
Terraform: Remote State in Terraform

Terraform : Deployment Automation

➤ Terraform is able to find the resources it created and update
them accordingly. We have seen Terraform Plan and terraform
apply commands.

➤ Terraform records information about what infrastructure it
created in a Terraform state file.

➤ File called terraform.tfstate

➤ Terraform also maintain the back-up of earlier statefile in file
named terraform.tfstate.backup

➤ On command Terraform Apply terraform backup is written
and new state file created.

Terraform : Deployment Automation

➤ If the remote state is changed and user executes terraform apply
again. Terraform will make the changes to meet the correct remote
state.

➤ Problems while team is working on terraform -

➤ Shared storage for state files - To be able to use Terraform to update
your infrastructure, each of your team members needs access to the
same Terraform state files. That means you need to store those files in
a shared location.

➤ Locking state files - As soon as data is shared, you run into a new
problem: locking. Without locking, if two team members are running
Terraform at the same time, you may run into race conditions as
multiple Terraform processes make concurrent updates to the state
files, leading to conflicts, data loss, and state file corruption.

Terraform : Deployment Automation

➤ Isolating state files - When making changes to your
infrastructure, it’s a best practice to isolate different
environments.

➤ Most common technique for allowing multiple team members to
access a common set of files is to put them in version control (e.g.
Git). But this is a bad idea.

➤ Manual error: It’s too easy to forget to pull down the latest
changes from version control before running Terraform or to push
your latest changes to version control after running Terraform.

➤ Locking: Most version control systems do not provide any form of
locking that would prevent two team members from running
terraform apply on the same state file at the same time.

Terraform : Deployment Automation

➤ Secrets: All data in Terraform state files is stored in plain
text. This is a problem because certain Terraform resources
need to store sensitive data.

➤ Instead of using version control, the best way to manage
shared storage for state files is to use Terraform’s built-in
support for remote backends. A Terraform backend
determines how Terraform loads and stores state.

Terraform : Deployment Automation

➤ Remote Backend: Remote Backend solves all problems we listed
earlier.

➤ Manual error: Once you configure a remote backend, Terraform
will automatically load the state file from that backend every time
you run plan or apply and it’ll automatically store the state file in
that backend after each apply, so there’s no chance of manual error.

➤ Locking: Most of the remote backends natively support locking. To
run terraform apply, Terraform will automatically acquire a lock; if
someone else is already running apply, they will already have the
lock, and you will have to wait.

➤ Secrets: Most of the remote backends natively support encryption
in transit and encryption on disk of the state file.

Terraform : Deployment Automation

terraform {
 backend "s3" {
 bucket = "mybucket"
 key = "path/to/my/key"
 region = “us-east-1"
 }
}

➤ Store state in S3 Bucket:

➤ While using AWS S3 as backend, it’s recommended to use
AWS configure instead of AWS creds in variables.

Will see you in Next Lecture…

See you in next lecture …

