PDF Analysis and Tools



Analyzing PDF Documents

Look for suspicious keywords
- OpenAction, AA
- JavaScript, JS

Encoded data

Tools and yara rules for exploits



odfid

Identifies PDF object types and filters

Useful to triage PDF documents
https://blog.didierstevens.com/programs/pdf-tools/

Disadvantages:
It only tells you what is in the document, not where it is



odfid

* This tool is not a PDF parser, but it will scan a file to look for certain
PDF keywords, allowing you to identify PDF documents that contain
(for example) JavaScript or execute an action when opened. PDFiD
will also handle name obfuscation.

* The idea is to use this tool first to triage PDF documents, and
then analyze the suspicious ones with pdf-parser.



https://blog.didierstevens.com/2008/04/29/pdf-let-me-count-the-ways/
https://blog.didierstevens.com/2008/10/20/analyzing-a-malicious-pdf-file/

odf-parser

Parses, searches, and extracts data from PDF
documents

https://blog.didierstevens.com/programs/pdf-tools/

Options

-s TERM : Search for TERM
-0 # : Print object number
-f : Decode data in object

-w : Display raw data from object



C 8 blog.didierstevens.com/programs/pdf-tools/

You can see the parser in action in this scresncast.

Usage: pdf-parser.py L[options] pdf-file

Options:
—uersion show program’s version number and exit
—h,. —help show this help messzage and exit
—= SEARCH. ——=zearch=5EARCH
string to search in indirect obhjects (except streams?
—f, —filter pass stream ohject through filters (FlateDecode onluy>
—o OBJECT, ——object=0BJECT
id of indirect ohject to select <version independentl
—r REFEREMCE. ——reference=REFEREMCGE
id of indirect ohject being referenced <version
independent>
—uW, ——rauw raw output for data and filters
—a, ——stats display stats for pdf document
-t TYPE, —tupe=TYPE type of indirect ohject to select

pdf—parser UB.2, use it to parse a PDF document

Source code put in the public domain by Didier Stevenz. no Copyright
Use at wyour own rizk

https s »DidierStevens.com

The stats option display statistics of the objects found in the PDF document. Use this to identify PDF documents with unusual/unexpected objects, or to
classify PDF documents. For example, I generated statistics for 2 malicious PDF files, and although they were very different in content and size, the statistics
were identical, proving that they used the same attack vector and shared the same origin.

The search option searches for a string in indirect objects (not inside the stream of indirect objects). The search is not case-sensitive, and is susceptible to
the obfuscation techniques I documentad (as I've yet to encounter these obfuscation technigues in the wild, I decided no to resort to canonicalization]).

filter option applies the filter(s) to the stream. For the moment, only FlateDecode is supported (e.g. zlib decompression).
The raw option makes pdf-parser ocutput raw data (e.g. not the printable Python representation].

objects outputs the data of the indirect object which ID was specified. This ID is not version dependent. If more than one object have the same ID
(disregarding the version), all these objects will be cutputted.

reference allows you to select all objects referencing the specified indirect object. This ID is not version dependent.

type allows you to select all objects of a given type. The type is a Mame and as such is case-sensitive and must start with a slash-character {/].



peepdf

Combines multiple tools into one
Finds suspicious objects
Decodes data

JavaScript analysis built-in

http://eternal-todo.com/tools/peepdf-pdf-analysis-tool

Options
-i: Inline mode

-u: Update



