integers, Long, Short, bytes in C

● Integers: Signed, Unsigned, DWORD size, whole numbers
● Shorts: Size of 16 bits, DWORD data movement
● Long: Provides 4-8 byte data types, depends on the architecture

Lesson 4.20​: 64-Bit Assembly
Skills Learned From This Lesson: 64bit assembly, register, deprecated functions, calling
functions

● 64 bit references the number of bits used for memory addresses, registers and stack
operations are adjusted

● Processor cores: Multiple CPUs per processor, core counts
● Registers: R prefix
● Deprecated Instructions: PUSHAD, POPAD, library functions will not work asm_io.inc
● Calling Functions: FastCall is used for newer OS

Lesson 4.21​: MMX, SSE, AES-NI
Skills Learned From This Lesson: SSE and MMX extensions, AES-NI extensions

● MMX stands for MultiMedia eXtension
● SSE stands for Streaming SIMD Extensions which is of common use in multimedia
● AES-NI stands for Advanced Encryption Standard New Instructions

Brought to you by:

Develop your team with the ​fastest growing catalog​ in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

14

Lesson 4.22​: AES Implementations
Skills Learned From This Lesson: Cross Platform AES, Intrinsic Implementation and
disassemble AES intrinsics

● Investigate about the benefits of using AES-NI
● Pay special attention to the examples to have a good understanding

Lesson 4.23​: Implement Dump Registers
Skills Learned From This Lesson: Write a 64 bit function

● Problem to solve: write a function to dump the registers
Lesson 4.24​: Static and Dynamic Linking Assembly
Skills Learned From This Lesson: Static linking, Dynamic linking -> GOT, PLT

● Static Linking: Provides all code within a binary, uses more space, multiple programs
that use the same library

● Dynamic Linking: Linking library code at runtime, address space layout randomization
(ASLR)

● Global Offset Table (GOT): A table of addresses that point to dynamic addresses,
initially contains address of dynamic linker, updated by the dynamic linker to get actual
offset

● Procedure Linkage Table (PLT): Provides a mechanism to resolve dynamic memory
addresses, allows code to be PIC and PIE, determines the path to look for libraries

Lesson 4.25​: Shared Library
Skills Learned From This Lesson: How shared library works

● Create using flags to gcc: -fPIC, -shared (name with .so)
● Creating main: -I -> header search path, -L -> directory to search for shared code, -la ->

library to add
Lesson 4.26​: Shared Library Example
Skills Learned From This Lesson: Write a shared library in assembly

● Problem to solve: Write code and methods in assembly, use C method calls to setup
writable and executable memory, copy assembly bytes to memory. Use a function
pointer to execute memory in buffer

Brought to you by:

Develop your team with the ​fastest growing catalog​ in the
cybersecurity industry. Enterprise-grade workforce development
management, advanced training features and detailed skill gap and
competency analytics.

15

