
SQL Server Index Architecture and

Design Guide
Article • 12/17/2021 • 64 minutes to read • +13

In this article

Index Design Basics

General Index Design Guidelines

Metadata

Clustered Index Design Guidelines

Nonclustered Index Design Guidelines

Unique Index Design Guidelines

Filtered Index Design Guidelines

Columnstore Index Design Guidelines

Hash Index Design Guidelines

Memory-Optimized Nonclustered Index Design Guidelines

Additional Reading

Applies to: SQL Server (all supported versions) Azure SQL Database Azure SQL

Managed Instance Azure Synapse Analytics Analytics Platform System (PDW)

Poorly designed indexes and a lack of indexes are primary sources of database application

bottlenecks. Designing efficient indexes is paramount to achieving good database and

application performance. This SQL Server index design guide contains information on index

architecture, and best practices to help you design effective indexes to meet the needs of

your application.

This guide assumes the reader has a general understanding of the index types available in

SQL Server. For a general description of index types, see Index Types.

This guide covers the following types of indexes:

Clustered

Nonclustered

Unique

Filtered

Columnstore

Is this page helpful?  

https://github.com/LitKnd
https://github.com/rothja
https://github.com/MikeRayMSFT
https://github.com/v-alje
https://github.com/julieMSFT
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/indexes?view=sql-server-ver15

Hash

Memory-Optimized Nonclustered

For information about XML indexes, see XML Indexes Overview and Selective XML Indexes

(SXI).

For information about Spatial indexes, see Spatial Indexes Overview.

For information about Full-text indexes, see Populate Full-Text Indexes.

Think about a regular book: at the end of the book there is an index which helps to quickly

locate information within the book. The index is a sorted list of keywords and next to each

keyword is a set of page numbers pointing to the pages where each keyword can be found.

A SQL Server index is no different: it is an ordered list of values and for each value there are

pointers to the data pages where these values are located. The index itself is stored on

pages, making up the Index Pages in SQL Server. In a regular book, if the index spans

multiple pages and you have to find pointers to all the pages that contain the word "SQL"

for example, you would have to leaf through until you locate the index page that contains

the keyword "SQL". From there you follow the pointers to all the book pages. This could be

optimized further if at the very beginning of the index, you create a single page that

contains an alphabetical list of where each letter can be found. For example: "A through D -

page 121", "E through G - page 122" and so on. This additional page would eliminate the

step of leafing through the index to find the starting place. Such page does not exist in

regular books, but it does exist in a SQL Server index. This single page is referred to as the

root page of the index. The root page is the starting page of the tree structure used by a

SQL Server index. Following the tree analogy, the end pages which contain pointers to the

actual data are referred to as "leaf pages" of the tree.

A SQL Server index is an on-disk or in-memory structure associated with a table or view

that speeds retrieval of rows from the table or view. An index contains keys built from one

or more columns in the table or view. For on-disk indexes, these keys are stored in a tree

structure (B-tree) that enables SQL Server to find the row or rows associated with the key

values quickly and efficiently.

An index stores data logically organized as a table with rows and columns, and physically

stored in a row-wise data format called rowstore , or stored in a column-wise data format

called columnstore.

Index Design Basics

1

https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-indexes-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/selective-xml-indexes-sxi?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/spatial/spatial-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/search/populate-full-text-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/pages-and-extents-architecture-guide?view=sql-server-ver15

The selection of the right indexes for a database and its workload is a complex balancing

act between query speed and update cost. Narrow indexes, or indexes with few columns in

the index key, require less disk space and maintenance overhead. Wide indexes, on the

other hand, cover more queries. You may have to experiment with several different designs

before finding the most efficient index. Indexes can be added, modified, and dropped

without affecting the database schema or application design. Therefore, you should not

hesitate to experiment with different indexes.

The query optimizer in SQL Server reliably chooses the most effective index in the vast

majority of cases. Your overall index design strategy should provide a variety of indexes for

the query optimizer to choose from and trust it to make the right decision. This reduces

analysis time and produces good performance over a variety of situations. To see which

indexes the query optimizer uses for a specific query, in SQL Server Management Studio, on

the Query menu, select Include Actual Execution Plan.

Do not always equate index usage with good performance, and good performance with

efficient index use. If using an index always helped produce the best performance, the job

of the query optimizer would be simple. In reality, an incorrect index choice can cause less

than optimal performance. Therefore, the task of the query optimizer is to select an index,

or combination of indexes, only when it will improve performance, and to avoid indexed

retrieval when it will hinder performance.

 Rowstore has been the traditional way to store relational table data. In SQL Server,

rowstore refers to table where the underlying data storage format is a heap, a B-tree

(clustered index), or a memory-optimized table.

The following tasks make up our recommended strategy for designing indexes:

1. Understand the characteristics of the database itself.

For example, is it an online transaction processing (OLTP) database with frequent

data modifications that must sustain a high throughput. Starting with SQL Server

2014 (12.x), memory-optimized tables and indexes are especially appropriate for

this scenario, by providing a latch-free design. For more information, see Indexes

for Memory-Optimized Tables, or Nonclustered Index for Memory-Optimized

Tables Design Guidelines and Hash Index for Memory-Optimized Tables Design

Guidelines in this guide.

1

Index Design Tasks

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/indexes-for-memory-optimized-tables?view=sql-server-ver15

Or an example of a Decision Support System (DSS) or data warehousing (OLAP)

database that must process very large data sets quickly. Starting with SQL Server

2012 (11.x), columnstore indexes are especially appropriate for typical data

warehousing data sets. Columnstore indexes can transform the data

warehousing experience for users by enabling faster performance for common

data warehousing queries such as filtering, aggregating, grouping, and star-join

queries. For more information, see Columnstore Indexes overview, or

Columnstore Index Design Guidelines in this guide.

2. Understand the characteristics of the most frequently used queries. For example,

knowing that a frequently used query joins two or more tables will help you

determine the best type of indexes to use.

3. Understand the characteristics of the columns used in the queries. For example, an

index is ideal for columns that have an integer data type and are also unique or

nonnull columns. For columns that have well-defined subsets of data, you can use a

filtered index in SQL Server 2008 and higher versions. For more information, see

Filtered Index Design Guidelines in this guide.

4. Determine which index options might enhance performance when the index is created

or maintained. For example, creating a clustered index on an existing large table

would benefit from the ONLINE index option. The ONLINE option allows for

concurrent activity on the underlying data to continue while the index is being

created or rebuilt. For more information, see Set Index Options.

5. Determine the optimal storage location for the index. A nonclustered index can be

stored in the same filegroup as the underlying table, or on a different filegroup. The

storage location of indexes can improve query performance by increasing disk I/O

performance. For example, storing a nonclustered index on a filegroup that is on a

different disk than the table filegroup can improve performance because multiple

disks can be read at the same time.

Alternatively, clustered and nonclustered indexes can use a partition scheme across

multiple filegroups. Partitioning makes large tables or indexes more manageable by

letting you access or manage subsets of data quickly and efficiently, while maintaining

the integrity of the overall collection. For more information, see Partitioned Tables and

Indexes. When you consider partitioning, determine whether the index should be

aligned, that is, partitioned in essentially the same manner as the table, or partitioned

independently.

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/set-index-options?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15

Experienced database administrators can design a good set of indexes, but this task is very

complex, time-consuming, and error-prone even for moderately complex databases and

workloads. Understanding the characteristics of your database, queries, and data columns

can help you design optimal indexes.

When you design an index, consider the following database guidelines:

Large numbers of indexes on a table affect the performance of INSERT , UPDATE ,

DELETE , and MERGE statements because all indexes must be adjusted appropriately as

data in the table changes. For example, if a column is used in several indexes and you

execute an UPDATE statement that modifies that column's data, each index that

contains that column must be updated as well as the column in the underlying base

table (heap or clustered index).

Avoid over-indexing heavily updated tables and keep indexes narrow, that is, with

as few columns as possible.

Use many indexes to improve query performance on tables with low update

requirements, but large volumes of data. Large numbers of indexes can help the

performance of queries that do not modify data, such as SELECT statements,

because the query optimizer has more indexes to choose from to determine the

fastest access method.

Indexing small tables may not be optimal because it can take the query optimizer

longer to traverse the index searching for data than to perform a simple table scan.

Therefore, indexes on small tables might never be used, but must still be maintained

as data in the table changes.

Indexes on views can provide significant performance gains when the view contains

aggregations, table joins, or a combination of aggregations and joins. The view does

not have to be explicitly referenced in the query for the query optimizer to use it.

Use the Database Engine Tuning Advisor to analyze your database and make index

recommendations. For more information, see Database Engine Tuning Advisor.

General Index Design Guidelines

Database Considerations

https://docs.microsoft.com/en-us/sql/relational-databases/performance/database-engine-tuning-advisor?view=sql-server-ver15

When you design an index, consider the following query guidelines:

Create nonclustered indexes on the columns that are frequently used in predicates

and join conditions in queries. These are your SARGable columns. However, you

should avoid adding unnecessary columns. Adding too many index columns can

adversely affect disk space and index maintenance performance.

Covering indexes can improve query performance because all the data needed to

meet the requirements of the query exists within the index itself. That is, only the

index pages, and not the data pages of the table or clustered index, are required to

retrieve the requested data; therefore, reducing overall disk I/O. For example, a query

of columns a and b on a table that has a composite index created on columns a, b,

and c can retrieve the specified data from the index alone.

Write queries that insert or modify as many rows as possible in a single statement,

instead of using multiple queries to update the same rows. By using only one

statement, optimized index maintenance could be exploited.

Evaluate the query type and how columns are used in the query. For example, a

column used in an exact-match query type would be a good candidate for a

nonclustered or clustered index.

Query Considerations

1

） Important

Covering indexes are the designation for a nonclustered index that resolves one

or several similar query results directly with no access to its base table, and

without incurring in lookups.
Such indexes have all the necessary non-SARGable

columns in its leaf level. This means that the columns returned by either the

SELECT clause and all the WHERE and JOIN arguments are covered by the index.

There is potentially much less I/O to execute the query, if the index is narrow

enough when compared to the rows and columns in the table itself, meaning it is

a real sub-set of the total columns.
Consider covering indexes when selecting a

small portion of a large table, and where that small portion is defined by a fixed

predicate, such as sparse columns that contain only a few non-NULL values, for

example.

https://docs.microsoft.com/en-us/sql/relational-databases/tables/use-sparse-columns?view=sql-server-ver15

 The term SARGable in relational databases refers to a Search ARGument-able predicate

that can leverage an index to speed up the execution of the query.

When you design an index consider the following column guidelines:

Keep the length of the index key short for clustered indexes. Additionally, clustered

indexes benefit from being created on unique or nonnull columns.

Columns that are of the ntext, text, image, varchar(max), nvarchar(max), and

varbinary(max) data types cannot be specified as index key columns. However,

varchar(max), nvarchar(max), varbinary(max), and xml data types can participate in a

nonclustered index as nonkey index columns. For more information, see the section

'Index with Included Columns' in this guide.

An xml data type can only be a key column only in an XML index. For more

information, see XML Indexes (SQL Server). SQL Server 2012 SP1 introduces a new

type of XML index known as a Selective XML Index. This new index can improve

querying performance over data stored as XML in SQL Server, allow for much faster

indexing of large XML data workloads, and improve scalability by reducing storage

costs of the index itself. For more information, see Selective XML Indexes (SXI).

Examine column uniqueness. A unique index instead of a nonunique index on the

same combination of columns provides additional information for the query optimizer

that makes the index more useful. For more information, see Unique Index Design

Guidelines in this guide.

Examine data distribution in the column. Frequently, a long-running query is caused

by indexing a column with few unique values, or by performing a join on such a

column. This is a fundamental problem with the data and query, and generally cannot

be resolved without identifying this situation. For example, a physical telephone

directory sorted alphabetically on last name will not expedite locating a person if all

people in the city are named Smith or Jones. For more information about data

distribution, see Statistics.

Consider using filtered indexes on columns that have well-defined subsets, for

example sparse columns, columns with mostly NULL values, columns with categories

of values, and columns with distinct ranges of values. A well-designed filtered index

1

Column Considerations

https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-indexes-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/selective-xml-indexes-sxi?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-ver15

can improve query performance, reduce index maintenance costs, and reduce storage

costs.

Consider the order of the columns if the index will contain multiple columns. The

column that is used in the WHERE clause in an equal to (=), greater than (>), less than

(<), or BETWEEN search condition, or participates in a join, should be placed first.

Additional columns should be ordered based on their level of distinctness, that is,

from the most distinct to the least distinct.

For example, if the index is defined as LastName , FirstName the index will be useful

when the search criterion is WHERE LastName = 'Smith' or WHERE LastName = Smith

AND FirstName LIKE 'J%' . However, the query optimizer would not use the index for

a query that searched only on FirstName (WHERE FirstName = 'Jane') .

Consider indexing computed columns. For more information, see Indexes on

Computed Columns.

After you have determined that an index is appropriate for a query, you can select the type

of index that best fits your situation. Index characteristics include the following:

Clustered versus nonclustered

Unique versus nonunique

Single column versus multicolumn

Ascending or descending order on the columns in the index

Full-table versus filtered for nonclustered indexes

Columnstore versus rowstore

Hash versus nonclustered for Memory-Optimized tables

You can also customize the initial storage characteristics of the index to optimize its

performance or maintenance by setting an option such as FILLFACTOR. Also, you can

determine the index storage location by using filegroups or partition schemes to optimize

performance.

As you develop your index design strategy, you should consider the placement of the

indexes on the filegroups associated with the database. Careful selection of the filegroup or

Index Characteristics

Index Placement on Filegroups or Partitions Schemes

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/indexes-on-computed-columns?view=sql-server-ver15

partition scheme can improve query performance.

By default, indexes are stored in the same filegroup as the base table on which the index is

created. A nonpartitioned clustered index and the base table always reside in the same

filegroup. However, you can do the following:

Create nonclustered indexes on a filegroup other than the filegroup of the base table

or clustered index.

Partition clustered and nonclustered indexes to span multiple filegroups.

Move a table from one filegroup to another by dropping the clustered index and

specifying a new filegroup or partition scheme in the MOVE TO clause of the DROP

INDEX statement or by using the CREATE INDEX statement with the DROP_EXISTING

clause.

By creating the nonclustered index on a different filegroup, you can achieve performance

gains if the filegroups are using different physical drives with their own controllers. Data

and index information can then be read in parallel by the multiple disk heads. For example,

if Table_A on filegroup f1 and Index_A on filegroup f2 are both being used by the same

query, performance gains can be achieved because both filegroups are being fully used

without contention. However, if Table_A is scanned by the query but Index_A is not

referenced, only filegroup f1 is used. This creates no performance gain.

Because you cannot predict what type of access will occur and when it will occur, it could

be a better decision to spread your tables and indexes across all filegroups. This would

guarantee that all disks are being accessed because all data and indexes are spread evenly

across all disks, regardless of which way the data is accessed. This is also a simpler

approach for system administrators.

You can also consider partitioning clustered and nonclustered indexes across multiple

filegroups. Partitioned indexes are partitioned horizontally, or by row, based on a partition

function. The partition function defines how each row is mapped to a set of partitions

based on the values of certain columns, called partitioning columns. A partition scheme

specifies the mapping of the partitions to a set of filegroups.

Partitioning an index can provide the following benefits:

Provide scalable systems that make large indexes more manageable. OLTP systems,

for example, can implement partition-aware applications that deal with large indexes.

Partitions across multiple Filegroups

Make queries run faster and more efficiently. When queries access several partitions

of an index, the query optimizer can process individual partitions at the same time

and exclude partitions that are not affected by the query.

For more information, see Partitioned Tables and Indexes.

When defining indexes, you should consider whether the data for the index key column

should be stored in ascending or descending order. Ascending is the default and maintains

compatibility with earlier versions of SQL Server. The syntax of the CREATE INDEX, CREATE

TABLE, and ALTER TABLE statements supports the keywords ASC (ascending) and DESC

(descending) on individual columns in indexes and constraints.

Specifying the order in which key values are stored in an index is useful when queries

referencing the table have ORDER BY clauses that specify different directions for the key

column or columns in that index. In these cases, the index can remove the need for a SORT

operator in the query plan; therefore, this makes the query more efficient. For example, the

buyers in the Adventure Works Cycles purchasing department have to evaluate the quality

of products they purchase from vendors. The buyers are most interested in finding

products sent by these vendors with a high rejection rate. As shown in the following query,

retrieving the data to meet this criteria requires the RejectedQty column in the

Purchasing.PurchaseOrderDetail table to be sorted in descending order (large to small)

and the ProductID column to be sorted in ascending order (small to large).

SQL

The following execution plan for this query shows that the query optimizer used a SORT

operator to return the result set in the order specified by the ORDER BY clause.

Index Sort Order Design Guidelines

＝ Copy

SELECT RejectedQty, ((RejectedQty/OrderQty)*100) AS RejectionRate,

 ProductID, DueDate

FROM Purchasing.PurchaseOrderDetail

ORDER BY RejectedQty DESC, ProductID ASC;

https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15

If an index is created with key columns that match those in the ORDER BY clause in the

query, the SORT operator can be eliminated in the query plan and the query plan is more

efficient.

SQL

After the query is executed again, the following execution plan shows that the SORT

operator has been eliminated and the newly created nonclustered index is used.

The Database Engine can move equally efficiently in either direction. An index defined as

(RejectedQty DESC, ProductID ASC) can still be used for a query in which the sort

direction of the columns in the ORDER BY clause are reversed. For example, a query with

the ORDER BY clause ORDER BY RejectedQty ASC, ProductID DESC can use the index.

Sort order can be specified only for the key columns in index. The sys.index_columns

catalog view and the INDEXKEY_PROPERTY function report whether an index column is

stored in ascending or descending order.

Use these metadata views to see attributes of indexes. More architectural information is

embedded in some of these views.

sys.indexes (Transact-SQL)

sys.index_columns (Transact-SQL)

＝ Copy

CREATE NONCLUSTERED INDEX IX_PurchaseOrderDetail_RejectedQty

ON Purchasing.PurchaseOrderDetail

 (RejectedQty DESC, ProductID ASC, DueDate, OrderQty);

Metadata

７ Note

For columnstore indexes, all columns are stored in the metadata as included columns.

The columnstore index does not have key columns.

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-index-columns-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-indexes-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-index-columns-transact-sql?view=sql-server-ver15

y _ ()

sys.partitions (Transact-SQL)

sys.internal_partitions (Transact-SQL)

sys.dm_db_index_operational_stats (Transact-SQL)

sys.dm_db_index_physical_stats (Transact-SQL)

sys.column_store_segments (Transact-SQL)

sys.column_store_dictionaries (Transact-SQL)

sys.column_store_row_groups (Transact-SQL)

sys.dm_db_column_store_row_group_operational_stats (Transact-SQL)

sys.dm_db_column_store_row_group_physical_stats (Transact-SQL)

sys.dm_column_store_object_pool (Transact-SQL)

sys.dm_db_column_store_row_group_operational_stats (Transact-SQL)

sys.dm_db_xtp_hash_index_stats (Transact-SQL)

sys.dm_db_xtp_index_stats (Transact-SQL)

sys.dm_db_xtp_object_stats (Transact-SQL)

sys.dm_db_xtp_nonclustered_index_stats (Transact-SQL)

sys.dm_db_xtp_table_memory_stats (Transact-SQL)

sys.hash_indexes (Transact-SQL)

sys.memory_optimized_tables_internal_attributes (Transact-SQL)

Clustered Index Design Guidelines

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-index-columns-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-partitions-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-internal-partitions-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-index-operational-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-index-physical-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-column-store-segments-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-column-store-dictionaries-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-column-store-row-groups-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-column-store-row-group-operational-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-column-store-row-group-physical-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-column-store-object-pool-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-column-store-row-group-operational-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-hash-index-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-index-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-object-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-table-memory-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-hash-indexes-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-memory-optimized-tables-internal-attributes-transact-sql?view=sql-server-ver15

Clustered indexes sort and store the data rows in the table based on their key values. There

can only be one clustered index per table, because the data rows themselves can only be

sorted in one order. With few exceptions, every table should have a clustered index defined

on the column, or columns, that offer the following:

Can be used for frequently used queries.

Provide a high degree of uniqueness.

Can be used in range queries.

If the clustered index is not created with the UNIQUE property, the Database Engine

automatically adds a 4-byte uniqueifier column to the table. When it is required, the

Database Engine automatically adds a uniqueifier value to a row to make each key unique.

This column and its values are used internally and cannot be seen or accessed by users.

In SQL Server, indexes are organized as B-Trees. Each page in an index B-tree is called an

index node. The top node of the B-tree is called the root node. The bottom nodes in the

index are called the leaf nodes. Any index levels between the root and the leaf nodes are

collectively known as intermediate levels. In a clustered index, the leaf nodes contain the

data pages of the underlying table. The root and intermediate level nodes contain index

pages holding index rows. Each index row contains a key value and a pointer to either an

intermediate level page in the B-tree, or a data row in the leaf level of the index. The pages

in each level of the index are linked in a doubly-linked list.

Clustered indexes have one row in sys.partitions, with index_id = 1 for each partition used

by the index. By default, a clustered index has a single partition. When a clustered index has

multiple partitions, each partition has a B-tree structure that contains the data for that

specific partition. For example, if a clustered index has four partitions, there are four B-tree

structures; one in each partition.

７ Note

When you create a PRIMARY KEY constraint, a unique index on the column, or

columns, is automatically created. By default, this index is clustered; however, you

can specify a nonclustered index when you create the constraint.

Clustered Index Architecture

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-partitions-transact-sql?view=sql-server-ver15

Depending on the data types in the clustered index, each clustered index structure will have

one or more allocation units in which to store and manage the data for a specific partition.

At a minimum, each clustered index will have one IN_ROW_DATA allocation unit per

partition. The clustered index will also have one LOB_DATA allocation unit per partition if it

contains large object (LOB) columns. It will also have one ROW_OVERFLOW_DATA

allocation unit per partition if it contains variable length columns that exceed the 8,060

byte row size limit.

The pages in the data chain and the rows in them are ordered on the value of the clustered

index key. All inserts are made at the point where the key value in the inserted row fits in

the ordering sequence among existing rows.

This illustration shows the structure of a clustered index in a single partition.

Before you create clustered indexes, understand how your data will be accessed. Consider

using a clustered index for queries that do the following:

Query Considerations

Return a range of values by using operators such as BETWEEN , >, >=, <, and <=.

After the row with the first value is found by using the clustered index, rows with

subsequent indexed values are guaranteed to be physically adjacent. For example, if a

query retrieves records between a range of sales order numbers, a clustered index on

the column SalesOrderNumber can quickly locate the row that contains the starting

sales order number, and then retrieve all successive rows in the table until the last

sales order number is reached.

Return large result sets.

Use JOIN clauses; typically these are foreign key columns.

Use ORDER BY or GROUP BY clauses.

An index on the columns specified in the ORDER BY or GROUP BY clause may remove

the need for the Database Engine to sort the data, because the rows are already

sorted. This improves query performance.

Generally, you should define the clustered index key with as few columns as possible.

Consider columns that have one or more of the following attributes:

Are unique or contain many distinct values

For example, an employee ID uniquely identifies employees. A clustered index or

PRIMARY KEY constraint on the EmployeeID column would improve the performance

of queries that search for employee information based on the employee ID number.

Alternatively, a clustered index could be created on LastName , FirstName ,

MiddleName because employee records are frequently grouped and queried in this

way, and the combination of these columns would still provide a high degree of

difference.

Column Considerations

 Tip

If not specified differently, when creating a PRIMARY KEY constraint, SQL Server

creates a clustered index to support that constraint.
Although a uniqueidentifier

can be used to enforce uniqueness as a PRIMARY KEY, it is not an efficient

clustering key.
If using a uniqueidentifier as PRIMARY KEY, the recommendation is

https://docs.microsoft.com/en-us/sql/relational-databases/tables/create-primary-keys?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/create-primary-keys?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/data-types/uniqueidentifier-transact-sql?view=sql-server-ver15

Are accessed sequentially

For example, a product ID uniquely identifies products in the Production.Product

table in the AdventureWorks2012 database. Queries in which a sequential search is

specified, such as WHERE ProductID BETWEEN 980 and 999 , would benefit from a

clustered index on ProductID . This is because the rows would be stored in sorted

order on that key column.

Defined as IDENTITY .

Used frequently to sort the data retrieved from a table.

It can be a good idea to cluster, that is physically sort, the table on that column to

save the cost of a sort operation every time the column is queried.

Clustered indexes are not a good choice for the following attributes:

Columns that undergo frequent changes

This causes in the whole row to move, because the Database Engine must keep the

data values of a row in physical order. This is an important consideration in high-

volume transaction processing systems in which data is typically volatile.

Wide keys

Wide keys are a composite of several columns or several large-size columns. The key

values from the clustered index are used by all nonclustered indexes as lookup keys.

Any nonclustered indexes defined on the same table will be significantly larger

because the nonclustered index entries contain the clustering key and also the key

columns defined for that nonclustered index.

A nonclustered index contains the index key values and row locators that point to the

storage location of the table data. You can create multiple nonclustered indexes on a table

or indexed view. Generally, nonclustered indexes should be designed to improve the

performance of frequently used queries that are not covered by the clustered index.

to create it as a nonclustered index, and use another column such as an

IDENTITY to create the clustered index.

Nonclustered Index Design Guidelines

Similar to the way you use an index in a book, the query optimizer searches for a data value

by searching the nonclustered index to find the location of the data value in the table and

then retrieves the data directly from that location. This makes nonclustered indexes the

optimal choice for exact match queries because the index contains entries describing the

exact location in the table of the data values being searched for in the queries. For example,

to query the HumanResources. Employee table for all employees that report to a specific

manager, the query optimizer might use the nonclustered index IX_Employee_ManagerID ;

this has ManagerID as its key column. The query optimizer can quickly find all entries in the

index that match the specified ManagerID . Each index entry points to the exact page and

row in the table, or clustered index, in which the corresponding data can be found. After

the query optimizer finds all entries in the index, it can go directly to the exact page and

row to retrieve the data.

Nonclustered indexes have the same B-tree structure as clustered indexes, except for the

following significant differences:

The data rows of the underlying table are not sorted and stored in order based on

their nonclustered keys.

The leaf level of a nonclustered index is made up of index pages instead of data

pages.

The row locators in nonclustered index rows are either a pointer to a row or are a clustered

index key for a row, as described in the following:

If the table is a heap, which means it does not have a clustered index, the row locator

is a pointer to the row. The pointer is built from the file identifier (ID), page number,

and number of the row on the page. The whole pointer is known as a Row ID (RID).

If the table has a clustered index, or the index is on an indexed view, the row locator is

the clustered index key for the row.

Nonclustered indexes have one row in sys.partitions with index_id > 1 for each partition

used by the index. By default, a nonclustered index has a single partition. When a

nonclustered index has multiple partitions, each partition has a B-tree structure that

contains the index rows for that specific partition. For example, if a nonclustered index has

four partitions, there are four B-tree structures, with one in each partition.

Nonclustered Index Architecture

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-partitions-transact-sql?view=sql-server-ver15

Depending on the data types in the nonclustered index, each nonclustered index structure

will have one or more allocation units in which to store and manage the data for a specific

partition. At a minimum, each nonclustered index will have one IN_ROW_DATA allocation

unit per partition that stores the index B-tree pages. The nonclustered index will also have

one LOB_DATA allocation unit per partition if it contains large object (LOB) columns.

Additionally, it will have one ROW_OVERFLOW_DATA allocation unit per partition if it

contains variable length columns that exceed the 8,060 byte row size limit.

The following illustration shows the structure of a nonclustered index in a single partition.

Consider the characteristics of the database when designing nonclustered indexes.

Databases or tables with low update requirements, but large volumes of data can

benefit from many nonclustered indexes to improve query performance. Consider

creating filtered indexes for well-defined subsets of data to improve query

performance, reduce index storage costs, and reduce index maintenance costs

compared with full-table nonclustered indexes.

Database Considerations

Decision Support System applications and databases that contain primarily read-only

data can benefit from many nonclustered indexes. The query optimizer has more

indexes to choose from to determine the fastest access method, and the low update

characteristics of the database mean index maintenance will not impede performance.

Online Transaction Processing (OLTP) applications and databases that contain heavily

updated tables should avoid over-indexing. Additionally, indexes should be narrow,

that is, with as few columns as possible.

Large numbers of indexes on a table affect the performance of INSERT, UPDATE,

DELETE, and MERGE statements because all indexes must be adjusted appropriately as

data in the table changes.

Before you create nonclustered indexes, you should understand how your data will be

accessed. Consider using a nonclustered index for queries that have the following

attributes:

Use JOIN or GROUP BY clauses.

Create multiple nonclustered indexes on columns involved in join and grouping

operations, and a clustered index on any foreign key columns.

Queries that do not return large result sets.

Create filtered indexes to cover queries that return a well-defined subset of rows from

a large table.

Contain columns frequently involved in search conditions of a query, such as WHERE

clause, that return exact matches.

Query Considerations

 Tip

Typically the WHERE clause of the CREATE INDEX statement matches the WHERE

clause of a query being covered.

 Tip

Consider columns that have one or more of these attributes:

Cover the query.

Performance gains are achieved when the index contains all columns in the query. The

query optimizer can locate all the column values within the index; table or clustered

index data is not accessed resulting in fewer disk I/O operations. Use index with

included columns to add covering columns instead of creating a wide index key.

If the table has a clustered index, the column or columns defined in the clustered

index are automatically appended to the end of each nonclustered index on the table.

This can produce a covered query without specifying the clustered index columns in

the definition of the nonclustered index. For example, if a table has a clustered index

on column C , a nonclustered index on columns B and A will have as its key values

columns B , A , and C .

Lots of distinct values, such as a combination of last name and first name, if a

clustered index is used for other columns.

If there are very few distinct values, such as only 1 and 0, most queries will not use the

index because a table scan is generally more efficient. For this type of data, consider

creating a filtered index on a distinct value that only occurs in a small number of rows.

For example, if most of the values are 0, the query optimizer might use a filtered index

for the data rows that contain 1.

You can extend the functionality of nonclustered indexes by adding nonkey columns to the

leaf level of the nonclustered index. By including nonkey columns, you can create

nonclustered indexes that cover more queries. This is because the nonkey columns have

the following benefits:

Consider the cost versus benefit when adding new indexes. It may be preferable

to consolidate additional query needs into an existing index. For example,

consider adding one or two extra leaf level columns to an existing index, if it

allows coverage of several critical queries, instead of having one exactly covering

index per each critical query.

Column Considerations

Use Included Columns to Extend Nonclustered Indexes

They can be data types not allowed as index key columns.

They are not considered by the Database Engine when calculating the number of

index key columns or index key size.

An index with included nonkey columns can significantly improve query performance when

all columns in the query are included in the index either as key or nonkey columns.

Performance gains are achieved because the query optimizer can locate all the column

values within the index; table or clustered index data is not accessed resulting in fewer disk

I/O operations.

While key columns are stored at all levels of the index, nonkey columns are stored only at

the leaf level.

You can include nonkey columns in a nonclustered index to avoid exceeding the current

index size limitations of a maximum of 16 key columns and a maximum index key size of

900 bytes. The Database Engine does not consider nonkey columns when calculating the

number of index key columns or index key size.

For example, assume that you want to index the following columns in the Document table:

Title nvarchar(50)

Revision nchar(5)

FileName nvarchar(400)

Because the nchar and nvarchar data types require 2 bytes for each character, an index that

contains these three columns would exceed the 900 byte size limitation by 10 bytes (455 *

2). By using the INCLUDE clause of the CREATE INDEX statement, the index key could be

defined as (Title, Revision) and FileName defined as a nonkey column. In this way, the

index key size would be 110 bytes (55 * 2), and the index would still contain all the required

columns. The following statement creates such an index.

SQL

７ Note

When an index contains all the columns referenced by the query it is typically referred

to as covering the query.

Using Included Columns to Avoid Size Limits

＝ Copy

When you design nonclustered indexes with included columns consider the following

guidelines:

Nonkey columns are defined in the INCLUDE clause of the CREATE INDEX statement.

Nonkey columns can only be defined on nonclustered indexes on tables or indexed

views.

All data types are allowed except text, ntext, and image.

Computed columns that are deterministic and either precise or imprecise can be

included columns. For more information, see Indexes on Computed Columns.

As with key columns, computed columns derived from image, ntext, and text data

types can be nonkey (included) columns as long as the computed column data type is

allowed as a nonkey index column.

Column names cannot be specified in both the INCLUDE list and in the key column

list.

Column names cannot be repeated in the INCLUDE list.

At least one key column must be defined. The maximum number of nonkey columns

is 1023 columns. This is the maximum number of table columns minus 1.

Index key columns, excluding nonkeys, must follow the existing index size restrictions

of 16 key columns maximum, and a total index key size of 900 bytes.

The total size of all nonkey columns is limited only by the size of the columns

specified in the INCLUDE clause; for example, varchar(max) columns are limited to 2

GB.

CREATE INDEX IX_Document_Title

ON Production.Document (Title, Revision)

INCLUDE (FileName);

Index with Included Columns Guidelines

Column Size Guidelines

Column Modification Guidelines

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/indexes-on-computed-columns?view=sql-server-ver15

When you modify a table column that has been defined as an included column, the

following restrictions apply:

Nonkey columns cannot be dropped from the table unless the index is dropped first.

Nonkey columns cannot be changed, except to do the following:

Change the nullability of the column from NOT NULL to NULL.

Increase the length of varchar, nvarchar, or varbinary columns.

Redesign nonclustered indexes with a large index key size so that only columns used for

searching and lookups are key columns. Make all other columns that cover the query

included nonkey columns. In this way, you will have all columns needed to cover the query,

but the index key itself is small and efficient.

For example, assume that you want to design an index to cover the following query.

SQL

To cover the query, each column must be defined in the index. Although you could define

all columns as key columns, the key size would be 334 bytes. Because the only column

actually used as search criteria is the PostalCode column, having a length of 30 bytes, a

better index design would define PostalCode as the key column and include all other

columns as nonkey columns.

The following statement creates an index with included columns to cover the query.

SQL

７ Note

These column modification restrictions also apply to index key columns.

Design Recommendations

＝ Copy

SELECT AddressLine1, AddressLine2, City, StateProvinceID, PostalCode
FROM Person.Address

WHERE PostalCode BETWEEN N'98000' and N'99999';

＝ Copy

Avoid adding unnecessary columns. Adding too many index columns, key or nonkey, can

have the following performance implications:

Fewer index rows will fit on a page. This could create I/O increases and reduced cache

efficiency.

More disk space will be required to store the index. In particular, adding

varchar(max), nvarchar(max), varbinary(max), or xml data types as nonkey index

columns may significantly increase disk space requirements. This is because the

column values are copied into the index leaf level. Therefore, they reside in both the

index and the base table.

Index maintenance may increase the time that it takes to perform modifications,

inserts, updates, or deletes, to the underlying table or indexed view.

You will have to determine whether the gains in query performance outweigh the affect to

performance during data modification and in additional disk space requirements.

A unique index guarantees that the index key contains no duplicate values and therefore

every row in the table is in some way unique. Specifying a unique index makes sense only

when uniqueness is a characteristic of the data itself. For example, if you want to make sure

that the values in the NationalIDNumber column in the HumanResources.Employee table

are unique, when the primary key is EmployeeID , create a UNIQUE constraint on the

NationalIDNumber column. If the user tries to enter the same value in that column for

more than one employee, an error message is displayed and the duplicate value is not

entered.

With multicolumn unique indexes, the index guarantees that each combination of values in

the index key is unique. For example, if a unique index is created on a combination of

LastName , FirstName , and MiddleName columns, no two rows in the table could have the

same combination of values for these columns.

CREATE INDEX IX_Address_PostalCode

ON Person.Address (PostalCode)

INCLUDE (AddressLine1, AddressLine2, City, StateProvinceID);

Performance Considerations

Unique Index Design Guidelines

Both clustered and nonclustered indexes can be unique. Provided that the data in the

column is unique, you can create both a unique clustered index and multiple unique

nonclustered indexes on the same table.

The benefits of unique indexes include the following:

Data integrity of the defined columns is ensured.

Additional information helpful to the query optimizer is provided.

Creating a PRIMARY KEY or UNIQUE constraint automatically creates a unique index on the

specified columns. There are no significant differences between creating a UNIQUE

constraint and creating a unique index independent of a constraint. Data validation occurs

in the same manner and the query optimizer does not differentiate between a unique index

created by a constraint or manually created. However, you should create a UNIQUE or

PRIMARY KEY constraint on the column when data integrity is the objective. By doing this

the objective of the index will be clear.

A unique index, UNIQUE constraint, or PRIMARY KEY constraint cannot be created if

duplicate key values exist in the data.

If the data is unique and you want uniqueness enforced, creating a unique index

instead of a nonunique index on the same combination of columns provides

additional information for the query optimizer that can produce more efficient

execution plans. Creating a unique index (preferably by creating a UNIQUE constraint)

is recommended in this case.

A unique nonclustered index can contain included nonkey columns. For more

information, see Index with Included Columns.

A filtered index is an optimized nonclustered index, especially suited to cover queries that

select from a well-defined subset of data. It uses a filter predicate to index a portion of

rows in the table. A well-designed filtered index can improve query performance, reduce

index maintenance costs, and reduce index storage costs compared with full-table indexes.

Applies to: SQL Server 2008 through SQL Server 2019 (15.x).

Considerations

Filtered Index Design Guidelines

Filtered indexes can provide the following advantages over full-table indexes:

Improved query performance and plan quality

A well-designed filtered index improves query performance and execution plan

quality because it is smaller than a full-table nonclustered index and has filtered

statistics. The filtered statistics are more accurate than full-table statistics because

they cover only the rows in the filtered index.

Reduced index maintenance costs

An index is maintained only when data manipulation language (DML) statements

affect the data in the index. A filtered index reduces index maintenance costs

compared with a full-table nonclustered index because it is smaller and is only

maintained when the data in the index is affected. It is possible to have a large

number of filtered indexes, especially when they contain data that is affected

infrequently. Similarly, if a filtered index contains only the frequently affected data, the

smaller size of the index reduces the cost of updating the statistics.

Reduced index storage costs

Creating a filtered index can reduce disk storage for nonclustered indexes when a full-

table index is not necessary. You can replace a full-table nonclustered index with

multiple filtered indexes without significantly increasing the storage requirements.

Filtered indexes are useful when columns contain well-defined subsets of data that queries

reference in SELECT statements. Examples are:

Sparse columns that contain only a few non-NULL values.

Heterogeneous columns that contain categories of data.

Columns that contain ranges of values such as dollar amounts, time, and dates.

Table partitions that are defined by simple comparison logic for column values.

Reduced maintenance costs for filtered indexes are most noticeable when the number of

rows in the index is small compared with a full-table index. If the filtered index includes

most of the rows in the table, it could cost more to maintain than a full-table index. In this

case, you should use a full-table index instead of a filtered index.

Filtered indexes are defined on one table and only support simple comparison operators. If

you need a filter expression that references multiple tables or has complex logic, you

should create a view.

In order to design effective filtered indexes, it is important to understand what queries your

application uses and how they relate to subsets of your data. Some examples of data that

have well-defined subsets are columns with mostly NULL values, columns with

heterogeneous categories of values and columns with distinct ranges of values. The

following design considerations give a variety of scenarios for when a filtered index can

provide advantages over full-table indexes.

When a column only has a small number of relevant values for queries, you can create a

filtered index on the subset of values. For example, when the values in a column are mostly

NULL and the query selects only from the non-NULL values, you can create a filtered index

for the non-NULL data rows. The resulting index will be smaller and cost less to maintain

than a full-table nonclustered index defined on the same key columns.

For example, the AdventureWorks2012 database has a Production.BillOfMaterials table

with 2679 rows. The EndDate column has only 199 rows that contain a non-NULL value and

the other 2480 rows contain NULL. The following filtered index would cover queries that

return the columns defined in the index and that select only rows with a non-NULL value

for EndDate .

SQL

Design Considerations

 Tip

The nonclustered columnstore index definition supports using a filtered condition. To

minimize the performance impact of adding a columnstore index on an OLTP table,

use a filtered condition to create a nonclustered columnstore index on only the cold

data of your operational workload.

Filtered Indexes for subsets of data

＝ Copy

CREATE NONCLUSTERED INDEX FIBillOfMaterialsWithEndDate

 ON Production.BillOfMaterials (ComponentID, StartDate)

 WHERE EndDate IS NOT NULL ;

GO

The filtered index FIBillOfMaterialsWithEndDate is valid for the following query. You can

display the query execution plan to determine if the query optimizer used the filtered

index.

SQL

For more information about how to create filtered indexes and how to define the filtered

index predicate expression, see Create Filtered Indexes.

When a table has heterogeneous data rows, you can create a filtered index for one or more

categories of data.

For example, the products listed in the Production.Product table are each assigned to a

ProductSubcategoryID , which are in turn associated with the product categories Bikes,

Components, Clothing, or Accessories. These categories are heterogeneous because their

column values in the Production.Product table are not closely correlated. For example,

the columns Color , ReorderPoint , ListPrice , Weight , Class , and Style have unique

characteristics for each product category. Suppose that there are frequent queries for

accessories which have subcategories between 27 and 36 inclusive. You can improve the

performance of queries for accessories by creating a filtered index on the accessories

subcategories as shown in the following example.

SQL

The filtered index FIProductAccessories covers the following query because the query

results are contained in the index and the query plan does not include a base table lookup.

For example, the query predicate expression ProductSubcategoryID = 33 is a subset of

＝ Copy

SELECT ProductAssemblyID, ComponentID, StartDate

FROM Production.BillOfMaterials

WHERE EndDate IS NOT NULL

 AND ComponentID = 5

 AND StartDate > '20080101' ;

Filtered Indexes for heterogeneous data

＝ Copy

CREATE NONCLUSTERED INDEX FIProductAccessories

 ON Production.Product (ProductSubcategoryID, ListPrice)

 Include (Name)

WHERE ProductSubcategoryID >= 27 AND ProductSubcategoryID <= 36;

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes?view=sql-server-ver15

the filtered index predicate ProductSubcategoryID >= 27 and ProductSubcategoryID <=

36 , the ProductSubcategoryID and ListPrice columns in the query predicate are both

key columns in the index, and name is stored in the leaf level of the index as an included

column.

SQL

It is a best practice to include a small number of key or included columns in a filtered index

definition, and to incorporate only the columns that are necessary for the query optimizer

to choose the filtered index for the query execution plan. The query optimizer can choose a

filtered index for the query regardless of whether it does or does not cover the query.

However, the query optimizer is more likely to choose a filtered index if it covers the query.

In some cases, a filtered index covers the query without including the columns in the

filtered index expression as key or included columns in the filtered index definition. The

following guidelines explain when a column in the filtered index expression should be a key

or included column in the filtered index definition. The examples refer to the filtered index,

FIBillOfMaterialsWithEndDate that was created previously.

A column in the filtered index expression does not need to be a key or included column in

the filtered index definition if the filtered index expression is equivalent to the query

predicate and the query does not return the column in the filtered index expression with

the query results. For example, FIBillOfMaterialsWithEndDate covers the following query

because the query predicate is equivalent to the filter expression, and EndDate is not

returned with the query results. FIBillOfMaterialsWithEndDate does not need EndDate

as a key or included column in the filtered index definition.

SQL

＝ Copy

SELECT Name, ProductSubcategoryID, ListPrice

FROM Production.Product

WHERE ProductSubcategoryID = 33 AND ListPrice > 25.00 ;

Key Columns

＝ Copy

SELECT ComponentID, StartDate FROM Production.BillOfMaterials

WHERE EndDate IS NOT NULL;

A column in the filtered index expression should be a key or included column in the filtered

index definition if the query predicate uses the column in a comparison that is not

equivalent to the filtered index expression. For example, FIBillOfMaterialsWithEndDate

is valid for the following query because it selects a subset of rows from the filtered index.

However, it does not cover the following query because EndDate is used in the comparison

EndDate > '20040101' , which is not equivalent to the filtered index expression. The query

processor cannot execute this query without looking up the values of EndDate . Therefore,

EndDate should be a key or included column in the filtered index definition.

SQL

A column in the filtered index expression should be a key or included column in the filtered

index definition if the column is in the query result set. For example,

FIBillOfMaterialsWithEndDate does not cover the following query because it returns the

EndDate column in the query results. Therefore, EndDate should be a key or included

column in the filtered index definition.

SQL

The clustered index key of the table does not need to be a key or included column in the

filtered index definition. The clustered index key is automatically included in all

nonclustered indexes, including filtered indexes.

If the comparison operator specified in the filtered index expression of the filtered index

results in an implicit or explicit data conversion, an error will occur if the conversion occurs

on the left side of a comparison operator. A solution is to write the filtered index expression

with the data conversion operator (CAST or CONVERT) on the right side of the comparison

operator.

The following example creates a table with a variety of data types.

＝ Copy

SELECT ComponentID, StartDate FROM Production.BillOfMaterials

WHERE EndDate > '20040101';

＝ Copy

SELECT ComponentID, StartDate, EndDate FROM Production.BillOfMaterials

WHERE EndDate IS NOT NULL;

Data Conversion Operators in the Filter Predicate

＝

SQL

In the following filtered index definition, column b is implicitly converted to an integer data

type for the purpose of comparing it to the constant 1. This generates error message 10611

because the conversion occurs on the left hand side of the operator in the filtered

predicate.

SQL

The solution is to convert the constant on the right hand side to be of the same type as

column b , as seen in the following example:

SQL

Moving the data conversion from the left side to the right side of a comparison operator

might change the meaning of the conversion. In the above example, when the CONVERT

operator was added to the right side, the comparison changed from an integer comparison

to a varbinary comparison.

A columnstore index is a technology for storing, retrieving and managing data by using a

columnar data format, called a columnstore. For more information, refer to Columnstore

Indexes overview.

For version information, see Columnstore indexes - What's new.

＝ Copy

USE AdventureWorks2012;

GO

CREATE TABLE dbo.TestTable (a int, b varbinary(4));

＝ Copy

CREATE NONCLUSTERED INDEX TestTabIndex ON dbo.TestTable(a,b)

WHERE b = 1;

＝ Copy

CREATE INDEX TestTabIndex ON dbo.TestTable(a,b)

WHERE b = CONVERT(Varbinary(4), 1);

Columnstore Index Design Guidelines

Columnstore Index Architecture

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-what-s-new?view=sql-server-ver15

Knowing these basics will make it easier to understand other columnstore articles that

explain how to use them effectively.

When discussing columnstore indexes, we use the terms rowstore and columnstore to

emphasize the format for the data storage. Columnstore indexes use both types of storage.

A columnstore is data that is logically organized as a table with rows and columns,

and physically stored in a column-wise data format.

A columnstore index physically stores most of the data in columnstore format. In

columnstore format, the data is compressed and uncompressed as columns. There is

no need to uncompress other values in each row that are not requested by the query.

This makes it fast to scan an entire column of a large table.

A rowstore is data that is logically organized as a table with rows and columns, and

then physically stored in a row-wise data format. This has been the traditional way to

store relational table data such as a heap or clustered B-tree index.

A columnstore index also physically stores some rows in a rowstore format called a

deltastore. The deltastore,also called delta rowgroups, is a holding place for rows that

are too few in number to qualify for compression into the columnstore. Each delta

rowgroup is implemented as a clustered B-tree index.

The deltastore is a holding place for rows that are too few in number to be

compressed into the columnstore. The deltastore stores the rows in rowstore format.

Data storage uses columnstore and rowstore compression

For more information about columnstore terms and concepts, see Columnstore indexes:

Overview.

The columnstore index groups rows into manageable units. Each of these units is called a

rowgroup. For best performance, the number of rows in a rowgroup is large enough to

improve compression rates and small enough to benefit from in-memory operations.

For example, the columnstore index performs these operations on rowgroups:

Compresses rowgroups into the columnstore. Compression is performed on each

column segment within a rowgroup.

Merges rowgroups during an ALTER INDEX ... REORGANIZE operation, including

removing deleted data.

Creates new rowgroups during an ALTER INDEX ... REBUILD operation.

Reports on rowgroup health and fragmentation in the dynamic management views

(DMVs).

The deltastore is comprised of one or more rowgroups called delta rowgroups. Each delta

rowgroup is a clustered B-tree index that stores small bulk loads and inserts until the

rowgroup contains 1,048,576 rows, at which time a process called the tuple-mover

automatically compresses the closed rowgroup into the columnstore.

For more information about rowgroup statuses, see

sys.dm_db_column_store_row_group_physical_stats (Transact-SQL).

Operations are performed on rowgroups and column segments

 Tip

Having too many small rowgroups decreases the columnstore index quality. A

reorganize operation will merge smaller rowgroups, following an internal threshold

policy that determines how to remove deleted rows and combine the compressed

rowgroups. After a merge, the index quality should be improved.

７ Note

Starting with SQL Server 2019 (15.x), the tuple-mover is helped by a background

merge task that automatically compresses smaller OPEN delta rowgroups that have

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-column-store-row-group-physical-stats-transact-sql?view=sql-server-ver15

Each column has some of its values in each rowgroup. These values are called column

segments. Each rowgroup contains one column segment for every column in the table.

Each column has one column segment in each rowgroup.

When the columnstore index compresses a rowgroup, it compresses each column segment

separately. To uncompress an entire column, the columnstore index only needs to

uncompress one column segment from each rowgroup.

For more information about columnstore terms and concepts, see Columnstore indexes:

Overview.

A columnstore index improves columnstore compression and performance by compressing

at least 102,400 rows at a time into the columnstore index. To compress rows in bulk, the

columnstore index accumulates small loads and inserts in the deltastore. The deltastore

operations are handled behind the scenes. To return the correct query results, the clustered

columnstore index combines query results from both the columnstore and the deltastore.

Rows go to the deltastore when they are:

Inserted with the INSERT INTO ... VALUES statement.

At the end of a bulk load and they number less than 102,400.

existed for some time as determined by an internal threshold, or merges

COMPRESSED rowgroups from where a large number of rows has been deleted.

Small loads and inserts go to the deltastore

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15

Updated. Each update is implemented as a delete and an insert.

The deltastore also stores a list of IDs for deleted rows that have been marked as deleted

but not yet physically deleted from the columnstore.

For more information about columnstore terms and concepts, see Columnstore indexes:

Overview.

Clustered columnstore indexes collect up to 1,048,576 rows in each delta rowgroup before

compressing the rowgroup into the columnstore. This improves the compression of the

columnstore index. When a delta rowgroup reaches the maximum number of rows, it

transitions from an OPEN to CLOSED state. A background process named the tuple-mover

checks for closed row groups. If the process finds a closed rowgroup, it compresses the

rowgroup and stores it into the columnstore.

When a delta rowgroup has been compressed, the existing delta rowgroup transitions into

TOMBSTONE state to be removed later by the tuple-mover when there is no reference to it,

and the new compressed rowgroup is marked as COMPRESSED.

For more information about rowgroup statuses, see

sys.dm_db_column_store_row_group_physical_stats (Transact-SQL).

You can force delta rowgroups into the columnstore by using ALTER INDEX to rebuild or

reorganize the index. Note that if there is memory pressure during compression, the

columnstore index might reduce the number of rows in the compressed rowgroup.

For more information about columnstore terms and concepts, see Columnstore indexes:

Overview.

The concept of partitioning is the same in both a clustered index, a heap, and a

columnstore index. Partitioning a table divides the table into smaller groups of rows

according to a range of column values. It is often used for managing the data. For example,

you could create a partition for each year of data, and then use partition switching to

archive data to less expensive storage. Partition switching works on columnstore indexes

and makes it easy to move a partition of data to another location.

When delta rowgroups are full they get compressed into the

columnstore

Each table partition has its own rowgroups and delta rowgroups

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-column-store-row-group-physical-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-index-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15

Rowgroups are always defined within a table partition. When a columnstore index is

partitioned, each partition has its own compressed rowgroups and delta rowgroups.

Each partition can have more than one delta rowgroups. When the columnstore index

needs to add data to a delta rowgroup and the delta rowgroup is locked, the columnstore

index will try to obtain a lock on a different delta rowgroup. If there are no delta rowgroups

available, the columnstore index will create a new delta rowgroup. For example, a table with

10 partitions could easily have 20 or more delta rowgroups.

A nonclustered index contains a copy of part or all of the rows and columns in the

underlying table. The index is defined as one or more columns of the table, and has an

optional condition that filters the rows.

Starting with SQL Server 2016 (13.x), you can create an updatable nonclustered

columnstore index on a rowstore table. The columnstore index stores a copy of the data

so you do need extra storage. However, the data in the columnstore index will compress to

a smaller size than the rowstore table requires. By doing this, you can run analytics on the

columnstore index and transactions on the rowstore index at the same time. The column

store is updated when data changes in the rowstore table, so both indexes are working

against the same data.

Starting with SQL Server 2016 (13.x), you can have one or more nonclustered rowstore

indexes on a columnstore index. By doing this, you can perform efficient table seeks on

the underlying columnstore. Other options become available too. For example, you can

enforce a primary key constraint by using a UNIQUE constraint on the rowstore table. Since

 Tip

Consider using table partitioning if there's a need to remove data from the

columnstore. Switching out and truncating partitions that are not needed anymore is

an efficient strategy to delete data without generating fragmentation introduced by

having smaller rowgroups.

Each partition can have multiple delta rowgroups

You can combine columnstore and rowstore indexes on the same

table

an non-unique value will fail to insert into the rowstore table, SQL Server cannot insert the

value into the columnstore.

The nonclustered columnstore index definition supports using a filtered condition. To

minimize the performance impact of adding a columnstore index on an OLTP table,

use a filtered condition to create a nonclustered columnstore index on only the cold

data of your operational workload.

An in-memory table can have one columnstore index. You can create it when the table

is created or add it later with ALTER TABLE (Transact-SQL). Before SQL Server 2016

(13.x), only a disk-based table could have a columnstore index.

For more information, refer to Columnstore indexes - Query performance.

A rowstore table can have one updateable nonclustered columnstore index. Before

SQL Server 2014 (12.x), the nonclustered columnstore index was read-only.

For more information, refer to Columnstore indexes - Design Guidance.

All memory-optimized tables must have at least one index, because it is the indexes that

connect the rows together. On a memory-optimized table, every index is also memory-

optimized. Hash indexes are one of the possible index types in a memory-optimized table.

For more information, see Indexes for Memory-Optimized Tables.

Applies to: SQL Server 2014 (12.x) through SQL Server 2019 (15.x).

A hash index consists of an array of pointers, and each element of the array is called a hash

bucket.

Each bucket is 8 bytes, which are used to store the memory address of a link list of

key entries.

Performance considerations

Design Guidance

Hash Index Design Guidelines

Hash Index Architecture

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-table-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-query-performance?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-design-guidance?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/indexes-for-memory-optimized-tables?view=sql-server-ver15

Each entry is a value for an index key, plus the address of its corresponding row in the

underlying memory-optimized table.

Each entry points to the next entry in a link list of entries, all chained to the current

bucket.

The number of buckets must be specified at index definition time:

The lower the ratio of buckets to table rows or to distinct values, the longer the

average bucket link list will be.

Short link lists perform faster than long link lists.

The maximum number of buckets in hash indexes is 1,073,741,824.

The hash function is applied to the index key columns and the result of the function

determines what bucket that key falls into. Each bucket has a pointer to rows whose hashed

key values are mapped to that bucket.

The hashing function used for hash indexes has the following characteristics:

SQL Server has one hash function that is used for all hash indexes.

The hash function is deterministic. The same input key value is always mapped to the

same bucket in the hash index.

Multiple index keys may be mapped to the same hash bucket.

The hash function is balanced, meaning that the distribution of index key values over

hash buckets typically follows a Poisson or bell curve distribution, not a flat linear

distribution.

Poisson distribution is not an even distribution. Index key values are not evenly

distributed in the hash buckets.

If two index keys are mapped to the same hash bucket, there is a hash collision. A

large number of hash collisions can have a performance impact on read operations. A

realistic goal is for 30% of the buckets contain two different key values.

The interplay of the hash index and the buckets is summarized in the following image.

 Tip

To determine the right BUCKET_COUNT for your data, see Configuring the hash index

bucket count.

The hash index bucket count is specified at index create time, and can be changed using

the ALTER TABLE...ALTER INDEX REBUILD syntax.

In most cases the bucket count would ideally be between 1 and 2 times the number of

distinct values in the index key.

You may not always be able to predict how many values a particular index key may have, or

will have. Performance is usually still good if the BUCKET_COUNT value is within 10 times

of the actual number of key values, and overestimating is generally better than

underestimating.

Too few buckets has the following drawbacks:

More hash collisions of distinct key values.

Each distinct value is forced to share the same bucket with a different distinct value.

The average chain length per bucket grows.

The longer the bucket chain, the slower the speed of equality lookups in the index.

Too many buckets has the following drawbacks:

Too high a bucket count might result in more empty buckets.

Empty buckets impact the performance of full index scans. If those are performed

regularly, consider picking a bucket count close to the number of distinct index key

values.

Empty buckets use memory, though each bucket uses only 8 bytes.

Configuring the hash index bucket count

７ Note

The performance of a hash index is:

Excellent when the predicate in the WHERE clause specifies an exact value for each

column in the hash index key. A hash index will revert to a scan given an inequality

predicate.

Poor when the predicate in the WHERE clause looks for a range of values in the index

key.

Poor when the predicate in the WHERE clause stipulates one specific value for the first

column of a two column hash index key, but does not specify a value for other

columns of the key.

If a hash index is used and the number of unique index keys is 100 times (or more) than the

row count, consider either increasing to a larger bucket count to avoid large row chains, or

use a nonclustered index instead.

A hash index can exist only on a memory-optimized table. It cannot exist on a disk-based

table.

A hash index can be declared as:

UNIQUE, or can default to Non-Unique.

NONCLUSTERED, which is the default.

Adding more buckets does nothing to reduce the chaining together of entries that

share a duplicate value. The rate of value duplication is used to decide whether a hash

is the appropriate index type, not to calculate the bucket count.

Performance considerations

 Tip

The predicate must include all columns in the hash index key. The hash index requires

a key (to hash) to seek into the index.
If an index key consists of two columns and the

WHERE clause only provides the first column, SQL Server does not have a complete key

to hash. This will result in an index scan query plan.

Declaration considerations

The following is an example of the syntax to create a hash index, outside of the CREATE

TABLE statement:

SQL

In a memory-optimized table, when a row is affected by an UPDATE , the table creates an

updated version of the row. During the update transaction, other sessions might be able to

read the older version of the row and thereby avoid the performance slowdown associated

with a row lock.

The hash index might also have different versions of its entries to accommodate the

update.

Later when the older versions are no longer needed, a garbage collection (GC) thread

traverses the buckets and their link lists to clean away old entries. The GC thread performs

better if the link list chain lengths are short. For more information, refer to In-Memory OLTP

Garbage Collection.

Nonclustered indexes are one of the possible index types in a memory-optimized table. For

more information, see Indexes for Memory-Optimized Tables.

Applies to: SQL Server 2014 (12.x) through SQL Server 2019 (15.x).

In-memory nonclustered indexes are implemented using a data structure called a Bw-Tree,

originally envisioned and described by Microsoft Research in 2011. A Bw-Tree is a lock and

latch-free variation of a B-Tree. For more details please see The Bw-Tree: A B-tree for New

Hardware Platforms .

＝ Copy

ALTER TABLE MyTable_memop

ADD INDEX ix_hash_Column2 UNIQUE

HASH (Column2) WITH (BUCKET_COUNT = 64);

Row versions and garbage collection

Memory-Optimized Nonclustered Index Design

Guidelines

In-memory Nonclustered Index Architecture

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/in-memory-oltp-garbage-collection?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/indexes-for-memory-optimized-tables?view=sql-server-ver15
https://www.microsoft.com/research/publication/the-bw-tree-a-b-tree-for-new-hardware/

At a very high level the Bw-Tree can be understood as a map of pages organized by page

ID (PidMap), a facility to allocate and reuse page IDs (PidAlloc) and a set of pages linked in

the page map and to each other. These three high level sub-components make up the

basic internal structure of a Bw-Tree.

The structure is similar to a normal B-Tree in the sense that each page has a set of key

values that are ordered and there are levels in the index each pointing to a lower level and

the leaf levels point to a data row. However there are several differences.

Just like hash indexes, multiple data rows can be linked together (versions). The page

pointers between the levels are logical page IDs, which are offsets into a page mapping

table, that in turn has the physical address for each page.

There are no in-place updates of index pages. New delta pages are introduced for this

purpose.

No latching or locking is required for page updates.

Index pages are not a fixed size.

The key value in each non-leaf level page depicted is the highest value that the child that it

points to contains and each row also contains that page logical page ID. On the leaf-level

pages, along with the key value, it contains the physical address of the data row.

Point lookups are similar to B-Trees except that because pages are linked in only one

direction, the SQL Server Database Engine follows right page pointers, where each non-leaf

pages has the highest value of its child, rather than lowest value as in a B-Tree.

If a Leaf-level page has to change, the SQL Server Database Engine does not modify the

page itself. Rather, the SQL Server Database Engine creates a delta record that describes

the change, and appends it to the previous page. Then it also updates the page map table

address for that previous page, to the address of the delta record which now becomes the

physical address for this page.

There are three different operations that can be required for managing the structure of a

Bw-Tree: consolidation, split and merge.

A long chain of delta records can eventually degrade search performance as it could mean

we are traversing long chains when searching through an index. If a new delta record is

added to a chain that already has 16 elements, the changes in the delta records will be

Delta Consolidation

consolidated into the referenced index page, and the page will then be rebuilt, including

the changes indicated by the new delta record that triggered the consolidation. The newly

rebuilt page will have the same page ID but a new memory address.

An index page in Bw-Tree grows on as-needed basis starting from storing a single row to

storing a maximum of 8 KB. Once the index page grows to 8 KB, a new insert of a single

row will cause the index page to split. For an internal page, this means when there is no

more room to add another key value and pointer, and for a leaf page, it means that the row

would be too big to fit on the page once all the delta records are incorporated. The

statistics information in the page header for a leaf page keeps track of how much space

would be required to consolidate the delta records, and that information is adjusted as

each new delta record is added.

A Split operation is done in two atomic steps. In the picture below, assume a Leaf-page

forces a split because a key with value 5 is being inserted, and a non-leaf page exists

pointing to the end of the current Leaf-level page (key value 4).

Split page

Step 1: Allocate two new pages P1 and P2, and split the rows from old P1 page onto these

new pages, including the newly inserted row. A new slot in Page Mapping Table is used to

store the physical address of page P2. These pages, P1 and P2 are not accessible to any

concurrent operations yet. In addition, the logical pointer from P1 to P2 is set. Then, in one

atomic step update the Page Mapping Table to change the pointer from old P1 to new P1.

Step 2: The non-leaf page points to P1 but there is no direct pointer from a non-leaf page

to P2. P2 is only reachable via P1. To create a pointer from a non-leaf page to P2, allocate a

new non-leaf page (internal index page), copy all the rows from old non-leaf page, and add

a new row to point to P2. Once this is done, in one atomic step, update the Page Mapping

Table to change the pointer from old non-leaf page to new non-leaf page.

When a DELETE operation results in a page having less than 10% of the maximum page

size (currently 8 KB), or with a single row on it, that page will be merged with a contiguous

page.

When a row is deleted from a page, a delta record for the delete is added. Additionally, a

check is made to determine if the index page (non-leaf page) qualifies for Merge. This

check verifies if the remaining space after deleting the row will be less than 10% of

maximum page size. If it does qualify, the Merge is performed in three atomic steps.

In the picture below, assume a DELETE operation will delete the key value 10.

Merge page

Step 1: A delta page representing key value 10 (blue triangle) is created and its pointer in

the non-leaf page Pp1 is set to the new delta page. Additionally a special merge-delta page

(green triangle) is created, and it is linked to point to the delta page. At this stage, both

pages (delta page and merge-delta page) are not visible to any concurrent transaction. In

one atomic step, the pointer to the Leaf-level page P1 in the Page Mapping Table is

updated to point to the merge-delta page. After this step, the entry for key value 10 in Pp1

now points to the merge-delta page.

Step 2: The row representing key value 7 in the non-leaf page Pp1 needs to be removed,

and the entry for key value 10 updated to point to P1. To do this, a new non-leaf page Pp2

is allocated and all the rows from Pp1 are copied except for the row representing key value

7; then the row for key value 10 is updated to point to page P1. Once this is done, in one

atomic step, the Page Mapping Table entry pointing to Pp1 is updated to point to Pp2. Pp1

is no longer reachable.

Step 3: The Leaf-level pages P2 and P1 are merged and the delta pages removed. To do

this, a new page P3 is allocated and the rows from P2 and P1 are merged, and the delta

page changes are included in the new P3. Then, in one atomic step, the Page Mapping

Table entry pointing to page P1 is updated to point to page P3.

The performance of a nonclustered index is better than nonclustered hash indexes when

querying a memory-optimized table with inequality predicates.

Performance considerations

Recommended content

CREATE INDEX (Transact-SQL)

ALTER INDEX (Transact-SQL)

CREATE XML INDEX (Transact-SQL)

CREATE SPATIAL INDEX (Transact-SQL)

Reorganize and Rebuild Indexes

Improving Performance with SQL Server 2008 Indexed Views

Partitioned Tables and Indexes

Create a Primary Key

Indexes for Memory-Optimized Tables

Columnstore Indexes overview

Troubleshooting Hash Indexes for Memory-Optimized Tables

Memory-Optimized Table Dynamic Management Views (Transact-SQL)

Index Related Dynamic Management Views and Functions (Transact-SQL)

Indexes on Computed Columns

Indexes and ALTER TABLE

Adaptive Index Defrag

７ Note

A column in a memory-optimized table can be part of both a hash index and a

nonclustered index.

 Tip

When a column in a nonclustered index key columns have many duplicate values,

performance can degrade for updates, inserts, and deletes.
One way to improve

performance in this situation is to add another column to the nonclustered index.

Additional Reading

Indexes for Memory-Optimized Tables - SQL Server

Learn how an index on a memory-optimized table differs from a traditional index on a disk-

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-index-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-xml-index-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-spatial-index-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008/dd171921(v=sql.100)
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/create-primary-keys?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/indexes-for-memory-optimized-tables?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/hash-indexes-for-memory-optimized-tables?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/memory-optimized-table-dynamic-management-views-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/index-related-dynamic-management-views-and-functions-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/indexes-on-computed-columns?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-table-transact-sql?view=sql-server-ver15#indexes-and-alter-table
https://github.com/Microsoft/tigertoolbox/tree/master/AdaptiveIndexDefrag
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/indexes-for-memory-optimized-tables

based table in SQL Server and Azure SQL Database.

Query Processing Architecture Guide - SQL Server

Query Processing Architecture Guide

T-SQL not supported by in-memory OLTP - SQL Server

Learn which Transact-SQL features are not supported for memory-optimized tables, natively

compiled stored procedures, and user-defined functions.

Transact-SQL Support for In-Memory OLTP - SQL Server

Learn about Transact-SQL statements that include syntax options to support In-Memory OLTP.

Use links to additional references about supported features.

Show more Ｓ

https://docs.microsoft.com/en-us/sql/relational-databases/query-processing-architecture-guide
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/transact-sql-support-for-in-memory-oltp

