Module 18

NETWORK LOGS MONITORING AND ANALYSIS

CERTIFIED CYBERSECURITY TECHNICIAN

INDEX

Module 18:

Network Logs Monitoring and AnalysisExercise 1:Configure, View, and Analyze Windows Event Logs05
Exercise 2:View and Analyze Windows Logs18
Exercise 3: 25

LAB SCENARIO

Extensive monitoring and analysis of network logs is critical to enhance the security of an organization. This helps identify and respond to threats quickly and protect the network assets from various attacks. Proper network log monitoring and analysis help reduce the frequency of attacks by proactively responding to threats.

A security professional must have the required knowledge to monitor network logs and further analyze them for any malicious or suspicious activity within the local network.

LAB OBJECTIVE

The objective of this lab is to provide expert knowledge in monitor and analyze network logs. This includes knowledge of the following tasks:

- Configure, view and analyze system logs using Windows Event Viewer
- View and analyze event logs of Windows and Linux system

OVERVIEW OF LOGS MONITORING AND ANALYSIS

Logs are a collection of information/data on events generated in the form of an audit trail by the various components of an information system such as network, applications, operating system (OS), service, etc. A log can provide an indication that something may have gone wrong and can help security professionals in analyzing and detecting issues.

A proper analysis of log data enables actionable information to be identified, which helps the security professional in detecting and monitoring potential security breaches, internal misuse of information, operational issues, and other long-term issues. It also helps validate whether the end-user has followed all documented protocols to detect fraudulent activities and policy violations. It is also useful for internal investigations, security auditing and forensic analysis, determination of operational trends, and implementation of baselines.

LAB TASKS

A cyber security professional or a security professional use numerous tools and techniques to monitor network logs. The recommended labs that will assist you in learning the monitoring and analyzing network logs include the following:

0 Configure, View, and Analyze Windows Event Logs

05 View and Analyze Linux Logs

Note: Turn on PfSense Firewall virtual machine and keep it running throughout the lab exercises.

EXERCISE 1: CONFIGURE, VIEW, AND ANALYZE WINDOWS EVENT LOGS

Windows OS tracks various events, activities, and functions through logs.

LAB SCENARIO

A security professional should be aware of the logging mechanism in Windows OS, where the logs are stored, the configuration needed to log a specific type of incident, and the format of logs among others. In this lab task, you will audit the Windows event, where the audit shows the success or failure of specific security events.

LAB OBJECTIVE

The objective of this lab is to learn how to configure, view, and analyze Windows security logs.

OVERVIEW OF WINDOWS EVENT LOGS

Windows event logs include critical information such as log-on failures, log tampering, failed attempts to access files, etc. They also warn about upcoming system issues and protect the system from unexpected disasters. In addition to this, these event logs may also describe an attempt by a user to compromise the system or an unsanctioned configuration change. Thus, these event logs need to be monitored and analyzed to identify network vulnerabilities, security breaches, and threats from intruders.

These event logs enable security professionals to protect a network against internal threats and vulnerabilities. Windows Event Viewer is the most common way to monitor and analyze Windows event logs.

LAB TASKS

Note: Ensure that PfSense Firewall virtual machine is running.

1. Turn on the Web Server virtual machine.
2. Log in with the credentials Administrator and admin@123.
3. Click on the Search Windows icon and type "local security policy" in the search textbox, and press then Enter button.

4. The Local Security Policy window will open. In the left pane, expand Local Policies and click on Audit Policy. Then, double-click on Audit logon events in the right pane.

Lecal Securaty Policy			
4 Security settings , Account Policies \checkmark Lecal Policies) a Aust Policy , Wi Uee Rights Assignment , Security Options Windows Firewall with Adranced Sec. Network List Manager Policies Public Key Policies Software Restriction Policies Application Control Policies P Security Policies on Local Compute Advanced Audit Policy Configuration	Polky Q Audt account logon events Audit account management Aude directory service access Audir logon events Aude object access Audin policy change Audí prinilege use Audit process tracking Audit system events	Security Setting No sudting No sudting No sudting No oudaing No wodting No wudting No audting No sudting No sudting	

5. The Audit logon events Properties window will appear. Check Success and Failure, then click on Apply and OK.

6. Close the Local Security Policy window.
7. To view the events, right-click on the Start icon and then on Event Viewer to open it.

8. Expand Windows Logs in the left pane and click on Security. This will list the audit logs entries.

9. Close the Event Viewer window. Sign out and try to log in to the Web Server machine twice/thrice using invalid passwords to generate logs related to failed login attempts.

10. To view the events, right-click on the Start icon and then on Event Viewer to open it.

Note: If the network screen appears, click Yes.
12. Expand Windows Logs in the left pane and click on Security. This will list the audit logs entries.

13. To view the login failure events, click on Filter Current Log... in the right pane and search for event ID 4625 to filter logs related to failed login attempts. Then, click OK.

14. The entries of all Audit Failure logs will be listed, as shown in the screenshot below.

15. Double-click on one of the entries to view its details.

16. This concludes the demonstration showing how to configure, view and analyze Windows Event Logs.
17. Close all open windows.
18. Turn off the Web Server virtual machine.

EXERCISE 2: VIEW AND ANALYZE WINDOWS LOGS

Windows OS tracks various events, activities, and functions through logs.

LAB SCENARIO

A security professional should be aware of the path where event logs are stored, apart from being familiar with the format of logs, types of logs and categories of severity levels, in order to examine them for any malicious activities such as unauthorized access, data theft, deletion of sensitive information, etc.

LAB OBJECTIVE

The objective of this lab is to learn how to view and analyze Windows event logs.

OVERVIEW OF WINDOWS LOGS

Windows event logging service collects events from multiple sources and keeps them in a single location known as Windows event log. These logs act as the primary source of evidence for all important actions/activities on a Windows system. Windows event log contains logs of system, security, and application notifications that are monitored and analyzed by security professionals to detect issues in the system.

Based on their severity levels, events are categorized into five types:

- Error: This type of event describes a significant problem such as loss of data or functionality.
- Warning: This type of event is of less importance but may describe a possible future problem.
- Information: This type of event indicates the successful operation of an application, driver, or service.
- Success Audit: This type of event is recorded when any successfully audited security access attempt is detected.
- Failure Audit: This type of event is recorded when any unsuccessful audited security access attempt is detected.

LAB TASKS

Note: Ensure that PfSense Firewall virtual machine is running.

1. Turn on the Admin Machine-1 virtual machine.
2. Log in with the credentials Admin and admin@123.

Note: If a network screen appears, click Yes.
3. Open File Explorer and navigate to C:\Windows\System32\winevt\Logs to view the system logs.
4. You can observe the event logs captured within the system, as shown in the screenshot below.

Note: Databases related to the system are stored in a file named System.evtx, the databases related to security are stored in a file named Security.evtx, and the databases related to applications are stored in a file named Application.evtx.

5. You can click on the Date modified column to sort the event logs with the latest event on the top, as shown in the screenshot below.

6. Now, double-click on any log (here, Microsoft-Windows-Windows Firewall With Advanced Security\%4Firewall) to view a detailed information about the captured event.
7. An Event Viewer window appears, displaying the information about the selected event. The event is categorized as Information, as shown in the screenshot below.

Note: The Number of events might vary in your lab environment.
The information about the event displayed in the Preview pane is described below:

- Log Name: The type of Windows log.
- Source: Source is the cause responsible for the event raised by either an individual or a system or a program.
- Event ID: The type of event that has occurred.
- Level: Event level is divided into five types: Error, Warning, Information, Success Audit, and Failure Audit.
- User: User responsible and who logged on to the computer at the instance of the event.
- Logged: The timestamp of the event.
- Task category: Primarily used in case for a security log that classifies an event based on the event source.
- Keyword: Unique number of the event.
- Computer: The name assigned to the computer where the event occurred.
『

8. You can further navigate to the Details tab to view information such as Provider, Event ID, Level, Task, and TimeCreated.
9. This concludes the demonstration showing how to view and analyze Windows event logs.
10. Close all open windows.
11. Turn off the Admin Machine-1 virtual machine.

EXERCISE 3: VIEW AND ANALYZE LINUX LOGS

Linux logs are a record of any activity or event in a Linux-based OS.

LAB SCENARIO

Log files should be monitored to predict any upcoming issues before they actually occur. However, monitoring and analyzing all log files to determine which file contains the required information can be cumbersome. Therefore, to make the process a little simpler, a few critical Linux log files are introduced here; they should be monitored effectively to gather all essential information.

A security professional should be aware of the logging mechanism of Linux OS, and where the logs are stored. In this lab task, you will view and analyze the Linux event logs.

LAB OBJECTIVE

The objective of this lab is to learn how to view and analyze Linux event logs.

OVERVIEW OF LINUX LOGS

Linux logs include messages on just about everything, including system, kernel, package managers, boot processes, Xorg, Apache, and MySQL. These log files are useful for troubleshooting any security issue. They help in monitor and analyze security threats and vulnerabilities and remediate them as soon as possible. They also help in tracking the communication between systems and networks.

LAB TASKS

Note: Ensure that PfSense Firewall virtual machine is running.

1. Turn on the Attacker Machine-1 virtual machine.
2. Click to select Bob account. In the Password field, type user@123 and press Enter to sign in.
3. In the left pane, scroll down under Activities list and click on the terminal icon to open a Terminal window.

4. In the Terminal window, type sudo su and press Enter to use the terminal as a superuser. Note: In the [sudo] password for bob field, enter user@123 and press Enter.
5. Type cd /var/log and press Enter to navigate to the /var/log location.

Note: In Linux machines, event logs are located in the /var/log directory and subdirectory in plain ASCII text format. These system and service log files provide information about OS-specific or service-specific issues.
6. Type Is and press Enter to view the event logs in the /log directory.
7. You can observe the event log files appear, as shown in the screenshot below.

8. Now, we will open an event log to view its content.
9. Type cat auth.log and press Enter to view authentication related event logs.

Note: auth.log file contains authentication logs, including both successful and unsuccessful user login attempts as well as authentication techniques. This file is beneficial if you want to examine brute-force attacks and other vulnerabilities related to user authorization.
10. The content of log file appears, displaying information on authentication with respect to time and date, as shown in the screenshot below.

	の\| root@bob-Virtual-Machine:/Var/log ${ }_{\text {a }}$
	rootgbob-Virtual-Machine:/var/log\# cat auth.log Sep 8 02:51:31 bob-Virtual-Machine systemd-logind[547]: Watching systen buttons on /dev/input/event 4 (A T Translated Set 2 keyboard) Sep 8 e2:51:41 bob-Virtual-Machine gdm-launch-environment]: pan_unix(gdm-launch-environment:session): s ession opened for user gdm by (uid=0) Sep 8 02:51:41 bob-Virtual-Machine systemd-logind[547]: New session c1 of user gdn. Sep 8 02:51:41 bob-Virtual-Machine systemd: pam_unix(systemd-user:session): session opened for user gdm by (uid=e) Sep 8 e2:51:42 bob-Virtual-Machtne gnome-keyring-daenon[839]: couldn't access control socket: /run/user /125/keyring/control: No such file or directory Sep 8 e2:51:42 bob-Virtual-Machine gnome-keyring-daenon[840]: couldn't access control socket: /run/user /125/keyring/control: No such file or directory Sep 8 02:51:42 bob-Virtual-Machine gnome-keyring-daenon[839]: couldn't access control socket: /run/user /125/keyring/control: No such file or directory Sep 8 e2:51:42 bob-Virtual-Machine gdm-launch-environment]: pan_unix(gdm-launch-environment:session): s ession closed for user gdm Sep 8 02:51:42 bob-Virtual-Machine systemd-logind[547]: Session c1 logged out. Watting for processes to exit. Sep 8 02:51:42 bob-Virtual-Machine systemd-logind[547]: Removed session c1. Sep 8 02:51:42 bob-Virtual-Machine gdm-launch-environment]: pan_unix(gdm-launch-environment:session): s esston opened for user gdm by (utd=0) Sep 8 02:51:42 bob-Virtual-Machine systemd-logind[547]: New session c2 of user gdn. Sep 8 e2:51:43 bob-Virtual-Machine gnome-keyring-daenon[968]: couldn't access control socket: /run/user /125/keyring/control: No such file or directory Sep $802: 51: 43$ bob-Virtual-Machine gnome-keyring-daenon[974]: couldn't read 4 bytes from control socket Connection reset by peer Sep 8 e2:51:45 bob-Virtual-Machine polkitd(authority=local): Registered Authentication Agent for unix-s ession:c2 (system bus name :1.56 [/usr/bin/gnome-shell], object path /org/freedesktop/PolicyKit1/Authent icationAgent, locale en_us.UTF-8) Sep 8 02:52:06 bob-Virtual-Machine dbus-daemon[510]: [system] Failed to activate service 'org.bluez': t ined out (service_start_timeout=25000ns) Sep 8 e3:10:01 bobb-Virtual-Machine CRON[1490]: pan_unix(cron:session): session opened for user root by (uid=0) Sep 8 03:10:01 bob-Virtual-Machine CRON[1490]: pan_unix(cron:session): session closed for user root Sep 8 e3:17:01 bob-Virtual-Machine CRON[2082]: pan_unix(cron:session): session opened for user root by (uid=0) Sep 8 03:17:01 bob-Vtrtual-Machine CRON[2082]: pan_unix(cron:session): session closed for user root

11. Now, type cat boot.log and press Enter to view boot related logs.

Note: boot.log file stores all information related to system booting. The booting messages are sent by system initialization script, /etc/init.d/ bootmisc.sh, to this log file. This file is helpful when trying to troubleshoot problems related to improper shutdowns, booting failures, or unplanned reboots. By checking this file, the time span of a system downtime because of an unexpected shutdown can be determined.
12. The content of log file appears, displaying the status of system processes, as shown in the screenshot below.

13. Type cat syslog and press Enter to view the file containing general messages and system-related information.

Note: syslog or message stores all informational and noncritical messages across the global system such as system error messages, system startups, and shutdowns, change in the network configuration, etc. It can also log several things such as mail, cron, daemon, kern, auth, etc.
14. The content of log file appears, displaying information related running processes, as shown in the screenshot below.

15. Similarly, you can explore other log files to assess system security.
16. Now, open another Terminal window by clicking the (${ }^{\lceil+}$) icon from the top-left corner of the Terminal window,
17. A new Terminal appears in another tab. Type wand press Enter to display the time for which the machine has been up since login.

18. Type last -a and press Enter to gather the details of last login sessions.

19. Type sudo aureport and press Enter to fetch the details of all login attempts made to the system.
20. In the [sudo] password for bob field, enter user@123 and press Enter. Note: The password you enter will not be visible.

21. This concludes the demonstration showing how to view and analyze system logs in Linux machine.
22. Close all open windows.
23. Turn off Attacker Machine-1 and PfSense Firewall virtual machines

