
Kubernetes: Pod Lifecycle



KUBERNETES : Basics of Kuebernetes

➤ A Pod is the smallest unit of work which can be scheduled 
in Kubernetes.  

➤ A Pod encapsulates an application container(s), storage 
resources, unique network IP and options that govern how a 
container should run.  

➤ Pods, Applications are generally deployed via higher level 
constructs such as Deployments, Replica Sets. 

➤ Interaction with Pods is generally used to troubleshoot issues, 
hence understanding of Pods is important.



KUBERNETES : Basics of Kuebernetes

States of a Pod 
➤ Pending: The pod is accepted by the Kubernetes system but its 

container(s) is/are not created yet. 

➤ Running: The pod is scheduled on a node and all its containers 
are created and at-least one container is in Running state. 

➤ Succeeded: All container(s) in the Pod have exited with status 
0 and will not be restarted. 

➤ Failed: All container(s) of the Pod have exited and at least one 
container has returned a non-zero status. 

➤ CrashLoopBackoff: The container fails to start and is tried 
again and again.



KUBERNETES : Basics of Kuebernetes



KUBERNETES : Basics of Kuebernetes

Activities During a Pod’s Life 
➤ Init Container: Init containers are containers which are run 

before the main application container gets started. 

➤ They have two important characteristics: 
They always run to completion. 
Each init container must complete before the next one is started. 

➤ Init containers support all the fields and features of app 
containers, including resource limits, volumes, and security 
settings.  

➤ Init containers can be useful when some initial actions need to 
be run before the main container in the pod starts.



KUBERNETES : Basics of Kuebernetes

Lifecycle Hooks 
➤ LifeCycle Hooks allows the user to run specific code during specific events 

of a containers lifecycle. 

➤ PostStart: This hook gets executed upon container creation but there is no 
guarantee that it will run after the container ENTRYPOINT. 

➤ PreStop: This hook gets executed just before a container is terminated. This 
is a blocking call which means the hook execution must complete before the 
call to delete a container can be sent. 

➤ There are two types of handlers which can be implemented in the hook 
implementation: 
Exec: runs a specific command inside the container and the resources 
consumed by the command are counted against the container. 
HTTP: executes an HTTP request against a specific endpoint on the 
container.



Will see you in Next Lecture…

See you in next lecture …


