4
—

4 4
= ==
yywviy

B-Trees vs B+ 1rees

husseinnasser.com

And their impact on production database systems

Agenda

e Full Table Scans

e B-Tree

e B-Tree limitations

e B+Tree

e B+Tree Considerations

e B+Tree storage cost in MySQL vs Postgres

e Summary

Full Table Scan

e Tofind arow in a large table we
perform full table scan
e Reading large tables is slow

e Requires many |/Os to read all

pages
e \We need a way to reduce the

search space

Find Person with ID 5

591828734 ,
591828735 ,
591828736 ,
591828737 ,
591828738 ,

999991929 ,
999991930 ,
999991931 ,

Chansy

Bird
Chip
Sud
Will

Find Person with ID 591828738

591828734, Chansy

591828735, Bird
591828736, Chip

()
591828738, Will

999991929, Dorit
999991930, Sally
999991931, Kory

Find Person with ID 999991931

591828734 ,
591828735 ,
591828736 ,
591828737 ,
591828738 ,

999991931 ,

Chansy
Bird
Chip
Sud
Will

K ry

B-Tree

e Balanced Data structure for fast traversal

e B-Tree has Nodes

e In B-Tree of “m” degree some nodes can have
(m) child nodes

e Node has up to (m-1) elements

B-Tree

Each element has a key and a value

The value is usually data pointer to the row
Data pointer can point to primary key or tuple
Root Node, internal node and leaf nodes

A node = disk page

How B-Tree Helps

2:702 4:704 /
Internal tuple
id/page#/rowid Node
1:701 3:703 5:705

Element '@ 5:705

Key ™=%3:705 e \/3lue

Figure 2 is an example of a B-tree in 1(2,3) satisfying all the above

conditions. In the figure the @y are not shown and _the page pointers

are represented graphically. The boxes represent pages and the numbers

outside are page numbers to be used later.

b
22 23 24 25

8
17 18 19 20 |

7
12 13 14 15

Figure 2. A Data Structure in (2, 3) for an Index

B-Tree paper https://infolab.usc.edu/csci585/Spring2010/den_ar/indexing.pdf

Find ID 3

Find ID 1

Find ID 5

Adding more entries

o

Name
John
Ali
Rick
Sara
Edmond
lon
Edmond
Pete
Oliver
Yong
Xui

_ 2 OO ~NOOOPRWN -~

el)

https://www.cs.usfca.edu/~galles/visualization/BTree.html

o

, Name
John
Ali
Rick
Sara
Edmond
lon
Edmond
Pete
Oliver
Yong
Xui

ROOT node
4:704 8:802
Internal
node
y ‘

, 2:702 6:800 10:804 \

1
2
3
4
5
6
7
8
9
1
1

0
1

1:701 3:703 5:705 7:801 9:803 11:805

Leaf node

Limitation B-Tree

e Elements in all nodes store both the key and the
value

e Internal nodes take more space thus require more

O and can slow down traversal

e Range queries are slow because of random
access (give me all values 1-5)

e B+Tree solves both these problems

e Hard to fit internal nodes in memory

Find rows (ID between (4 and 9) in this b-Tree

o

, Name
John
Ali
Rick
Sara
Edmond
lon
Edmond
Pete
Oliver
Yong
Xui

4 704 8: 802 \
S

1:701 3:703 5:705 9:803 11:805 ®

—

1
2
3
4
5
6
7
8
9
1
1

0
1

7:801

B+Tree

e Exactly like B-Tree but only stores keys in internal
nodes

e \alues are only stored in leaf nodes

e Internal nodes are smaller since they only store

Keys and they can fit more elements

e |eaf nodes are “linked” so once you find a key
you can find all values before and after that key.

e Great for range queries

B+Tree & DBMS Considerations

e Cost of leaf pointer (cheap)

e 1 Node fits a DBMS page (most DBMS)

e Can fit internal nodes easily in memory for fast
traversal

e Leaf nodes can live in data files in the heap

e Most DBMS systems use B+Tree

B+Tree Storage cost

/ “Should” fit in memor \
s d

T
AWED
—

I \ | /
g / 1 | | | ! \ / \
g g ->->->->-->--'->_]

Can remain in disk but preferred to be in memory

Storage Cost in Postgres vs MySQL

e B+Trees secondary index values can either point
directly to the tuple (Postgres) or to the primary
key (MySQL)

e If the Primary key data type is expensive this can
cause bloat in all secondary indexes for
databases such MySQL (innoDB)

e Leaf nodes in MySQL (InnoDB) contains the full
row since its an |OT / clustered index

Summary

e Full Table Scans

e B-Tree

e B-Tree limitations

e B+Tree

e B+Tree Considerations

e B+Tree storage cost in MySQL vs Postgres

