
How tables and indexes are
stored on disk
And how they are queried

Storage concepts

● Table
● Row_id
● Page
● IO
● Heap data structure
● Index data structure b-tree
● Example of a query

Logical Table

emp_id emp_name emp_dob emp_salary

2000 Hussein 1/2/1988 $100,000

3000 Adam 3/2/1977 $200,000

4000 Ali 5/2/1982 $300,000

column

row

Row_ID

row_id emp_id emp_name emp_dob emp_salary

1 2000 Hussein 1/2/1988 $100,000

2 3000 Adam 3/2/1977 $200,000

3 4000 Ali 5/2/1982 $300,000

● Internal and system maintained
● In certain databases (mysql -innoDB) it is the same as the primary key but other

databases like Postgres have a system column row_id (tuple_id)

Page

row_id emp_id emp_name emp_dob emp_salary

1 10 Hussein 1/2/1988 $100,000

2 20 Adam 3/2/1977 $200,000

3 30 Ali 5/2/1982 $300,000

... …. ….

1000 10000 Eddard 1/27/1999 $250,000

● Depending on the storage model (row vs column store), the rows are
stored and read in logical pages.

● The database doesn’t read a single row, it reads a page or more in a
single IO and we get a lot of rows in that IO.

● Each page has a size (e.g. 8KB in postgres, 16KB in MySQL)
● Assume each page holds 3 rows in this example, with 1001 rows

you will have 1001/3 = 333~ pages

1,10,Hussein,1/2/1
988,$100,000|2,
20,Adam,3/2/1977|
3,30,Ali,5/2/1982,$
300,000

(Rows 4,5,6) …...

More
rows….1000,10000
,Eddard,1/27/1999,
$250,000

Page 0

Page 1

Page 333

(Rows 7,8,9) …...

Page 2

…….

IO

● IO operation (input/output) is a read request to the disk

● We try to minimize this as much as possible

● An IO can fetch 1 page or more depending on the disk partitions and

other factors

● An IO cannot read a single row, its a page with many rows in them,

you get them for free.

● You want to minimize the number of IOs as they are expensive.

● Some IOs in operating systems goes to the operating system cache

and not disk

1,10,Hussein,1/2/1
988,$100,000|2,
20,Adam,3/2/1977|
3,30,Ali,5/2/1982,$
300,000

(Rows 4,5,6) …...

More
rows….1000,10000
,Eddard,1/27/1999,
$250,000

Page 0

Page 1

Page 333

(Rows 7,8,9) …...

Page 2

…….

Heap

● The Heap is data structure where the table is stored with all its

pages one after another.

● This is where the actual data is stored including everything

● Traversing the heap is expensive as we need to read so may data

to find what we want

● That is why we need indexes that help tell us exactly what part of

the heap we need to read. What page(s) of the heap we need to

pull

Heap

1,10,Hussein,1/2/1
988,$100,000|2,
20,Adam,3/2/1977|
3,30,Ali,5/2/1982,$
300,000

(Rows 4,5,6) …...

More
rows….1000,10000
,Eddard,1/27/1999,
$250,000

Page 0

Page 1

Page 333

(Rows 7,8,9) …...

Page 2

…….

Index
● An index is another data structure separate from the heap that has “pointers” to the

heap

● It has part of the data and used to quickly search for something

● You can index on one column or more.

● Once you find a value of the index, you go to the heap to fetch more information

where everything is there

● Index tells you EXACTLY which page to fetch in the heap instead of taking the hit to

scan every page in the heap

● The index is also stored as pages and cost IO to pull the entries of the index.

● The smaller the index, the more it can fit in memory the faster the search

● Popular data structure for index is b-trees, learn more on that in the b-tree section

Index on
EMP_ID

10 (1,0) | 20 (2,0) | 30 (3,0)
40 (4,1) | 50 (5,1) | 60 (6,1)
70 (7,2) | 80 (8,2) | 90 (9,2)

Page 0 Heap

1,10,Hussein,1/2/1
988,$100,000|2,
20,Adam,3/2/1977|
3,30,Ali,5/2/1982,$
300,000

(Rows 4,5,6) …...

More
rows….1000,10000
,Eddard,1/27/1999,
$250,000

Page 0

Page 1

Page 333

(Rows 7,8,9) …...

Page 2

…….

Page 1

…..

100 (10,3) | 110 (11,3) | 120 (12,3)
130 (13,4) | 140 (14,4) | 150 (15,4)
160 (16,5) | 170 (17,5) | 180 (18,5)

Page N

9920 (992,331) | 9930 (993,331) | 9940 (994,331)
9950 (995,332) | 9960 (996,332) | 9970 (997,332)
9980 (998,333) | 9990 (999,333) | 10000 (1000,333)

IO1 on
the index
to find the
page/row

IO2 on
the heap
to pull
exactly
the
page(s)
we found
in the
index

Heap

1,10,Hussein,1/2/1
988,$100,000|2,
20,Adam,3/2/1977|
3,30,Ali,5/2/1982,$
300,000

(Rows 4,5,6) …...

More
rows….1000,10000
,Eddard,1/27/1999,
$250,000

Page 0

Page 1

Page 333

(Rows 7,8,9) …...

Page 2

…….

No Index -
SELECT * FROM EMP
WHERE EMP_ID =
10000;

With Index -
SELECT * FROM EMP
WHERE EMP_ID =
10000;

Index on
EMP_ID

10 (1,0) | 20 (2,0) | 30 (3,0)
40 (4,1) | 50 (5,1) | 60 (6,1)
70 (7,2) | 80 (8,2) | 90 (9,2)

Page 0

Page 1

…..

100 (10,3) | 110 (11,3) | 120 (12,3)
130 (13,4) | 140 (14,4) | 150 (15,4)
160 (16,5) | 170 (17,5) | 180 (18,5)

Page N

9920 (992,331) | 9930 (993,331) | 9940 (994,331)
9950 (995,332) | 9960 (996,332) | 9970 (997,332)
9980 (998,333) | 9990 (999,333) | 10000 (1000,333)10000 (1000,333)

Heap

1,10,Hussein,1/2/1
988,$100,000|2,
20,Adam,3/2/1977|
3,30,Ali,5/2/1982,$
300,000

(Rows 4,5,6) …...

More
rows….1000,10000
,Eddard,1/27/1999,
$250,000

Page 0

Page 1

Page 333

(Rows 7,8,9) …...

Page 2

…….

With Index -
SELECT * FROM EMP
WHERE EMP_ID =
10000;

10000 (1000,333)
Fetch page 333, and pull row
10000

Notes

● Sometimes the heap table can be organized around a single index. This is
called a clustered index or an Index Organized Table.

● Primary key is usually a clustered index unless otherwise specified.
● MySQL InnoDB always have a primary key (clustered index) other indexes

point to the primary key “value”
● Postgres only have secondary indexes and all indexes point directly to the

row_id which lives in the heap.

Storage concepts - Summary

● Table
● Row_id
● Page
● IO
● Heap data structure
● Index data structure b-tree
● Example of a query

