Husseinnasser.com
Updated-Oct/2021

ACID

Atomicity, Consistency, Isolation and Durability in
Relational Database Systems

Agenda

e \What is a Transaction?
e Atomicity

e |[solation

e C(Consistency

e Durability

o Quiz

O3

What is a Transaction?

Transaction

e A collection of queries
e One unit of work

e E.g. Account deposit (SELECT, UPDATE, UPDATE)

Transaction Lifespan

e Transaction BEGIN

e Transaction COMMIT

e Transaction ROLLBACK

e Transaction unexpected ending = ROLLBACK (e.g. crash)

Nature of Transactions

e Usually Transactions are used to change and modify data

e However, it is perfectly normal to have a read only
transaction

e Example, you want to generate a report and you want to
get consistent snapshot based at the time of transaction

e \We will learn more about this in the Isolation section

ACCOUNT_ID | BALANCE

Transaction ;
-

Send $100 From Account 1 to Account 2
BEGIN TX1

SELECT BALANCE FROM ACCOUNT WHERE ID = 1

BALANCE > 100

UPDATE ACCOUNT SET BALANCE = BALANCE - 100 WHERE ID = 1

UPDATE ACCOUNT SET BALANCE = BALANCE + 100 WHERE ID = 2

\/

COMMIT TX1

Summary
What is a Transaction?

Atomicity

Atomicity

e All queries in a transaction must succeed.

e If one query fails, all prior successful queries in the transaction
should rollback.

e If the database went down prior to a commit of a transaction,

all the successful queries in the transactions should rollback

A problem has been detect and Windows has been shut down to prevent damage
to your computer.

THREAD_STUCK_IN_DEVICE_DRIVER

If this is the first time you’ve seen this Stop error screen,
restart your computer. If this screen appears again, follow these steps:

Check to make sure any new harduare or software is properly installed.
If this is a new installation, ask your hardware or software manufacturer
for any Windows updates you might need.

If problems continue, disable or remove any newly installed harduware
or software. Disable BIOS memory options such as caching or shadowing.
If you need to use Safe Mode to remove or disable components, restar
your computer, press F8 to select Advanced Startup options, and then
select Safe Mode.

Technical information:

*xx% STOP: OxO000000EA (0x00000000, 0Ox00000000)

ACCOUNT_ID BALANCE

Atomicity 1 $900

2 $500

e After we restarted the machine the first account has been debited but the
other account has not been credited.

e This is really bad as we just lost data, and the information is inconsistent

e An atomic transaction is a transaction that will rollback all queries if one or
more queries failed.

e The database should clean this up after restart.

.o ’:f”
o @ ®
Summary

Atomicity

|solation

Isolation

e (Can my inflight transaction see changes made by other

transactions?
Read phenomena

Isolation Levels

Isolation - Read phenomena

e Dirty reads
e Non-repeatable reads
e Phantom reads

e Lost updates

SALES

Dirty Reads -0 o
Product 1 $5
Product 2 20 $4
BEGIN TX1 BEGIN TX2

SELECT PID, QNT*PRICE FROM SALES

Product 1, 50

Product 2, 80 UPDATE SALES SET QNT = QNT+5

WHERE PID =1

SELECT SUM(QNT*PRICE) FROM SALES

We get $155 when it should be $130
\ We read a “dirty” value that has not been \ 4

committed
COMMIT TX1 ROLLBACK TX2

SALES

Non-repeatable read PID QNT
Product 1 n $5
Product 2 20 $4

BEGIN TX1 BEGIN TX2

SELECT PID, QNT*PRICE FROM SALES

Product 1, 50 UPDATE SALES SET QNT = QNT+5
Product 2, 80 WHERE PID =1
COMMIT TX2

* SELECT SUM(QNT*PRICE) FROM SALES

We get $155 when it should be $130
We did read a committed value, but it

COMMIT TX1 gave us inconsistent results

SALES

PID QNT PRICE
Phantom read
Product 1 10 $5
Product 2 20 $4
BEGIN TX1 Product 3 10 $1
SELECT PID, QNT*PRICE FROM SALES BEGIN TX2
Product 1, 50 INSERT INTO SALES
Product 2, 80 VALUES (‘Product 3’, 10, 1)
COMMIT TX2
SELECT SUM(QNT*PRICE) FROM SALES

\

COMMIT TX1

We get $140 when it should be $130
We read a committed value that showed up in our
range query

SALES

PID QNT

Lost updates

Product 1 $5
Product 2 20 $4
BEGIN TX1 BEGIN TX2

UPDATE SALES SET QNT = QNT+10
WHERE PID =1

UPDATE SALES SET QNT = QNT+5
WHERE PID =1

COMMIT TX2
SELECT SUM(QNT*PRICE) FROM SALES

v We get $155 when it should be $180
Our update was overwritten another
COMMIT TX1 transaction and as a result “lost”

Isolation - Isolation Levels for inflight transactions

e Read uncommitted - No Isolation, any change from the outside is visible to the
transaction, committed or not.

e Read committed - Each query in a transaction only sees committed changes by
other transactions

e Repeatable Read - The transaction will make sure that when a query reads a row,
that row will remain unchanged while its running.

e Snapshot - Each query in a transaction only sees changes that have been
committed up to the start of the transaction. It's like a snapshot version of the
database at that moment.

e Serializable - Transactions are run as if they serialized one after the other.

e Each DBMS implements Isolation level differently

Isolation Levels vs read phenomena

Isolation levels vs read phenomena |edit]

Isolation level

Dirty reads

Read Uncommitted | may occur

Read Committed

Repeatable Read

Serializable

don't occur
don't occur

don't occur

Lost updates | Non-repeatable reads
may occur may occur
may occur may occur
don't occur don't occur

don't occur don't occur

https://en.wikipedia.org/wiki/lsolation (database systems)

Phantoms
may occur
may occur
may occur

don't occur

https://en.wikipedia.org/wiki/Isolation_(database_systems)

Database Implementation of Isolation

e Each DBMS implements Isolation level differently

e Pessimistic - Row level locks, table locks, page locks to avoid lost updates

e Optimistic - No locks, just track if things changed and fail the transaction if so

e Repeatable read “locks” the rows it reads but it could be expensive if you
read a lot of rows, postgres implements RR as snapshot. That is why you
don’t get phantom reads with postgres in repeatable read

e Serializable are usually implemented with optimistic concurrency control, you
can implement it pessimistically with SELECT FOR UPDATE

Summary
|solation

v | -a=

Consistency

A

Consistency

e Consistency in Data

e Consistency in reads

Consistency in Data

e Defined by the user
e Referential integrity (foreign keys)
e Atomicity

e |[solation

Consistency in Data

Pictures Picture_Likes
ID (PK) BLOB LIKES USER (PK) PICTURE_ID (PK)(FK)
1 XX 2 Jon 1
2 XX 1 Edmond 1

Jon 2

Spot inconsistency in this data

Pictures Picture_Likes
1 XX 5 Jon 1
2 XX 1 Edmond 1
Jon 2
Edmond 4

Consistency in reads

Update X

_>

Read

Consistency in reads

If a transaction committed a change will a new transaction
immediately see the change?

Affects the system as a whole

Relational and NoSQL databases suffer from this

Eventual consistency

v | -a=

Summary
Consistency

A

N

Durability

Durability

e Changes made by committed transactions must be
persisted in a durable non-volatile storage.
e Durability techniques
o WAL - Write ahead log
o Asynchronous snapshot
o AOF

Durability - WAL

e \Writing a lot of data to disk is expensive (indexes, data
files, columns, rows, etc..)
e Thatis why DBMSs persist a compressed version of the

changes known as WAL (write-ahead-log segments)

Durability - OS Cache

e A write request in OS usually goes to the OS cache

e \When the writes go the OS cache, an OS crash, machine
restart could lead to loss of data

e Fsync OS command forces writes to always go to disk

e fsync can be expensive and slows down commits

N

Summary
Durability

Summary

e \What is a Transaction?
e Atomicity

e |solation

e Consistency

e Durability

