
ｧ In this article

Syntax

Arguments

Remarks

Permissions

Previous Version Docs Blog Contribute Privacy & Cookies Terms of Use Trademarks © Microsoft 2022

Docs Learn Q&A Code Samples Shows EventsDocumentation Search Sign in

SQL Docs Overview Ｓ Install Ｓ Secure Ｓ Develop Ｓ Administer Ｓ Analyze Ｓ Reference Ｓ Download SQL Server

Docs / SQL / Transact-SQL (T-SQL) Reference / Language elements / Cursors /

DECLARE CURSOR (Transact-SQL)
Article • 11/30/2021 • 13 minutes to read • 12 contributors

Applies to: SQL Server (all supported versions) Azure SQL Database Azure SQL Managed Instance

Defines the attributes of a Transact-SQL server cursor, such as its scrolling behavior and the query used to build the result
set on which the cursor operates. DECLARE CURSOR accepts both a syntax based on the ISO standard and a syntax using a

set of Transact-SQL extensions.

 Transact-SQL Syntax Conventions

syntaxsql

cursor_name

Is the name of the Transact-SQL server cursor defined. cursor_name must conform to the rules for identifiers.

INSENSITIVE
Defines a cursor that makes a temporary copy of the data to be used by the cursor. All requests to the cursor are
answered from this temporary table in tempdb; therefore, modifications made to base tables are not reflected in the data
returned by fetches made to this cursor, and this cursor does not allow modifications. When ISO syntax is used, if
INSENSITIVE is omitted, committed deletes and updates made to the underlying tables (by any user) are reflected in

subsequent fetches.

SCROLL
Specifies that all fetch options (FIRST , LAST , PRIOR , NEXT , RELATIVE , ABSOLUTE) are available. If SCROLL is not

specified in an ISO DECLARE CURSOR , NEXT is the only fetch option supported. SCROLL cannot be specified if

FAST_FORWARD is also specified. If SCROLL is not specified then only the fetch option NEXT is available and the cursor

becomes FORWARD_ONLY .

select_statement

Is a standard SELECT statement that defines the result set of the cursor. The keywords FOR BROWSE , and INTO are not

allowed within select_statement of a cursor declaration.

SQL Server implicitly converts the cursor to another type if clauses in select_statement conflict with the functionality of the
requested cursor type.

READ ONLY
Prevents updates made through this cursor. The cursor cannot be referenced in a WHERE CURRENT OF clause in an

UPDATE or DELETE statement. This option overrides the default capability of a cursor to be updated.

UPDATE [OF column_name [,...n]]
Defines updatable columns within the cursor. If OF <column_name> [, <... n>] is specified, only the columns listed allow
modifications. If UPDATE is specified without a column list, all columns can be updated.

cursor_name

Is the name of the Transact-SQL server cursor defined. cursor_name must conform to the rules for identifiers.

LOCAL
Specifies that the scope of the cursor is local to the batch, stored procedure, or trigger in which the cursor was created.
The cursor name is only valid within this scope. The cursor can be referenced by local cursor variables in the batch, stored
procedure, or trigger, or a stored procedure OUTPUT parameter. An OUTPUT parameter is used to pass the local cursor

back to the calling batch, stored procedure, or trigger, which can assign the parameter to a cursor variable to reference
the cursor after the stored procedure terminates. The cursor is implicitly deallocated when the batch, stored procedure, or
trigger terminates, unless the cursor was passed back in an OUTPUT parameter. If it is passed back in an OUTPUT

parameter, the cursor is deallocated when the last variable referencing it is deallocated or goes out of scope.

GLOBAL
Specifies that the scope of the cursor is global to the connection. The cursor name can be referenced in any stored
procedure or batch executed by the connection. The cursor is only implicitly deallocated at disconnect.

FORWARD_ONLY
Specifies that the cursor can only move forward and be scrolled from the first to the last row. FETCH NEXT is the only

supported fetch option. All insert, update, and delete statements made by the current user (or committed by other users)
that affect rows in the result set are visible as the rows are fetched. Because the cursor cannot be scrolled backward,
however, changes made to rows in the database after the row was fetched are not visible through the cursor. Forward-
only cursors are dynamic by default, meaning that all changes are detected as the current row is processed. This provides
faster cursor opening and enables the result set to display updates made to the underlying tables. While forward-only
cursors do not support backward scrolling, applications can return to the beginning of the result set by closing and
reopening the cursor. If FORWARD_ONLY is specified without the STATIC , KEYSET , or DYNAMIC keywords, the cursor

operates as a dynamic cursor. When neither FORWARD_ONLY nor SCROLL is specified, FORWARD_ONLY is the default, unless

the keywords STATIC , KEYSET , or DYNAMIC are specified. STATIC , KEYSET , and DYNAMIC cursors default to SCROLL .

Unlike database APIs such as ODBC and ADO, FORWARD_ONLY is supported with STATIC , KEYSET , and DYNAMIC Transact-

SQL cursors.

STATIC
Specifies that the cursor always displays the result set as it was when the cursor was first opened, and makes a temporary
copy of the data to be used by the cursor. All requests to the cursor are answered from this temporary table in tempdb.
Therefore inserts, updates, and deletes made to base tables are not reflected in the data returned by fetches made to this
cursor, and this cursor does not detect changes made to the membership, order, or values of the result set after the
cursor is opened. Static cursors may detect their own updates, deletes, and inserts, although they are not required to do
so. For example, suppose a static cursor fetches a row, and another application then updates that row. If the application
refetches the row from the static cursor, the values it sees are unchanged, despite the changes made by the other
application. All types of scrolling are supported.

KEYSET
Specifies that the membership and order of rows in the cursor are fixed when the cursor is opened. The set of keys that
uniquely identify the rows is built into a table in tempdb known as the keyset. This cursor provides functionality between
a static and a dynamic cursor in its ability to detect changes. Like a static cursor, it does not always detect changes to the
membership and order of the result set. Like a dynamic cursor, it does detect changes to the values of rows in the result
set. Keyset-driven cursors are controlled by a set of unique identifiers (keys) known as the keyset. The keys are built from
a set of columns that uniquely identify the rows in the result set. The keyset is the set of key values from all the rows
returned by the query statement. With keyset-driven cursors, a key is built and saved for each row in the cursor and
stored either on the client workstation or on the server. When you access each row, the stored key is used to fetch the
current data values from the data source. In a keyset-driven cursor, result set membership is frozen when the keyset is
fully populated. Thereafter, additions or updates that affect membership are not a part of the result set until it is
reopened. Changes to data values (made either by the keyset owner or other processes) are visible as the user scrolls
through the result set:

If a row is deleted, an attempt to fetch the row returns an @@FETCH_STATUS of -2 because the deleted row appears

as a gap in the result set. The key for the row exists in the keyset, but the row no longer exists in the result set.
Inserts made outside the cursor (by other processes) are visible only if the cursor is closed and reopened. Inserts
made from inside the cursor are visible at the end of the result set.
Updates of key values from outside the cursor resemble a delete of the old row followed by an insert of the new
row. The row with the new values is not visible, and attempts to fetch the row with the old values return an
@@FETCH_STATUS of -2. The new values are visible if the update is done through the cursor by specifying the WHERE

CURRENT OF clause.

DYNAMIC
Defines a cursor that reflects all data changes made to the rows in its result set as you scroll around the cursor and fetch a
new record, regardless of whether the changes occur from inside the cursor or by other users outside the cursor.
Therefore all insert, update, and delete statements made by all users are visible through the cursor. The data values, order,
and membership of the rows can change on each fetch. The ABSOLUTE fetch option is not supported with dynamic

cursors. Updates made outside the cursor are not visible until they are committed (unless the cursor transaction isolation
level is set to UNCOMMITTED). For example, suppose a dynamic cursor fetches two rows and another application then

updates one of those rows and deletes the other. If the dynamic cursor then fetches those rows, it will not find the
deleted row, but it will display the new values for the updated row.

FAST_FORWARD
Specifies a FORWARD_ONLY , READ_ONLY cursor with performance optimizations enabled. FAST_FORWARD cannot be

specified if SCROLL or FOR_UPDATE is also specified. This type of cursor does not allow data modifications from inside the

cursor.

READ_ONLY
Prevents updates made through this cursor. The cursor cannot be referenced in a WHERE CURRENT OF clause in an

UPDATE or DELETE statement. This option overrides the default capability of a cursor to be updated.

SCROLL_LOCKS
Specifies that positioned updates or deletes made through the cursor are guaranteed to succeed. SQL Server locks the
rows as they are read into the cursor to ensure their availability for later modifications. SCROLL_LOCKS cannot be specified

if FAST_FORWARD or STATIC is also specified.

OPTIMISTIC
Specifies that positioned updates or deletes made through the cursor do not succeed if the row has been updated since it
was read into the cursor. SQL Server does not lock rows as they are read into the cursor. It instead uses comparisons of
timestamp column values, or a checksum value if the table has no timestamp column, to determine whether the row was
modified after it was read into the cursor. If the row was modified, the attempted positioned update or delete fails.
OPTIMISTIC cannot be specified if FAST_FORWARD is also specified.

TYPE_WARNING
Specifies that a warning message is sent to the client when the cursor is implicitly converted from the requested type to
another.

select_statement

Is a standard SELECT statement that defines the result set of the cursor. The keywords COMPUTE , COMPUTE BY , FOR

BROWSE , and INTO are not allowed within select_statement of a cursor declaration.

SQL Server implicitly converts the cursor to another type if clauses in select_statement conflict with the functionality of the
requested cursor type. For more information, see Implicit Cursor Conversions.

FOR UPDATE [OF column_name [,...n]]
Defines updatable columns within the cursor. If OF <column_name> [, <... n>] is supplied, only the columns listed

allow modifications. If UPDATE is specified without a column list, all columns can be updated, unless the READ_ONLY

concurrency option was specified.

DECLARE CURSOR defines the attributes of a Transact-SQL server cursor, such as its scrolling behavior and the query used

to build the result set on which the cursor operates. The OPEN statement populates the result set, and FETCH returns a

row from the result set. The CLOSE statement releases the current result set associated with the cursor. The DEALLOCATE

statement releases the resources used by the cursor.

The first form of the DECLARE CURSOR statement uses the ISO syntax for declaring cursor behaviors. The second form of

DECLARE CURSOR uses Transact-SQL extensions that allow you to define cursors using the same cursor types used in the

database API cursor functions of ODBC or ADO.

You cannot mix the two forms. If you specify the SCROLL or INSENSITIVE keywords before the CURSOR keyword, you

cannot use any keywords between the CURSOR and FOR <select_statement> keywords. If you specify any keywords

between the CURSOR and FOR <select_statement> keywords, you cannot specify SCROLL or INSENSITIVE before the

CURSOR keyword.

If a DECLARE CURSOR using Transact-SQL syntax does not specify READ_ONLY , OPTIMISTIC , or SCROLL_LOCKS , the default

is as follows:

If the SELECT statement does not support updates (insufficient permissions, accessing remote tables that do not

support updates, and so on), the cursor is READ_ONLY .

STATIC and FAST_FORWARD cursors default to READ_ONLY .

DYNAMIC and KEYSET cursors default to OPTIMISTIC .

Cursor names can be referenced only by other Transact-SQL statements. They cannot be referenced by database API
functions. For example, after declaring a cursor, the cursor name cannot be referenced from OLE DB, ODBC or ADO
functions or methods. The cursor rows cannot be fetched using the fetch functions or methods of the APIs; the rows can
be fetched only by Transact-SQL FETCH statements.

After a cursor has been declared, these system stored procedures can be used to determine the characteristics of the
cursor.

System stored procedures Description

sp_cursor_list Returns a list of cursors currently visible on the connection and their attributes.

sp_describe_cursor Describes the attributes of a cursor, such as whether it is a forward-only or scrolling cursor.

sp_describe_cursor_columns Describes the attributes of the columns in the cursor result set.

sp_describe_cursor_tables Describes the base tables accessed by the cursor.

Variables may be used as part of the select_statement that declares a cursor. Cursor variable values do not change after a
cursor is declared.

Permissions of DECLARE CURSOR default to any user that has SELECT permissions on the views, tables, and columns used

in the cursor.

You cannot use cursors or triggers on a table with a clustered columnstore index. This restriction does not apply to
nonclustered columnstore indexes; you can use cursors and triggers on a table with a nonclustered columnstore index.

The result set generated at the opening of this cursor includes all rows and all columns in the table. This cursor can be
updated, and all updates and deletes are represented in fetches made against this cursor. FETCH NEXT is the only fetch

available because the SCROLL option has not been specified.

SQL

The following example shows how cursors can be nested to produce complex reports. The inner cursor is declared for
each vendor.

SQL

@@FETCH_STATUS (Transact-SQL)
CLOSE (Transact-SQL)
Cursors (Transact-SQL)
DEALLOCATE (Transact-SQL)
FETCH (Transact-SQL)
SELECT (Transact-SQL)
sp_configure (Transact-SQL)

／ %

& '

Syntax
＝ Copy

ISO Syntax
DECLARE cursor_name [INSENSITIVE] [SCROLL] CURSOR
 FOR select_statement
 [FOR { READ ONLY | UPDATE [OF column_name [,...n]] }]
[;]
Transact-SQL Extended Syntax
DECLARE cursor_name CURSOR [LOCAL | GLOBAL]
 [FORWARD_ONLY | SCROLL]
 [STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
 [READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
 [TYPE_WARNING]
 FOR select_statement
 [FOR UPDATE [OF column_name [,...n]]]
[;]

７ Note

To view Transact-SQL syntax for SQL Server 2014 and earlier, see Previous versions documentation.

Arguments

７ Note

If neither GLOBAL or LOCAL is specified, the default is controlled by the setting of the default to local cursor

database option.

７ Note

If the query references at least one table without a unique index, the keyset cursor is converted to a static cursor.

７ Note

Both FAST_FORWARD and FORWARD_ONLY can be used in the same DECLARE CURSOR statement.

７ Note

You can use a query hint within a cursor declaration; however, if you also use the FOR UPDATE OF clause, specify

OPTION (<query_hint>) after FOR UPDATE OF .

Remarks

Permissions

Limitations and Restrictions

Examples

A. Using simple cursor and syntax

＝ Copy

DECLARE vend_cursor CURSOR
 FOR SELECT * FROM Purchasing.Vendor
OPEN vend_cursor
FETCH NEXT FROM vend_cursor;

B. Using nested cursors to produce report output

＝ Copy

SET NOCOUNT ON;

DECLARE @vendor_id INT, @vendor_name NVARCHAR(50),
 @message VARCHAR(80), @product NVARCHAR(50);

PRINT '-------- Vendor Products Report --------';

DECLARE vendor_cursor CURSOR FOR
SELECT VendorID, Name
FROM Purchasing.Vendor
WHERE PreferredVendorStatus = 1
ORDER BY VendorID;

OPEN vendor_cursor

FETCH NEXT FROM vendor_cursor
INTO @vendor_id, @vendor_name

WHILE @@FETCH_STATUS = 0
BEGIN
 PRINT ' '
 SELECT @message = '----- Products From Vendor: ' +
 @vendor_name

 PRINT @message

 -- Declare an inner cursor based
 -- on vendor_id from the outer cursor.

 DECLARE product_cursor CURSOR FOR
 SELECT v.Name
 FROM Purchasing.ProductVendor pv, Production.Product v
 WHERE pv.ProductID = v.ProductID AND
 pv.VendorID = @vendor_id -- Variable value from the outer cursor

 OPEN product_cursor
 FETCH NEXT FROM product_cursor INTO @product

 IF @@FETCH_STATUS <> 0
 PRINT ' <<None>>'

 WHILE @@FETCH_STATUS = 0
 BEGIN

 SELECT @message = ' ' + @product
 PRINT @message
 FETCH NEXT FROM product_cursor INTO @product
 END

 CLOSE product_cursor
 DEALLOCATE product_cursor
 -- Get the next vendor.
 FETCH NEXT FROM vendor_cursor
 INTO @vendor_id, @vendor_name
END
CLOSE vendor_cursor;
DEALLOCATE vendor_cursor;

See Also

Show more Ｓ

* English (United States) ０ Theme

Version

SQL Server 2019 Ｓ

Filter by title

Language elements

Cursors

CLOSE

DEALLOCATE

DECLARE CURSOR

FETCH

OPEN

ＴＴ

ＴＴ

ＴＴ

ＴＴ

ＴＴ

ＴＴ

ＴＴ

hierarchyid methods (database engine)ＴＴ

NumericＴＴ

String & binaryＴＴ

Spatial geography & instances (geography Data Type)ＴＴ

Spatial geometry & instances (geometry Data Type)ＴＴ

Data typesＴＴ

XMLＴＴ

DBCCＴＴ

FunctionsＴＴ

Language elements

ＴＴ

GeneralＴＴ

Control-of-FlowＴＴ

Cursors

ＴＴ

ExpressionsＴＴ

OperatorsＴＴ

TransactionsＴＴ

VariablesＴＴ

QueriesＴＴ

StatementsＴＴ

xQueryＴＴ

- Download PDF

.

/

https://docs.microsoft.com/en-us/previous-versions/
https://docs.microsoft.com/en-us/teamblog
https://docs.microsoft.com/en-us/contribute
https://go.microsoft.com/fwlink/?LinkId=521839
https://docs.microsoft.com/en-us/legal/termsofuse
https://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
https://www.microsoft.com/
https://docs.microsoft.com/en-us/
https://docs.microsoft.com/en-us/documentation
https://docs.microsoft.com/en-us/learn/
https://docs.microsoft.com/en-us/answers/products/
https://docs.microsoft.com/en-us/samples/browse/
https://docs.microsoft.com/en-us/shows/
https://docs.microsoft.com/en-us/events/
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/declare-cursor-transact-sql?view=sql-server-ver15#
https://docs.microsoft.com/sql
https://www.microsoft.com/sql-server/sql-server-downloads
https://docs.microsoft.com/en-us/?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-reference?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/language-elements-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/cursors-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transact-sql-syntax-conventions-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/functions/fetch-status-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/close-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/cursors-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/deallocate-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/fetch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-configure-transact-sql?view=sql-server-ver15
https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/t-sql/language-elements/declare-cursor-transact-sql.md
https://docs.microsoft.com/en-us/sql/sql-server/previous-versions-sql-server?view=sql-server-ver15#offline-documentation
https://docs.microsoft.com/en-us/locale?target=https://docs.microsoft.com/en-us/sql/t-sql/language-elements/declare-cursor-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/language-elements-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/cursors-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/close-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/deallocate-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/declare-cursor-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/fetch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/open-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/opbuildpdf/34e89e264abfe116ed984318f4f944e6/toc.pdf?branch=live&view=sql-server-ver15

