
Jenkins: Continuous Integration

JENKINS : Introduction

➤ What is Continuous Integration?

➤ Why we need Continuous Integration?

➤ Phases of Adopting Continuous Integration.

JENKINS : Introduction

➤ Continuous Integration (CI) is a development practice that requires
developers to integrate code into a shared repository several times a day.

➤ Each check-in is then verified by an automated build, allowing teams to detect
problems early.

➤ If Build is not Green, system notify Developer immediately. By this, developer
can detect errors quickly, and locate them more easily.

JENKINS : Introduction

Why do we need Continuous Integration

➤ Significantly less back-tracking to discover where things
went wrong.

➤ Continuous Integration is cheap. If you don’t follow a
continuous approach, you’ll have longer periods between
integrations. This makes it exponentially more difficult to
find and fix problems.

➤ Say goodbye to long and tense integrations.

➤ Increase visibility enabling greater communication.

➤ Catch issues early and nip them in the bud.

JENKINS : Introduction

Why do we need Continuous Integration

➤ Spend less time debugging and more time adding features.

➤ Stop waiting to find out if your code’s going to work.

➤ Reduce integration problems allowing you to deliver
software more rapidly.

➤ Continuous Integration doesn’t get rid of bugs, but it does
make them dramatically easier to find and remove.

JENKINS : Introduction

Stage of Adopting Continuous Integration

➤ Continuous Integration is backed by several important principles
and practices:

The Practice

➤ Maintain a single source repository.

➤ Automate the build.

➤ Make your build self-testing.

➤ Make it easy for anyone to get the latest executable version.

➤ Everyone can see what’s happening.

➤ Automate deployment.

JENKINS : Introduction

How to Do it

➤ Developers check out code into their own workspaces.

➤ When done, commit the changes to the repository.

➤ CI server monitors the repository and checks out changes when they
occur.

➤ CI server builds the system and runs unit and integration tests.

➤ CI server releases deployable artefacts for testing.

➤ CI server assigns a build label to the version of the code it just built.

➤ CI server informs the team of the successful build.

➤ If the build or tests fail, the CI server alerts the team.

➤ The team fixes the issue at the earliest opportunity.

JENKINS : Introduction

Teams Responsibility

➤ Check in frequently.

➤ Don’t check in broken code.

➤ Don’t check in untested code.

➤ Don’t check in when the build is broken.

JENKINS : Introduction

Continuous Integration

➤ The Practice of merging stable Develop work branch with
the main branch constantly. 

Continuous Delivery

➤ Continual Delivery of Code to an environment once the code
is ready to ship.

➤ Environment could be staging or production. First product is
deliver to QAs and Review before shipping to Customer/
Production.

JENKINS : Introduction

Continuous Deployment

➤ Essentially, it is the practice of releasing every good build
to users.

➤ The deployment of Product in Production as soon as it’s
ready.

➤ By adopting both Continuous Integration and Continuous
Deployment, you not only reduce risks and catch bugs
quickly, but also move rapidly to working software.

Will see you in Next Lecture…

See you in next lecture …

