
ACID
Atomicity, Consistency, Isolation and Durability in

Relational Database Systems

Husseinnasser.com
Updated-Oct/2021

Agenda

● What is a Transaction?

● Atomicity

● Isolation

● Consistency

● Durability

● Quiz

What is a Transaction?

Transaction

● A collection of queries

● One unit of work

● E.g. Account deposit (SELECT, UPDATE, UPDATE)

Transaction Lifespan

● Transaction BEGIN

● Transaction COMMIT

● Transaction ROLLBACK

● Transaction unexpected ending = ROLLBACK (e.g. crash)

Nature of Transactions

● Usually Transactions are used to change and modify data

● However, it is perfectly normal to have a read only

transaction

● Example, you want to generate a report and you want to

get consistent snapshot based at the time of transaction

● We will learn more about this in the Isolation section

Transaction
ACCOUNT_ID BALANCE

1 $1000

2 $500

Send $100 From Account 1 to Account 2

SELECT BALANCE FROM ACCOUNT WHERE ID = 1

UPDATE ACCOUNT SET BALANCE = BALANCE - 100 WHERE ID = 1

UPDATE ACCOUNT SET BALANCE = BALANCE + 100 WHERE ID = 2

BALANCE > 100

BEGIN TX1

COMMIT TX1

$900

$600

$900

$600

Summary
What is a Transaction?

Atomicity

Atomicity

● All queries in a transaction must succeed.

● If one query fails, all prior successful queries in the transaction

should rollback.

● If the database went down prior to a commit of a transaction,

all the successful queries in the transactions should rollback

Atomicity
ACCOUNT_ID BALANCE

1 $1000

2 $500

Send $100 From Account 1 to Account 2

SELECT BALANCE FROM ACCOUNT WHERE ID = 1

UPDATE ACCOUNT SET BALANCE = BALANCE - 100 WHERE ID = 1

BALANCE > 100

BEGIN TX1

$900

Atomicity
ACCOUNT_ID BALANCE

1 $900

2 $500

● After we restarted the machine the first account has been debited but the

other account has not been credited.

● This is really bad as we just lost data, and the information is inconsistent

● An atomic transaction is a transaction that will rollback all queries if one or

more queries failed.

● The database should clean this up after restart.

Summary
Atomicity

Isolation

Isolation

● Can my inflight transaction see changes made by other

transactions?

● Read phenomena

● Isolation Levels

Isolation - Read phenomena

● Dirty reads

● Non-repeatable reads

● Phantom reads

● Lost updates

BEGIN TX1

COMMIT TX1

BEGIN TX2

PID QNT PRICE

Product 1 10 $5

Product 2 20 $4

SALES

SELECT PID, QNT*PRICE FROM SALES

UPDATE SALES SET QNT = QNT+5
WHERE PID =1

SELECT SUM(QNT*PRICE) FROM SALES

Product 1, 50
Product 2, 80

15

We get $155 when it should be $130
We read a “dirty” value that has not been
committed

Dirty Reads

ROLLBACK TX2

10

BEGIN TX1

COMMIT TX1

BEGIN TX2

COMMIT TX2

PID QNT PRICE

Product 1 10 $5

Product 2 20 $4

SALES

SELECT PID, QNT*PRICE FROM SALES

UPDATE SALES SET QNT = QNT+5
WHERE PID =1

SELECT SUM(QNT*PRICE) FROM SALES

Product 1, 50
Product 2, 80

15

We get $155 when it should be $130
We did read a committed value, but it
gave us inconsistent results

15
Non-repeatable read

BEGIN TX1

COMMIT TX1

BEGIN TX2

COMMIT TX2

PID QNT PRICE

Product 1 10 $5

Product 2 20 $4

SALES

SELECT PID, QNT*PRICE FROM SALES

INSERT INTO SALES
VALUES (‘Product 3’, 10, 1)

SELECT SUM(QNT*PRICE) FROM SALES

Product 1, 50
Product 2, 80

We get $140 when it should be $130
We read a committed value that showed up in our
range query

Phantom read

Product 3 10 1Product 3 10 $1

BEGIN TX1

COMMIT TX1

BEGIN TX2

PID QNT PRICE

Product 1 10 $5

Product 2 20 $4

SALES

UPDATE SALES SET QNT = QNT+10
WHERE PID =1

UPDATE SALES SET QNT = QNT+5
WHERE PID =1

SELECT SUM(QNT*PRICE) FROM SALES

20

We get $155 when it should be $180
Our update was overwritten another
transaction and as a result “lost”

Lost updates

COMMIT TX2

15

Isolation - Isolation Levels for inflight transactions

● Read uncommitted - No Isolation, any change from the outside is visible to the
transaction, committed or not.

● Read committed - Each query in a transaction only sees committed changes by
other transactions

● Repeatable Read - The transaction will make sure that when a query reads a row,
that row will remain unchanged while its running.

● Snapshot - Each query in a transaction only sees changes that have been
committed up to the start of the transaction. It's like a snapshot version of the
database at that moment.

● Serializable - Transactions are run as if they serialized one after the other.
● Each DBMS implements Isolation level differently

Isolation Levels vs read phenomena

https://en.wikipedia.org/wiki/Isolation_(database_systems)

https://en.wikipedia.org/wiki/Isolation_(database_systems)

Database Implementation of Isolation

● Each DBMS implements Isolation level differently

● Pessimistic - Row level locks, table locks, page locks to avoid lost updates

● Optimistic - No locks, just track if things changed and fail the transaction if so

● Repeatable read “locks” the rows it reads but it could be expensive if you

read a lot of rows, postgres implements RR as snapshot. That is why you

don’t get phantom reads with postgres in repeatable read

● Serializable are usually implemented with optimistic concurrency control, you

can implement it pessimistically with SELECT FOR UPDATE

Summary
Isolation

Consistency

Consistency

● Consistency in Data

● Consistency in reads

Consistency in Data

● Defined by the user

● Referential integrity (foreign keys)

● Atomicity

● Isolation

Consistency in Data

ID (PK) BLOB LIKES

1 xx 2

2 xx 1

USER (PK) PICTURE_ID (PK)(FK)

Jon 1

Edmond 1

Jon 2

Pictures Picture_Likes

Spot inconsistency in this data

ID (PK) BLOB LIKES

1 xx 5

2 xx 1

USER (PK) PICTURE_ID (PK)(FK)

Jon 1

Edmond 1

Jon 2

Edmond 4

Pictures Picture_Likes

Consistency in reads

Update X

Read
X

X

Consistency in reads

● If a transaction committed a change will a new transaction

immediately see the change?

● Affects the system as a whole

● Relational and NoSQL databases suffer from this

● Eventual consistency

Summary
Consistency

Durability

Durability

● Changes made by committed transactions must be

persisted in a durable non-volatile storage.

● Durability techniques

○ WAL - Write ahead log

○ Asynchronous snapshot

○ AOF

Durability - WAL

● Writing a lot of data to disk is expensive (indexes, data

files, columns, rows, etc..)

● That is why DBMSs persist a compressed version of the

changes known as WAL (write-ahead-log segments)

Durability - OS Cache

● A write request in OS usually goes to the OS cache

● When the writes go the OS cache, an OS crash, machine

restart could lead to loss of data

● Fsync OS command forces writes to always go to disk

● fsync can be expensive and slows down commits

Summary
Durability

Summary

● What is a Transaction?

● Atomicity

● Isolation

● Consistency

● Durability

