
How tables and indexes are 
stored on disk
And how they are queried



Storage concepts

● Table
● Row_id
● Page
● IO
● Heap data structure 
● Index data structure b-tree
● Example of a query



Logical Table

 

emp_id emp_name emp_dob emp_salary

2000 Hussein 1/2/1988 $100,000

3000 Adam 3/2/1977 $200,000

4000 Ali 5/2/1982 $300,000

column

row



Row_ID

 

row_id emp_id emp_name emp_dob emp_salary

1 2000 Hussein 1/2/1988 $100,000

2 3000 Adam 3/2/1977 $200,000

3 4000 Ali 5/2/1982 $300,000

● Internal and system maintained
● In certain databases (mysql -innoDB) it is the same as the primary key but other 

databases like Postgres have a system column row_id (tuple_id)



Page

row_id emp_id emp_name emp_dob emp_salary

1 10 Hussein 1/2/1988 $100,000

2 20 Adam 3/2/1977 $200,000

3 30 Ali 5/2/1982 $300,000

... .. ... …. ….

1000 10000 Eddard 1/27/1999 $250,000

● Depending on the storage model (row vs column store), the rows are 
stored and read in logical pages. 

● The database doesn’t read a single row, it reads a page or more in a 
single IO and we get a lot of rows in that IO.

● Each page has a size (e.g. 8KB in postgres, 16KB in MySQL)
● Assume each page holds 3 rows in this example, with 1001 rows 

you will have 1001/3 = 333~ pages

1,10,Hussein,1/2/1
988,$100,000|2, 
20,Adam,3/2/1977|
3,30,Ali,5/2/1982,$
300,000

( Rows 4,5,6 ) …...

More 
rows….1000,10000
,Eddard,1/27/1999,
$250,000
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( Rows 7,8,9 ) …...
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…….



IO

● IO operation (input/output) is a read request to the disk

● We try to minimize this as much as possible

● An IO can fetch 1 page or more depending on the disk partitions and 

other factors 

● An IO cannot read a single row, its a page with many rows in them, 

you get them for free. 

● You want to minimize the number of IOs as they are expensive. 

● Some IOs in operating systems goes to the operating system cache 

and not disk
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More 
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…….



Heap

● The Heap is data structure where the table is stored with all its 

pages one after another. 

● This is where the actual data is stored including everything

● Traversing the heap is expensive as we need to read so may data 

to find what we want

● That is why we need indexes that help tell us exactly what part of 

the heap we need to read. What page(s) of the heap we need to 

pull

Heap
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More 
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Index
● An index is another data structure separate from the heap that has “pointers” to the 

heap

● It has part of the data and used to quickly search for something

● You can index on one column or more. 

● Once you find a value of the index, you go to the heap to fetch more information 

where everything is there

● Index tells you EXACTLY which page to fetch in the heap instead of taking the hit to 

scan every page in the heap

● The index is also stored as pages and cost IO to pull the entries of the index. 

● The smaller the index, the more it can fit in memory the faster the search

● Popular data structure for index is b-trees, learn more on that in the b-tree section



Index on 
EMP_ID

10 (1,0) | 20 (2,0) | 30 (3,0) 
40 (4,1) | 50 (5,1) | 60 (6,1) 
70 (7,2) | 80 (8,2) | 90 (9,2)

Page 0 Heap

1,10,Hussein,1/2/1
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300,000

( Rows 4,5,6 ) …...

More 
rows….1000,10000
,Eddard,1/27/1999,
$250,000
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( Rows 7,8,9 ) …...
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…….
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…..

100 (10,3) | 110 (11,3) | 120 (12,3) 
130 (13,4) | 140 (14,4) | 150 (15,4) 
160 (16,5) | 170 (17,5) | 180 (18,5)

Page N

9920 (992,331) | 9930 (993,331) | 9940 (994,331) 
9950 (995,332) | 9960 (996,332) | 9970 (997,332) 
9980 (998,333) | 9990 (999,333) | 10000 (1000,333)

IO1 on 
the index 
to find the 
page/row

IO2 on 
the heap 
to pull 
exactly 
the 
page(s) 
we found 
in the 
index



Heap

1,10,Hussein,1/2/1
988,$100,000|2, 
20,Adam,3/2/1977|
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( Rows 4,5,6 ) …...

More 
rows….1000,10000
,Eddard,1/27/1999,
$250,000
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( Rows 7,8,9 ) …...
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…….

No Index - 
SELECT * FROM EMP 
WHERE EMP_ID = 
10000;



With Index - 
SELECT * FROM EMP 
WHERE EMP_ID = 
10000;

Index on 
EMP_ID

10 (1,0) | 20 (2,0) | 30 (3,0) 
40 (4,1) | 50 (5,1) | 60 (6,1) 
70 (7,2) | 80 (8,2) | 90 (9,2)

Page 0

Page 1

…..

100 (10,3) | 110 (11,3) | 120 (12,3) 
130 (13,4) | 140 (14,4) | 150 (15,4) 
160 (16,5) | 170 (17,5) | 180 (18,5)

Page N

9920 (992,331) | 9930 (993,331) | 9940 (994,331) 
9950 (995,332) | 9960 (996,332) | 9970 (997,332) 
9980 (998,333) | 9990 (999,333) | 10000 (1000,333)10000 (1000,333)



Heap

1,10,Hussein,1/2/1
988,$100,000|2, 
20,Adam,3/2/1977|
3,30,Ali,5/2/1982,$
300,000

( Rows 4,5,6 ) …...

More 
rows….1000,10000
,Eddard,1/27/1999,
$250,000

Page 0

Page 1

Page 333

( Rows 7,8,9 ) …...

Page 2

…….

With Index - 
SELECT * FROM EMP 
WHERE EMP_ID = 
10000;

10000 (1000,333)
Fetch page 333, and pull row 
10000



Notes

● Sometimes the heap table can be organized around a single index. This is 
called a clustered index or an Index Organized Table.

● Primary key is usually a clustered index unless otherwise specified. 
● MySQL InnoDB always have a primary key (clustered index) other indexes 

point to the primary key “value” 
● Postgres only have secondary indexes and all indexes point directly to the 

row_id which lives in the heap.



Storage concepts - Summary

● Table
● Row_id
● Page
● IO
● Heap data structure 
● Index data structure b-tree
● Example of a query


