
Introduction
Following the Fundamentals of AI module, this module takes a more practical approach to
applying machine learning  techniques. Instead of focusing solely on theory, you will now
engage in hands-on activities that involve building and evaluating real models. Throughout
this process, you will gain experience with the end-to-end workflow of AI  development, from
exploring datasets to training and testing models.

You will construct three distinct AI  models in this module:

Throughout the module, you will encounter python code blocks  that guide you step-by-
step through the model-building process.

You will learn more about Jupyter  later in this module, but for now, understand that you can
copy and paste these code snippets into a Jupyter  notebook to execute them in sequence,
either in the playground VM, or your environment.

You can train most of these models in your own environment. For a decent experience, you
will need at least 4GB of RAM and at least 4 CPU cores.

Note: Throughout this module, all sections marked as interactive contain code blocks for
you to follow along. Not all interactive sections contain separate exercises.

Environment Setup

Setting up a proper environment is essential before diving into the exciting world of AI. This
module offers two paths for an enviroment.

The Playground
The first is The Playground. Because we acknowledge that not everyone will have the
computer resources required to build the models in this module, we have provided a Virtual
Playground Environment for you to use if you absolutely need it.

Because this is separate from PwnBox, there are specific sections where you can spawn this
VM. You can connect to it using your HTB VPN profile or PwnBox. The VM exposes Jupyter

1. A Spam Classifier  to determine whether an SMS message is spam  or not.
2. A Network Anomaly Detection Model  designed to identify abnormal or potentially

malicious network traffic.
3. A Malware Classifier  using byteplots , which are visual representations of binary

data.
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for you to work in, which will be covered in the next section, but you can access it on
http://<VM-IP>:8888 . You can spawn the VM and extend instance time if needed at the
bottom of this section or any of the Model Evaluation  sections in the module.

Note: While the Playground environment is sufficient to follow along with everything
discussed in this module, it lacks in performance to provide an environment that encourages
experimentation. Therefore, we recommend setting up an environment on your own system,
provided you have sufficiently powerful hardware. This will result in shorter training times and
enable experimentation with different parameters, resulting in a more enjoyable way to work
through the module and improve your understanding of the performance impact of different
training parameters.

The second is to set up an environment on your own system, which you can do by following
the rest of this section. For this module you will need at least 4GB of RAM. In a majority of
cases, your own environment will provide faster training times than the playground VM.

Miniconda
Miniconda  is a minimal installer for the Anaconda  distribution of the Python  programming
language. It provides the conda  package manager and a core Python environment without
automatically installing the full suite of data science libraries available in Anaconda . Users
can selectively install additional packages, creating a customized environment that aligns
with their specific needs.

Both Miniconda  and Anaconda  rely on the conda  package manager, allowing for simplified
installation, updating, and management of Python packages and their dependencies. In
essence, Miniconda  offers a lighter starting point, while Anaconda  comes pre-loaded with a
broader range of commonly used data science tools.

Why Miniconda?
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You might wonder why we use Miniconda  instead of a standard Python  installation. Here
are a few compelling reasons:

By using Miniconda , you'll streamline your workflow, avoid compatibility issues, and ensure
that your deep learning environment is optimized for performance and efficiency.

Installing Miniconda
Windows
While the traditional installer works well, we can streamline the process on Windows using
Scoop , a command-line installer for Windows. Scoop  simplifies the installation and
management of various applications, including Miniconda .

First, install Scoop . Open PowerShell and run:

Next, add the extras  bucket, which contains Miniconda :

Finally, install Miniconda  with:

This command installs the latest Python 3 version of Miniconda .

To verify the installation, close and reopen PowerShell. Type conda --version  to check if
Miniconda  is installed correctly.

Performance:  Miniconda  often performs data science and machine learning tasks
better due to optimized packages and libraries.
Package Management:  The Conda  package manager simplifies package installation
and management, ensuring compatibility and resolving dependencies. This is
particularly crucial in deep learning, where projects often rely on a complex web of
interconnected libraries.
Environment Isolation:  Miniconda  allows you to create isolated environments for
different projects. This prevents conflicts between packages and ensures each project
has its dedicated dependencies.

C:\> Set-ExecutionPolicy RemoteSigned -scope CurrentUser # Allow scripts 

to run

C:\> irm get.scoop.sh | iex

C:\> scoop bucket add extras

C:\> scoop install miniconda3
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MacOS

Homebrew, a popular package manager for macOS, simplifies software installation and
keeps it up-to-date. It also provides a convenient way for macOS users to install Miniconda.

If you don't have Homebrew , install it first by pasting the following command in your terminal:

Once Homebrew  is set up, you can install Miniconda  with this simple command:

This command installs the latest version of Miniconda  with Python 3.

To verify the installation, close and reopen your terminal. Type conda --version  to confirm
that Miniconda  is installed correctly.

Linux
Miniconda provides a straightforward installation process that relies not solely on a
distribution’s package manager. You can obtain the latest Miniconda installer directly from
the official repository, run it silently, and then load the conda environment for your user shell.
This approach ensures that conda commands and environments are readily available
without manual configuration.

C:\> conda --version

conda 24.9.2

/bin/bash -c "$(curl -fsSL 

https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

brew install --cask miniconda

conda --version

conda 24.9.2

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

chmod +x Miniconda3-latest-Linux-x86_64.sh

./Miniconda3-latest-Linux-x86_64.sh -b -u

eval "$(/home/$USER/miniconda3/bin/conda shell.$(ps -p $$ -o comm=) hook)"
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Confirm that Miniconda is installed correctly by running:

Init
The init  command configures your shell to recognize and utilize conda . This step is
essential for:

To initialize conda  for your shell, run the following command after installing Miniconda :

This command will modify your shell configuration files (e.g., .bashrc  or .zshrc ) to include
the necessary conda  settings. You might need to close and reopen your terminal for the
changes to take effect.

Finally, run these two commands to complete the init  process

Deactivating Base
After installing Miniconda , you'll notice that the base  environment is activated by default
every time you open a new terminal. This is indicated by the (base)  prefix on your path.

While this can be useful, it's often preferable to start with a clean slate and activate
environments only when needed. Personally, I wouldn't say I like seeing the (base)  prefix

conda --version

conda 24.9.2

Activating environments:  Allows you to use conda activate  to switch between
environments.
Using conda commands:  Ensures that conda  commands are available in your shell.

conda init

conda config --add channels defaults

conda config --add channels conda-forge

conda config --add channels nvidia # only needed if you are on a PC that 

has a nvidia gpu

conda config --add channels pytorch

conda config --set channel_priority strict

(base) $
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all the time, either.

To prevent the base  environment from activating automatically, you can use the following
command:

This command modifies the condarc  configuration file and disables the automatic activation
of the base  environment.

When you open a new terminal, you won't see the (base)  prefix in your prompt anymore.

Managing Virtual Environments
In software development, managing dependencies can quickly become a complex task,
especially when working on multiple projects with different library requirements.

This is where virtual environments  come into play. A virtual environment is an isolated
space where you can install packages and dependencies specific to a particular project,
without interfering with other projects or your system's global Python installation.

They are critical for AI tasks for a few reasons:

conda  provides a simple way to create virtual environments. For example, to create a new
environment named ai  with Python 3.11, use the following command:

This will create a virtual environment, ai , which can then be used to contain all ai-related
packages.

Activating the Environment

To activate the myenv  environment, use:

conda config --set auto_activate_base false

Dependency Isolation:  Each project can have its own set of dependencies, even if
they conflict with those of other projects.
Clean Project Structure:  Keeps your project directory clean and organized by
containing all dependencies within the environment.
Reproducibility:  Ensures that your project can be easily reproduced on different
systems with the same dependencies.
System Stability:  Prevents conflicts with your global Python installation and avoids
breaking other projects.

conda create -n ai python=3.11
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You'll notice that your terminal prompt now includes the environment name in parentheses
(ai) , indicating that the environment is active. Any packages you install using conda  or
pip  will now be installed within this environment.

To deactivate the environment, use:

The environment name will disappear from your prompt, and you'll be back to your base
Python environment.

Essential Setup
With your Miniconda  environment set up, you can install the essential packages for your AI
journey. These packages generally cover what will be needed in this module.

While conda  provides a broad range of packages through its curated channels, it may not
include every tool you require. In such cases, you can still use pip  within the conda
environment. This approach ensures you can install any additional packages that conda
does not cover.

Use the conda install  command to install the following core packages:

Updates
conda  provides a method to keep conda-managed packages up to date. Running the
following command updates all conda-installed packages within the (ai)  environment, but
it does not update packages installed with pip . Any pip-installed packages must be
managed separately, and mixing pip  and conda  installations may increase the risk of
dependency conflicts.

conda activate ai

conda deactivate

conda install -y numpy scipy pandas scikit-learn matplotlib seaborn 

transformers datasets tokenizers accelerate evaluate optimum 

huggingface_hub nltk category_encoders

conda install -y pytorch torchvision torchaudio pytorch-cuda=12.4 -c 

pytorch -c nvidia

pip install requests requests_toolbelt

conda update --all
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JupyterLab

JupyterLab  is an interactive development environment that provides web-based coding,
data, and visualization interfaces. Due to its flexibility and interactive features, it's a popular
choice for data scientists and machine learning practitioners.

Why JupyterLab?

JupyterLab  can be easily installed using conda , if it isn't already installed:

Make sure you are running the command from within your ai environment.

To start JupyterLab , simply run:

This will open a new tab in your web browser with the JupyterLab  interface.

Using JupyterLab

Interactive Environment : JupyterLab  allows running code in individual cells,
facilitating experimentation and iterative development.
Data Exploration and Visualization : It integrates seamlessly with libraries like
matplotlib  and seaborn  for creating visualizations and exploring data.
Documentation and Sharing : JupyterLab  supports markdown and LaTeX for
creating rich documentation and sharing code with others.

conda install -y jupyter jupyterlab notebook ipykernel

jupyter lab

hƩps://t.me/CyberFreeCourses

af://h1-16
af://h2-17
af://h2-18


JupyterLab 's primary component is the notebook, which allows combining code, text, and
visualizations in a single document. Notebooks are organized into cells, where each cell can
contain either code or markdown text.

Click the "Python 3" icon under the "Notebook" section in the Launcher interface to create a
new notebook. This will open a notebook with a single empty code cell.

Type your Python code into the code cell and press Shift + Enter  to execute it. For
example:

Code cells : Execute code in various languages (Python, R, Julia).
Markdown cells : Create formatted text, equations, and images using markdown
syntax.
Raw cells : Untyped raw text.

print("Hello, JupyterLab!")
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The output of the code will appear below the cell.

Jupyter  notebooks use a stateful  environment, which means that variables, functions,
and imports defined in one cell remain available to all later cells. Once you execute a cell,
any changes it makes to the environment, such as assigning new variables or redefining
functions, persist as long as the kernel is running. This differs from a stateless  model,
where each code execution is isolated and does not retain information from previous
executions.

Being aware of the stateful  nature of a notebook is important. For example, if you execute
cells out of order, you might observe unexpected results due to previously defined or
modified variables. Similarly, re-importing modules or updating variable values affects
subsequent cell executions, but not those that were previously run.

Say you have a cell that does this:

then in a later cell you might have:

If you change the first cell to:

and re-run it before running the print(x)  cell, the value of x  in the environment becomes
2 , so the output will now be different when you run the print cell.

x = 1

print(x)  # This will print '1' because 'x' was defined previously.

x = 2
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Click the "+" button in the toolbar to add new cells. You can choose between code cells and
markdown cells using the Dropdown on the toolbar. Markdown cells allow you to write
formatted text and include headings, lists, and links.

JupyterLab  integrates with libraries like pandas , matplotlib , and seaborn  for data
exploration and visualization. Here's an example of loading a dataset with pandas  and
creating a simple plot:
-- Leaked By hide01.ir

This code now generates a sample DataFrame with two columns, column1  and column2 ,
containing random values. The rest of the code remains the same, demonstrating how to

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

# Create a sample DataFrame

data = pd.DataFrame({

    "column1": np.random.rand(50),  # 50 random values for column1

    "column2": np.random.rand(50) * 10  # 50 random values (multiplied by 

10) for column2

})

# Display the first few rows

print(data.head())

# Create a scatter plot

plt.scatter(data["column1"], data["column2"])

plt.xlabel("Column 1")

plt.ylabel("Column 2")

plt.title("Scatter Plot")

plt.show()
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display the DataFrame's contents and create a scatter plot using the generated data.

To save your notebook, click the save icon in the toolbar or use the Ctrl + S  shortcut.
Don't forget to rename your Notebook. You can right-click on the Notebook tab or the
Notebook in the file browser.

Restarting the Kernel
JupyterLab  uses a kernel  to run your code. The kernel  is a separate process
responsible for executing code and maintaining the state of your computations. Sometimes,
you may need to reset your environment if it becomes cluttered with variables or you
encounter unexpected behavior.

Restarting the kernel  clears all variables, functions, and imported modules from memory,
allowing you to start fresh without shutting down JupyterLab  entirely.

To restart the kernel :

After restarting, re-run any cells containing variable definitions, imports, or computations to
restore the environment. This ensures that the notebook state accurately reflects the code
you have most recently executed.

This is just a brief overview of Jupyter to get you up and running for this module. For an in-
depth guide, refer to the JupyerLab Documentation.

Python Libraries for AI

Python is a versatile programming language widely used in Artificial Intelligence (AI) due to
its rich library ecosystem that provides efficient and user-friendly tools for developing AI
applications. This section focuses on two prominent Python libraries for AI development:
Scikit-learn  and PyTorch .

Just a quick note. This section provides a high-level overview of key Python libraries for AI,
aiming to familiarize you with their purpose, structure, and common use cases. It offers a
foundation for identifying relevant APIs and understanding the general landscape of these
libraries. The official documentation will be your best resource to learning every small detail
about the libraries. You do not need to copy and run these code snippets.

Scikit-learn

1. Open the Kernel  menu in the top toolbar.
2. Select Restart Kernel  to reset the environment while preserving cell outputs, or

Restart Kernel and Clear All Outputs  to also remove all previously generated
outputs from the notebook.
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Scikit-learn  is a comprehensive library built on NumPy , SciPy , and Matplotlib . It
offers a wide range of algorithms and tools for machine learning tasks and provides a
consistent and intuitive API, making implementing various machine learning models easy.

Data Preprocessing
Scikit-learn  offers a rich set of tools for preprocessing data, a crucial step in preparing
data for machine learning algorithms. These tools help transform raw data into a suitable
format that improves the accuracy and efficiency of models.

Feature scaling is essential to ensure that all features have a similar scale, preventing
features with larger values from dominating the learning process. Scikit-learn  provides
various scaling techniques:

Supervised Learning:  Scikit-learn  provides a vast collection of supervised
learning algorithms, including:

Linear Regression

Logistic Regression

Support Vector Machines (SVMs)

Decision Trees

Naive Bayes

Ensemble Methods  (e.g., Random Forests, Gradient Boosting)

Unsupervised Learning:  It also offers various unsupervised learning algorithms,
such as:

Clustering  (K-Means, DBSCAN)
Dimensionality Reduction  (PCA, t-SNE)

Model Selection and Evaluation:  Scikit-learn  includes tools for model
selection, hyperparameter tuning, and performance evaluation, enabling developers to
optimize their models effectively.
Data Preprocessing:  It provides functionalities for data preprocessing, including:

Feature scaling and normalization
Handling missing values
Encoding categorical variables

StandardScaler  : Standardizes features by removing the mean and scaling to unit
variance.
MinMaxScaler  : Scales features to a given range, typically between 0 and 1.
RobustScaler  : Scales features using statistics that are robust to outliers.

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
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Categorical features, representing data in categories or groups, need to be converted into
numerical representations for machine learning algorithms to process them. Scikit-learn
offers encoding techniques:

Real-world datasets often contain missing values. Scikit-learn  provides methods to
handle these missing values:

Model Selection and Evaluation
Scikit-learn  offers tools for selecting the best model and evaluating its performance.

Splitting data into training and testing sets is crucial to evaluating the model's generalization
ability to unseen data.

Cross-validation provides a more robust evaluation by splitting the data into multiple folds
and training/testing on different combinations.

X_scaled = scaler.fit_transform(X)

OneHotEncoder  : Creates binary (0 or 1) columns for each category.
LabelEncoder  : Assigns a unique integer to each category.

from sklearn.preprocessing import OneHotEncoder

encoder = OneHotEncoder()

X_encoded = encoder.fit_transform(X)

SimpleImputer  : Replaces missing values with a specified strategy (e.g., mean,
median, most frequent).
KNNImputer  : Imputes missing values using the k-Nearest Neighbors algorithm.

from sklearn.impute import SimpleImputer

imputer = SimpleImputer(strategy='mean')

X_imputed = imputer.fit_transform(X)

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
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Scikit-learn  provides various metrics to evaluate model performance:

Model Training and Prediction
Scikit-learn  follows a consistent API for training and predicting with different models.

Create an instance of the desired model with appropriate hyperparameters.

Train the model using the fit()  method with the training data.

Make predictions on new data using the predict()  method.

PyTorch
PyTorch  is an open-source machine learning library developed by Facebook's AI Research
lab. It provides a flexible and powerful framework for building and deploying various types of
machine learning models, including deep learning models.

from sklearn.model_selection import cross_val_score

scores = cross_val_score(model, X, y, cv=5)

accuracy_score  : For classification tasks.
mean_squared_error  : For regression tasks.
precision_score , recall_score , f1_score  : For classification tasks with
imbalanced classes.

from sklearn.metrics import accuracy_score

accuracy = accuracy_score(y_test, y_pred)

from sklearn.linear_model import LogisticRegression

model = LogisticRegression(C=1.0)

model.fit(X_train, y_train)

y_pred = model.predict(X_test)
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Key Features

Dynamic Computational Graphs and Tensors
At the heart of PyTorch  lies the concept of dynamic computational graphs. A dynamic
computational graph is created on the fly during the forward pass, allowing for more flexible
and dynamic model building. This makes it easier to implement complex and non-linear
models.

Tensors  are multi-dimensional arrays that hold the data being processed. They can be
constants, variables, or placeholders. PyTorch  tensors are similar to NumPy arrays but can
run on GPUs for faster computation.

Building Models with PyTorch

PyTorch  provides a flexible and intuitive interface for building and training deep learning
models. The torch.nn  module contains various layers and modules for constructing neural
networks.

The Sequential  API allows building models layer by layer, adding each layer sequentially.

Deep Learning:  PyTorch  excels in deep learning, enabling the development of
complex neural networks with multiple layers and architectures.
Dynamic Computational Graphs:  Unlike static computational graphs used in libraries
like TensorFlow, PyTorch  uses dynamic computational graphs, which allow for more
flexible and intuitive model building and debugging.
GPU Support:  PyTorch  supports GPU acceleration, significantly speeding up the
training process for computationally intensive models.
TorchVision Integration:  TorchVision  is a library integrated with PyTorch  that
provides a user-friendly interface for image datasets, pre-trained models, and common
image transformations.
Automatic Differentiation:  PyTorch  uses autograd  to automatically compute
gradients, simplifying the process of backpropagation.
Community and Ecosystem:  PyTorch  has a large and active community, leading to a
rich ecosystem of tools, libraries, and resources.

import torch

# Creating a tensor

x = torch.tensor([1.0, 2.0, 3.0])

# Tensors can be moved to GPU if available

if torch.cuda.is_available():

    x = x.to('cuda')
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The Module  class provides more flexibility for building complex models with non-linear
topologies, shared layers, and multiple inputs/outputs.

Training and Evaluation
PyTorch  provides tools for training and evaluating models.

Optimizers  are algorithms that adjust the model's parameters during training to minimize
the loss function. PyTorch  offers various optimizers:

import torch.nn as nn

model = nn.Sequential(

    nn.Linear(784, 128),

    nn.ReLU(),

    nn.Linear(128, 10),

    nn.Softmax(dim=1)

)

import torch.nn as nn

class CustomModel(nn.Module):

    def __init__(self):

        super(CustomModel, self).__init__()

        self.layer1 = nn.Linear(784, 128)

        self.relu = nn.ReLU()

        self.layer2 = nn.Linear(128, 10)

        self.softmax = nn.Softmax(dim=1)

    def forward(self, x):

        x = self.layer1(x)

        x = self.relu(x)

        x = self.layer2(x)

        x = self.softmax(x)

        return x

model = CustomModel()

Adam

SGD  (Stochastic Gradient Descent)
RMSprop

import torch.optim as optim
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Loss Functions  measure the difference between the model's predictions and the actual
target values. PyTorch  provides a variety of loss functions:

Metrics  evaluate the model's performance during training and testing.

The training loop updates the model's parameters based on the training data.

optimizer = optim.Adam(model.parameters(), lr=0.001)

CrossEntropyLoss  : For multi-class classification.
BCEWithLogitsLoss  : For binary classification.
MSELoss  : For regression.

import torch.nn as nn

loss_fn = nn.CrossEntropyLoss()

Accuracy

Precision

Recall

def accuracy(output, target):

    _, predicted = torch.max(output, 1)

    correct = (predicted == target).sum().item()

    return correct / len(target)

import torch

epochs = 10

num_batches = 100

for epoch in range(epochs):

    for batch in range(num_batches):

        # Get batch of data

        x_batch, y_batch = get_batch(batch)

        # Forward pass

        y_pred = model(x_batch)

        # Calculate loss

        loss = loss_fn(y_pred, y_batch)

        # Backward pass and optimization
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Data Loading and Preprocessing
PyTorch  provides the torch.utils.data.Dataset  and DataLoader  classes for handling
data loading and preprocessing.

Model Saving and Loading
PyTorch  allows models to be saved and loaded for inference or further training.

        optimizer.zero_grad()

        loss.backward()

        optimizer.step()

        # Optional: print loss or other metrics

        if batch % 10 == 0:

            print(f'Epoch [{epoch+1}/{epochs}], Batch 

[{batch+1}/{num_batches}], Loss: {loss.item():.4f}')

from torch.utils.data import Dataset, DataLoader

class CustomDataset(Dataset):

    def __init__(self, data, labels):

        self.data = data

        self.labels = labels

    def __len__(self):

        return len(self.data)

    def __getitem__(self, idx):

        return self.data[idx], self.labels[idx]

# Example usage

dataset = CustomDataset(data, labels)

dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

# Save model

torch.save(model.state_dict(), 'model.pth')

# Load model

model = CustomModel()

model.load_state_dict(torch.load('model.pth'))

model.eval()  # Set the model to evaluation mode
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Datasets

In AI, the quality and characteristics of the data used to train models significantly impact their
performance and accuracy. Datasets , which are collections of data points used for analysis
and model training, come in various forms and formats, each with its own properties and
considerations. Data preprocessing  is a crucial step in the machine-learning pipeline that
involves transforming raw data into a suitable format for algorithms to process effectively.

Understanding Datasets
Datasets  are structured collections of data used for analysis and model training. They
come in various forms, including:

The quality of a dataset is fundamental to the success of any data analysis or machine
learning project. Here’s why:

What Makes a Dataset 'Good'

Several key attributes characterize a good dataset:

Tabular Data : Data organized into tables with rows and columns, common in
spreadsheets or databases.
Image Data : Sets of images represented numerically as pixel arrays.
Text Data : Unstructured data composed of sentences, paragraphs, or full documents.
Time Series Data : Sequential data points collected over time, emphasizing temporal
patterns.

Model Accuracy : High-quality datasets produce more accurate models. Poor-quality
data—such as noisy, incomplete, or biased datasets—leads to reduced model
performance.
Generalization : Carefully curated datasets enable models to generalize effectively to
unseen data. This minimizes overfitting and ensures consistent performance in real-
world applications.
Efficiency : Clean, well-prepared data reduces both training time and computational
demands, streamlining the entire process.
Reliability : Reliable datasets lead to trustworthy insights and decisions. In critical
domains like healthcare or finance, data quality directly affects the dependability of
results.
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Attribute Description Example

Relevance The data should be relevant to 
the problem at hand. Irrelevant 
data can introduce noise and 
reduce model performance.

Text data from social media 
posts is more relevant than 
stock market prices for a 
sentiment analysis task.

Completeness The dataset should have minimal 
missing values. Missing data can 
lead to biased models and 
incorrect predictions.

Techniques like imputation 
can handle missing values, 
but it's best to start with a 
complete dataset if possible.

Consistency Data should be consistent in 
format and structure. 
Inconsistencies can cause errors 
during preprocessing and model 
training.

Ensure that date formats 
are uniform across the 
dataset (e.g., YYYY-MM-DD ).

Quality The data should be accurate and 
free from errors. Errors can arise 
from data collection, entry, or 
transmission issues.

Data validation and 
verification processes can 
help ensure data quality.

Representativeness The dataset should be 
representative of the population it 
aims to model. A biased or 
unrepresentative dataset can 
lead to biased models.

A facial recognition 
system's dataset should 
include a diverse range of 
faces from different 
ethnicities, ages, and 
genders.

Balance The dataset should be balanced, 
especially for classification tasks. 
Imbalanced datasets can lead to 
biased models that perform 
poorly on minority classes.

Techniques like 
oversampling, 
undersampling, or 
generating synthetic data 
can help balance the 
dataset.

Size The dataset should be large 
enough to capture the complexity 
of the problem. Small datasets 
may not provide enough 
information for the model to learn 
effectively.

However, large datasets 
can also be computationally 
expensive and require 
more powerful hardware.

The Dataset
The provided dataset, demo_dataset.csv is a CSV  file containing network log entries. Each
record describes a network event and includes details such as the source IP address,
destination port, protocol used, the volume of data transferred, and an associated threat
level. Analyzing these entries allows one to simulate various network scenarios that are
useful for developing and evaluating intrusion detection systems.
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Dataset Structure

The dataset consists of multiple columns, each serving a specific purpose:

Challenges and Considerations
Before processing, it is essential to note potential difficulties:

Acknowledging these challenges early allows the data to be properly cleaned and
transformed, facilitating accurate and reliable analysis.

Loading the Dataset
We first load it into a pandas DataFrame  to begin working with the dataset. A pandas
DataFrame  is a flexible, two-dimensional labeled data structure that supports a variety of
operations for data exploration and preprocessing. Key advantages include labeled axes,
heterogeneous data handling, and integration with other Python libraries.

Utilizing a DataFrame simplifies subsequent tasks like inspection, cleaning, encoding, and
data transformation.

In this code, pd.read_csv("./demo_dataset.csv")  loads the downloaded CSV file into a
DataFrame named data . From here, inspecting, manipulating, and preparing the dataset for
further steps in the analysis pipeline becomes straightforward.

log_id : Unique identifier for each log entry.
source_ip : Source IP address for the network event.
destination_port : Destination port number used by the event.
protocol : Network protocol employed (e.g., TCP , TLS , SSH ).
bytes_transferred : Total bytes transferred during the event.
threat_level : Indicator of the event's severity. 0  denotes normal traffic, 1  indicates
low-threat activity, and 2  signifies a high-threat event.

The dataset contains a mix of numerical and categorical data.
Missing values and invalid entries appear in some columns, requiring data cleaning.
Certain numeric columns may contain non-numeric strings, which must be converted or
removed.
The threat_level  column includes unknown values (e.g., ? , -1 ) that must be
standardized or addressed during preprocessing.

import pandas as pd

# Load the dataset

data = pd.read_csv("./demo_dataset.csv")
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Exploring the Dataset
After loading the dataset, we employ various operations to understand its structure, identify
anomalies, and determine the nature of cleaning or transformations needed.

Viewing Sample Entries
We examine the first few rows to get a quick overview, which can help detect obvious issues
like unexpected column names, incorrect data types, or irregular patterns.

This command outputs the initial rows of the DataFrame, offering an immediate glimpse into
the dataset's overall organization.

Inspecting Data Structure and Types

Understanding the data types and completeness of each column is essential. We can quickly
review the dataset's information, including which columns have null values and the total
number of entries per column.

The info()  method reveals the dataset's shape, column names, data types, and how many
entries are present for each column, enabling early detection of columns with missing or
unexpected data.

Checking for Missing Values

Missing values or anomalies must be handled to maintain the dataset's integrity. The next
step is to identify how many missing values each column contains.

This command returns the count of null values for each column, helping to prioritize which
features need attention. Addressing these missing values may involve imputation, removal,
or other cleaning strategies to ensure the dataset remains reliable and valid for further
analysis.

# Display the first few rows of the dataset

print(data.head())

# Get a summary of column data types and non-null counts

print(data.info())

# Identify columns with missing values

print(data.isnull().sum())
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Data Preprocessing

Data preprocessing  transforms raw data into a suitable format for machine learning
algorithms. Key techniques include:

Effective preprocessing addresses inconsistencies, missing values, outliers, noise, and
feature scaling, improving the accuracy, efficiency, and robustness of machine learning
models.

Identifying Invalid Values
In addition to missing values, we need to check for invalid values in specific columns. Here
are some common checks for the given dataset.

Checking for Invalid IP Addresses
To identify invalid source_ip  values, you can use a regular expression to validate the IP
addresses:

Checking for Invalid Port Numbers

To identify invalid destination_port  values, you can check if the port numbers are within
the valid range (0-65535):

Data Cleaning : Handling missing values, removing duplicates, and smoothing noisy
data.
Data Transformation : Normalizing, encoding, scaling, and reducing data.
Data Integration : Merging and aggregating data from multiple sources.
Data Formatting : Converting data types and reshaping data structures.

import re

def is_valid_ip(ip):

    pattern = re.compile(r'^((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}

(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$')

    return bool(pattern.match(ip))

# Check for invalid IP addresses

invalid_ips = data[~data['source_ip'].astype(str).apply(is_valid_ip)]

print(invalid_ips)
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Checking for Invalid Protocol Values

To identify invalid protocol  values, you can check against a list of known protocols:

Checking for Invalid Bytes Transferred
To identify invalid bytes_transferred  values, you can check if the values are numeric and
non-negative:

Checking for Invalid Threat Levels

To identify invalid threat_level  values, you can check if the values are within a valid range
(e.g., 0-2):

def is_valid_port(port):

    try:

        port = int(port)

        return 0 <= port <= 65535

    except ValueError:

        return False

# Check for invalid port numbers

invalid_ports = data[~data['destination_port'].apply(is_valid_port)]

print(invalid_ports)

valid_protocols = ['TCP', 'TLS', 'SSH', 'POP3', 'DNS', 'HTTPS', 'SMTP', 

'FTP', 'UDP', 'HTTP']

# Check for invalid protocol values

invalid_protocols = data[~data['protocol'].isin(valid_protocols)]

print(invalid_protocols)

def is_valid_bytes(bytes):

    try:

        bytes = int(bytes)

        return bytes >= 0

    except ValueError:

        return False

# Check for invalid bytes transferred

invalid_bytes = data[~data['bytes_transferred'].apply(is_valid_bytes)]

print(invalid_bytes)
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Handling Invalid Entries
There are a few different ways we can approach this bad data.

Dropping Invalid Entries
The most straightforward approach is to discard the invalid entries entirely. This ensures that
the remaining dataset is clean and free of potentially misleading information.

This method is generally preferred when data accuracy is paramount, and the loss of some
data points does not significantly compromise the overall analysis. However, it may not
always be feasible, especially if the dataset is small or the invalid entries constitute a
substantial portion of the data.

After dropping the bad data from our dataset, we are only left with 77 clean entries.

It is sometimes possible to clean or transform invalid entries into valid and usable data
instead of discarding them. This approach aims to retain as much information as possible
from the dataset.

Imputing Missing Values

def is_valid_threat_level(threat_level):

    try:

        threat_level = int(threat_level)

        return 0 <= threat_level <= 2

    except ValueError:

        return False

# Check for invalid threat levels

invalid_threat_levels = 

data[~data['threat_level'].apply(is_valid_threat_level)]

print(invalid_threat_levels)

# the ignore errors covers the fact that there might be some overlap 

between indexes that match other invalid criteria

data = data.drop(invalid_ips.index, errors='ignore')

data = data.drop(invalid_ports.index, errors='ignore')

data = data.drop(invalid_protocols.index, errors='ignore')

data = data.drop(invalid_bytes.index, errors='ignore')

data = data.drop(invalid_threat_levels.index, errors='ignore')

print(data.describe(include='all'))
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Imputing  is the process of replacing missing or invalid values in a dataset with estimated
values. This is crucial for maintaining the integrity and usability of the data, especially in
machine learning and data analysis tasks where missing values can lead to biased or
inaccurate results.

First, convert all invalid or corrupted entries, such as MISSING_IP , INVALID_IP ,
STRING_PORT , UNUSED_PORT , NON_NUMERIC , or ? , into NaN . This approach standardizes
the representation of missing values, enabling uniform downstream imputation steps.

After this step, NaN  represents all missing or invalid data points.

For basic numeric columns like bytes_transferred , use simple methods such as the
median or mean. For categorical columns like protocol , use the most frequent value.

import pandas as pd

import numpy as np

import re

from ipaddress import ip_address

df = pd.read_csv('demo_dataset.csv')

invalid_ips = ['INVALID_IP', 'MISSING_IP']

invalid_ports = ['STRING_PORT', 'UNUSED_PORT']

invalid_bytes = ['NON_NUMERIC', 'NEGATIVE']

invalid_threat = ['?']

df.replace(invalid_ips + invalid_ports + invalid_bytes + invalid_threat, 

np.nan, inplace=True)

df['destination_port'] = pd.to_numeric(df['destination_port'], 

errors='coerce')

df['bytes_transferred'] = pd.to_numeric(df['bytes_transferred'], 

errors='coerce')

df['threat_level'] = pd.to_numeric(df['threat_level'], errors='coerce')

def is_valid_ip(ip):

    pattern = re.compile(r'^((25[0-5]|2[0-4][0-9]|[01]?\d?\d)\.){3}(25[0-

5]|2[0-4]\d|[01]?\d?\d)$')

    if pd.isna(ip) or not pattern.match(str(ip)):

        return np.nan

    return ip

df['source_ip'] = df['source_ip'].apply(is_valid_ip)

from sklearn.impute import SimpleImputer

numeric_cols = ['destination_port', 'bytes_transferred', 'threat_level']
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These imputations ensure that all columns have valid, non-missing values, though they do
not consider complex relationships among features.

For more sophisticated scenarios, employ advanced techniques like KNNImputer  or
IterativeImputer . These methods consider relationships among features to produce
contextually meaningful imputations.

After cleaning and imputations, apply domain knowledge. For source_ip  values that remain
missing, assign a default such as 0.0.0.0 . Validate protocol  values against known valid
protocols. For ports, ensure values fall within the valid range 0-65535 , and for protocols that
imply certain ports, consider mode-based assignments or domain-specific mappings.

Perform final verification steps to confirm that distributions are reasonable and categorical
sets remain valid. Adjust imputation strategies and transformations or remove problematic
records if anomalies persist.

Data Transformation

categorical_cols = ['protocol']

num_imputer = SimpleImputer(strategy='median')

df[numeric_cols] = num_imputer.fit_transform(df[numeric_cols])

cat_imputer = SimpleImputer(strategy='most_frequent')

df[categorical_cols] = cat_imputer.fit_transform(df[categorical_cols])

from sklearn.impute import KNNImputer

knn_imputer = KNNImputer(n_neighbors=5)

df[numeric_cols] = knn_imputer.fit_transform(df[numeric_cols])

valid_protocols = ['TCP', 'TLS', 'SSH', 'POP3', 'DNS', 'HTTPS', 'SMTP', 

'FTP', 'UDP', 'HTTP']

df.loc[~df['protocol'].isin(valid_protocols), 'protocol'] = 

df['protocol'].mode()[0]

df['source_ip'] = df['source_ip'].fillna('0.0.0.0')

df['destination_port'] = df['destination_port'].clip(lower=0, upper=65535)

print(df.describe(include='all'))
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Data transformations  improve the representation and distribution of features, making
them more suitable for machine learning models. These transformations ensure that models
can efficiently capture underlying patterns by converting categorical variables into machine-
readable formats and addressing skewed numerical distributions. They also enhance trained
models' stability, interpretability, and predictive performance.

Encoding Categorical Features
Encoding  converts categorical values into numeric form so machine learning algorithms can
utilize these features. Depending on the situation, you can choose:

After encoding, verify that the transformed features are meaningful and do not introduce
artificial ordering.

One-Hot Encoding
One-hot encoding  takes a categorical feature and converts it into a set of new binary
features, where each binary feature corresponds to one possible category value. This
process creates a set of indicator columns that hold 1  or 0 , indicating the presence or
absence of a particular category in each row.

For example, consider the categorical feature color , which can take on the values red ,
green , or blue . In a dataset, you might have rows where color  is red  in one instance,
green  in another, and so on. By applying one-hot encoding , instead of keeping a single
column with values like red , green , or blue , the encoding creates three new binary
columns:

Each of these new columns corresponds to one of the original categories. If a row had
color  set to red , the color_red  column for that row would be 1 , and the other two
columns ( color_green  and color_blue ) would be 0 . Similarly, if color  was originally
green , then the color_green  column would be 1 , while the color_red  and color_blue
columns would be 0 .

OneHotEncoder  for binary indicator features that represent each category separately.
LabelEncoder  for integer codes, though this may imply unintended order.
HashingEncoder  or frequency-based methods to handle high-cardinality features and
control feature space size.

color_red

color_green

color_blue
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This approach prevents models from misinterpreting category values as numeric hierarchies.
However, it can increase the number of features if a category has many unique values.

In this case, we are going to encode the protocol  feature.

The original protocol  feature is replaced with distinct binary columns, ensuring the model
interprets each category independently.

Handling Skewed Data
When a feature is skewed , its values are unevenly distributed, often with most observations
clustered near one end and a few extreme values stretching out the distribution. Such skew
can affect the performance of machine learning models, especially those sensitive to outliers
or that assume more uniform or normal-like data distributions.

Scaling  or transforming these skewed features helps models better capture patterns in the
data. One common transformation is applying a log  transform to compress large values
more than small ones, resulting in a more balanced distribution and less dominated by
outliers. By doing this, models often gain improved stability, accuracy, and generalization
ability.

Below, we show how to apply a log  transform using the log1p  function. This approach
adds 1 to each value before taking the log , ensuring that the transform is defined even for
values at or near zero.

from sklearn.preprocessing import OneHotEncoder

encoder = OneHotEncoder(handle_unknown='ignore', sparse_output=False)

encoded = encoder.fit_transform(df[['protocol']])

encoded_df = pd.DataFrame(encoded, 

columns=encoder.get_feature_names_out(['protocol']))

df = pd.concat([df.drop('protocol', axis=1), encoded_df], axis=1)
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The code above transforms the bytes_transferred  feature. Before this transformation, the
feature might have had a few very large values, overshadowing the majority of smaller
observations. After the transformation, the distribution is evener, helping the model treat all
data points fairly and reducing the risk of overfitting outliers.

Visual comparisons of the distribution before and after the transform (as shown by the above
figure) confirm that the original skew has been substantially reduced. Although no
information is lost, the model now views the data through a lens that downplays extreme
cases and highlights underlying patterns more clearly.

Data Splitting
Data splitting  involves dividing a dataset into three distinct subsets— training ,
validation , and testing —to ensure reliable model evaluation. By having separate sets,
you can train your model on one subset, fine-tune it on another, and finally test its
performance on data it has never seen before.

The code below demonstrates one approach using train_test_split  from scikit-
learn . The initial split allocates 80% of the data for training and 20% for testing. A
subsequent split divides the 80% training portion into 60% for final training and 20% for
validation.

import numpy as np

# Apply logarithmic transformation to a skewed feature to reduce its 

skewness

df["bytes_transferred"] = np.log1p(df["bytes_transferred"])  # Add 1 to 

avoid log(0)

Training Set : Used to fit the model. Typically accounts for around 60-80% of the
entire dataset.
Validation Set : Used for tuning hyperparameters and model selection. Often around
10-20% of the entire dataset.
Test Set : Used only after all model selections and tuning are complete. Often around
10-20% of the entire dataset.
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Note that test_size=0.25  in the second split refers to 25% of the previously created
training subset (which is 80% of the data). In other words, 0.8 × 0.25 = 0.2  (20% of the
entire dataset), leaving 60% for training and 20% for validation overall.

These subsets support a structured workflow:

Metrics for Evaluating a Model

When assessing a trained machine learning model, one examines a set of numerical metrics
to gauge how well the model performs on a given task. These metrics often quantify the
relationship between predictions and known ground-truth labels.

In the Fundamentals of AI module, we briefly covered metrics such as accuracy ,
precision , recall , and F1-score , and we know that these metrics provide different
perspectives on model behavior.

Accuracy
Accuracy  is the proportion of correct predictions out of all predictions made. It measures
how often the model classifies instances correctly. A model with accuracy: 0.9950
indicates that it makes correct predictions 99.50% of the time.

Key points about accuracy :

from sklearn.model_selection import train_test_split

# Separate features (X) and target (y)

X = df.drop("threat_level", axis=1)

y = df["threat_level"]

# Initial split: 80% training, 20% testing

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=1337)

# Second split: from the 80% training portion, allocate 60% for final 

training and 20% for validation

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, 

test_size=0.25, random_state=1337)

Train the model on X_train  and y_train .
Tune hyperparameters or compare different models using X_val  and y_val .
Finally, evaluate the performance on the untouched X_test  and y_test .
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While accuracy  appears intuitive, relying on it alone can hide important details. Consider a
spam classification scenario where only 1% of incoming emails are spam and 99% are
legitimate. A model that always predicts every email as legitimate will achieve accuracy:
0.99 , but it will never catch any spam.

In this case, accuracy fails to highlight the model’s inability to correctly identify the minority
class. This underscores the importance of complementary metrics, such as precision ,
recall , or F1-score , which provide a more nuanced understanding of performance when
dealing with imbalanced datasets.

Precision
Precision  measures how often the model’s predicted positives are truly positive. For
precision: 0.9949 , when the model labels an instance as positive, it is correct 99.49% of
the time.

Key points about precision :

With the spam classification example, if the model labels 100 emails as spam, and 99 of
them are actually spam, then its precision  is high. This reduces the inconvenience of
losing important, legitimate emails to the spam folder. However, if the model rarely identifies
spam in the first place, it may fail to catch a large portion of malicious emails. High
precision  alone does not guarantee that the model is finding all the spam it should.

-- Leaked By hide01.ir

Recall
Recall  measures the model’s ability to identify all positive instances. For recall: 0.9950 ,
the model detects 99.50% of all positives.

Key points about recall :

Measures overall correctness.
Computed as (true positives + true negatives) / (all instances) .
May be misleading in cases of class imbalance.

Reflects quality of positive predictions.
Computed as true positives / (true positives + false positives) .
High precision  reduces wasted effort caused by false alarms.

Reflects completeness of positive detection.
Computed as true positives / (true positives + false negatives) .
High recall  reduces the risk of missing critical cases.
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In the spam classification scenario, a model with high recall  correctly flags most spam
emails. This helps ensure that suspicious content does not slip through unnoticed. However,
a model with very high recall  but low precision  might flood the spam folder with benign
emails. Although it rarely misses spam, it inconveniences the user by misclassifying too
many legitimate emails as spam.

F1-Score
F1-score  is the harmonic mean of precision  and recall . For F1-score: 0.9949 , the
metric indicates a near-perfect balance between these two aspects.

Key points about F1-score :

Continuing with the spam classification scenario, the F1-score  ensures that the model not
only minimizes the misclassification of legitimate emails (high precision ) but also
effectively identifies the majority of spam messages (high recall ). By focusing on the
balance rather than just one metric, the F1-score  provides a more complete picture of the
model’s performance in identifying and correctly handling both spam and non-spam emails.

Additional Considerations
While these four metrics are common, other measures may provide further insights:

Such metrics and visualizations help confirm that the given high values truly reflect robust
performance, not just favorable conditions in the dataset.

Contextualizing the Metrics
When evaluating a model’s metrics ( accuracy: 0.9750 , precision: 0.9300 , recall:
0.9100 , F1-score: 0.9200 ), consider the following:

Balances precision  and recall .
Computed as 2 * (precision * recall) / (precision + recall) .
Useful for tasks involving class imbalance.

Specificity : Measures how effectively the model identifies negatives.
AUC : The Area Under the ROC Curve, indicating the model’s discriminative capability at
various thresholds.
Matthews Correlation Coefficient : Useful for highly imbalanced datasets.
Confusion Matrix : Summarizes predictions versus true labels, offering a
comprehensive view of performance.

Are these metrics consistent across different segments of the data?
Does the dataset represent real-world conditions, including the presence of class
imbalances?
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Even metrics that look impressive may not fully capture real-world performance if the dataset
does not reflect operational conditions. For instance, high accuracy  could be achieved if
negative cases are heavily overrepresented, making it easier to appear correct by default.
Verifying that both precision  and recall  remain robust helps ensure the model identifies
important instances without becoming overwhelmed by incorrect predictions.

Depending on the setting, certain trade-offs emerge:

These metrics, considered together, provide a balanced perspective. The relatively high and
reasonably aligned precision  and recall  values yield a strong F1-score , suggesting
that the model performs consistently well across different classes. This balanced
performance supports confidence that the model’s decisions are both reliable and
meaningful in practice.

Spam Classification

Spam, or unsolicited bulk messaging, has been a persistent issue since the early days of
digital communication. It clutters inboxes, poses security risks, and can be used for
malicious purposes such as phishing attacks. Effective spam detection is crucial for
maintaining the integrity and usability of email systems and other messaging platforms.

Naive Bayes for Spam Detection
Bayes' Theorem is a fundamental concept in probability theory that describes the probability
of an event based on prior knowledge of conditions that might be related to the event.
Mathematically, it is expressed as:

Where:

Are external factors, such as the cost of false positives or false negatives, properly
accounted for?

In threat detection, a model might favor recall  to avoid missing critical threats, even if
it occasionally flags benign events.
In environments with limited resources, focusing on precision  can reduce the burden
caused by following up on false alarms.

P(A|B) = (P(B|A) * P(A)) / P(B)

P(A|B)  is the probability of event A  occurring, given that B  is true.
P(B|A)  is the probability of event B  occurring, given that A  is true.
P(A)  is the prior probability of event A .
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In the context of spam detection, A  can represent the hypothesis that an email is spam (
Spam ), and B  can represent the observed features of the email (e.g., words, phrases, etc.).

Applying Bayes' Theorem to Spam Detection

Let's break down how Bayes' Theorem can be applied to determine if an email is spam:

Using Bayes' Theorem, we can express this as:

Simplifying with Naive Assumptions

Naive Bayes makes the "naive" assumption that the presence of a particular feature in an
email is independent of the presence of any other feature, given the class label. This
simplifies the calculation of P(Features|Spam) :

Similarly, for non-spam emails:

P(B)  is the prior probability of event B .

1. Hypothesis : We want to determine the probability that an email is spam given its
features.

P(Spam|Features) : Probability that an email is spam given its features.

2. Likelihood : This is the probability of observing the features given that the email is
spam.

P(Features|Spam) : Probability of the features appearing in a spam email.

3. Prior Probability : The probability that any email is spam, irrespective of its
features.

P(Spam) : Prior probability of an email being spam.
4. Marginal Likelihood : The total probability of observing the features, considering

both spam and non-spam emails.
P(Features) : Probability of the features appearing in any email.

P(Spam|Features) = (P(Features|Spam) * P(Spam)) / P(Features)

P(Features|Spam) = P(feature1|Spam) * P(feature2|Spam) * ... * 

P(featureN|Spam)

P(Features|Not Spam) = P(feature1|Not Spam) * P(feature2|Not Spam) * ... * 

P(featureN|Not Spam)
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Using these probabilities, we can calculate the posterior probability of an email being spam
or not spam given its features. The class with the higher posterior probability is chosen as
the predicted class.

Example Calculation

Suppose we have an email with features F1  and F2 . We want to determine if this email is
spam.

Using the Naive Bayes assumption:

Now, applying Bayes' Theorem:

To find P(F1, F2) , we use the law of total probability:

Thus:

Similarly:

P(Spam) = 0.3 : Prior probability that any email is spam.
P(Not Spam) = 0.7 : Prior probability that any email is not spam.
P(F1|Spam) = 0.4 : Probability of feature F1  given the email is spam.
P(F2|Spam) = 0.5 : Probability of feature F2  given the email is spam.
P(F1|Not Spam) = 0.2 : Probability of feature F1  given the email is not spam.
P(F2|Not Spam) = 0.3 : Probability of feature F2  given the email is not spam.

P(F1, F2|Spam) = P(F1|Spam) * P(F2|Spam) = 0.4 * 0.5 = 0.2

P(F1, F2|Not Spam) = P(F1|Not Spam) * P(F2|Not Spam) = 0.2 * 0.3 = 0.06

P(Spam|F1, F2) = (P(F1, F2|Spam) * P(Spam)) / P(F1, F2)

P(F1, F2) = P(F1, F2|Spam) * P(Spam) + P(F1, F2|Not Spam) * P(Not Spam)

          = (0.2 * 0.3) + (0.06 * 0.7)

          = 0.06 + 0.042

          = 0.102

P(Spam|F1, F2) = (0.2 * 0.3) / 0.102

               = 0.06 / 0.102

               ≈ 0.588
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Since P(Spam|F1, F2) > P(Not Spam|F1, F2) , the email is classified as spam.

The Spam Dataset

We'll explore Bayesian spam classification using the SMS Spam Collection dataset, a
curated resource tailored for developing and evaluating text-based spam filters. This dataset
emerges from the combined efforts of Tiago A. Almeida and Akebo Yamakami at the School
of Electrical and Computer Engineering at the University of Campinas in Brazil, and José
María Gómez Hidalgo at the R&D Department of Optenet in Spain.

Their work, " Contributions to the Study of SMS Spam Filtering: New Collection
and Results ," presented at the 2011 ACM Symposium on Document Engineering, aimed to
address the growing problem of unsolicited mobile phone messages, commonly known as
SMS spam . Recognizing that many existing spam filtering resources focused on email rather
than text messages, the authors assembled this dataset from multiple sources, including the
Grumbletext website, the NUS SMS Corpus, and Caroline Tag’s PhD thesis.

The resulting corpus contains 5,574 text messages annotated as either ham  (legitimate) or
spam  (unwanted), making it a great resource for building and testing models that can
differentiate meaningful communications from intrusive or deceptive ones. In this context,
ham  refers to messages from known contacts, subscriptions, or newsletters that hold value
for the recipient, while spam  represents unsolicited content that typically offers no benefit
and may even pose risks to the user.

Downloading the Dataset
The first step in our process is to download this dataset, and we'll do it programmatically in
our notebook.

P(Not Spam|F1, F2) = (P(F1, F2|Not Spam) * P(Not Spam)) / P(F1, F2)

                   = (0.06 * 0.7) / 0.102

                   = 0.042 / 0.102

                   ≈ 0.412

import requests

import zipfile

import io

# URL of the dataset

url = 

"https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"

# Download the dataset
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We use the requests  library to send an HTTP GET request to the URL of the dataset. We
check the status code of the response to determine if the download was successful (
status_code == 200 ).

After downloading the dataset, we need to extract its contents. The dataset is provided in a
.zip  file format, which we will handle using Python's zipfile  and io  libraries.

Here, response.content  contains the binary data of the downloaded .zip  file. We use
io.BytesIO  to convert this binary data into a bytes-like object that can be processed by
zipfile.ZipFile . The extractall  method extracts all files from the archive into a
specified directory, in this case, sms_spam_collection .

It's useful to verify that the extraction was successful and to see what files were extracted.

The os.listdir  function lists all files and directories in the specified path, allowing us to
confirm that the SMSSpamCollection  file is present.

Loading the Dataset
With the dataset extracted, we can now load it into a pandas  DataFrame for further analysis.
The SMS Spam Collection dataset is stored in a tab-separated values (TSV) file format,
which we specify using the sep  parameter in pd.read_csv .

response = requests.get(url)

if response.status_code == 200:

    print("Download successful")

else:

    print("Failed to download the dataset")

# Extract the dataset

with zipfile.ZipFile(io.BytesIO(response.content)) as z:

    z.extractall("sms_spam_collection")

    print("Extraction successful")

import os

# List the extracted files

extracted_files = os.listdir("sms_spam_collection")

print("Extracted files:", extracted_files)

import pandas as pd

# Load the dataset
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Here, we specify that the file is tab-separated ( sep="\t" ), and since the file does not
contain a header row, we set header=None  and provide column names manually using the
names  parameter.

After loading the dataset, it is important to inspect it for basic information, missing values,
and duplicates. This helps ensure that the data is clean and ready for analysis.

To get an overview of the dataset, we can use the head , describe , and info methods
provided by pandas.

Checking for missing values is crucial to ensure that our dataset does not contain any
incomplete entries.

The isnull  method returns a DataFrame of the same shape as the original, with boolean
values indicating whether each entry is null. The sum  method then counts the number of
True  values in each column, giving us the total number of missing entries.

df = pd.read_csv(

    "sms_spam_collection/SMSSpamCollection",

    sep="\t",

    header=None,

    names=["label", "message"],

)

# Display basic information about the dataset

print("-------------------- HEAD --------------------")

print(df.head())

print("-------------------- DESCRIBE --------------------")

print(df.describe())

print("-------------------- INFO --------------------")

print(df.info())

df.head()  displays the first few rows of the DataFrame, giving us a quick look at the
data.
df.describe()  provides a statistical summary of the numerical columns in the
DataFrame. Although our dataset is primarily text-based, this can still be useful for
understanding the distribution of labels.
df.info()  gives a concise summary of the DataFrame, including the number of non-
null entries and the data types of each column.

# Check for missing values

print("Missing values:\n", df.isnull().sum())
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Duplicate entries can skew the results of our analysis, so it's important to identify and
remove them.

The duplicated  method returns a boolean Series indicating whether each row is a
duplicate or not. The sum  method counts the number of True  values, giving us the total
number of duplicate entries. We then use the drop_duplicates  method to remove these
duplicates from the DataFrame.

Preprocessing the Spam Dataset

After loading the SMS Spam Collection dataset, the next step is preprocessing the text data.
Preprocessing standardizes the text, reduces noise, and extracts meaningful features, all of
which improve the performance of the Bayes spam classifier. The steps outlined here rely on
the nltk  library for tasks such as tokenization, stop word removal, and stemming.

Before processing any text, you must download the required NLTK data files. These include
punkt  for tokenization and stopwords  for removing common words that do not contribute
to meaning. Ensuring all required resources are available at this stage prevents interruptions
during later processing steps.

Lowercasing the Text
Lowercasing the text  ensures that the classifier treats words equally, regardless of their
original casing. By converting all characters to lowercase, the model considers " Free " and "
free " as the same token , effectively reducing dimensionality and improving consistency.

# Check for duplicates

print("Duplicate entries:", df.duplicated().sum())

# Remove duplicates if any

df = df.drop_duplicates()

import nltk

# Download the necessary NLTK data files

nltk.download("punkt")

nltk.download("punkt_tab")

nltk.download("stopwords")

print("=== BEFORE ANY PREPROCESSING ===")

print(df.head(5))
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After this step, the dataset contains uniformly cased text , preventing the model from
assigning different weights to tokens that differ only by letter case.

Removing Punctuation and Numbers
Removing unnecessary punctuation and numbers  simplifies the dataset by focusing on
meaningful words. However, certain symbols such as $  and !  may contain important
context in spam messages. For example, $  might indicate a monetary amount, and !  might
add emphasis.

The code below removes all characters other than lowercase letters, whitespace, dollar
signs, or exclamation marks. This balance between cleaning the data and preserving
important symbols helps the model concentrate on features relevant to distinguishing spam
from ham messages.

After this step, the text is cleaner, more uniform, and better suited for subsequent
preprocessing tasks such as tokenization, stop word removal, or stemming.

Tokenizing the Text
Tokenization  divides the message text into individual words or tokens, a crucial step
before further analysis. By converting unstructured text into a sequence of words, we
prepare the data for operations like removing stop words and applying stemming. Each
token corresponds to a meaningful unit , allowing downstream processes to operate
on smaller, standardized elements rather than entire sentences.

# Convert all message text to lowercase

df["message"] = df["message"].str.lower()

print("\n=== AFTER LOWERCASING ===")

print(df["message"].head(5))

import re

# Remove non-essential punctuation and numbers, keep useful symbols like $ 

and !

df["message"] = df["message"].apply(lambda x: re.sub(r"[^a-z\s$!]", "", 

x))

print("\n=== AFTER REMOVING PUNCTUATION & NUMBERS (except $ and !) ===")

print(df["message"].head(5))

from nltk.tokenize import word_tokenize

# Split each message into individual tokens
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Once tokenized, the dataset contains messages represented as lists of words, ready for
additional preprocessing steps that further refine the text data.

Removing Stop Words
Stop words  are common words like and , the , or is  that often do not add meaningful
context. Removing them reduces noise and focuses the model on the words most likely to
help distinguish spam from ham messages. By reducing the number of non-informative
tokens, we help the model learn more efficiently.

The token lists are shorter at this stage and contain fewer non-informative words, setting a
cleaner stage for future text transformations.

Stemming
Stemming  normalizes words by reducing them to their base form (e.g., running  becomes
run ). This consolidates different forms of the same root word, effectively cutting the
vocabulary size and smoothing out the text representation. As a result, the model can better
understand the underlying concepts without being distracted by trivial variations in word
forms.

df["message"] = df["message"].apply(word_tokenize)

print("\n=== AFTER TOKENIZATION ===")

print(df["message"].head(5))

from nltk.corpus import stopwords

# Define a set of English stop words and remove them from the tokens

stop_words = set(stopwords.words("english"))

df["message"] = df["message"].apply(lambda x: [word for word in x if word 

not in stop_words])

print("\n=== AFTER REMOVING STOP WORDS ===")

print(df["message"].head(5))

from nltk.stem import PorterStemmer

# Stem each token to reduce words to their base form

stemmer = PorterStemmer()

df["message"] = df["message"].apply(lambda x: [stemmer.stem(word) for word 

in x])

print("\n=== AFTER STEMMING ===")

print(df["message"].head(5))
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After stemming, the token lists focus on root word forms, further simplifying the text and
improving the model’s generalization ability.

Joining Tokens Back into a Single String
While tokens are useful for manipulation, many machine-learning algorithms and
vectorization techniques (e.g., TF-IDF) work best with raw text strings. Rejoining the tokens
into a space-separated string restores a format compatible with these methods, allowing the
dataset to move seamlessly into the feature extraction phase.

At this point, the messages are fully preprocessed. Each message is a cleaned, normalized
string ready for vectorization and subsequent model training, ultimately improving the
classifier’s performance.

Feature Extraction

Feature extraction  transforms preprocessed SMS messages into numerical vectors
suitable for machine learning algorithms. Since models cannot directly process raw
text data , they rely on numeric representations—such as counts or frequencies of words
—to identify patterns that differentiate spam from ham.

Representing Text as Numerical Features
A common way to represent text numerically is through a bag-of-words  model. This
technique constructs a vocabulary of unique terms from the dataset and represents each
message as a vector of term counts. Each element in the vector corresponds to a term in the
vocabulary, and its value indicates how often that term appears in the message.

Using only unigrams  (individual words) does not preserve the original word order; it treats
each document as a collection of terms and their frequencies, independent of sequence.

To introduce a limited sense of order, we also include bigrams , which are pairs of
consecutive words. By incorporating bigrams, we capture some local ordering information.

For example, the bigram free prize  might help distinguish a spam message promising a
reward from a simple statement containing the word free  alone. However, beyond these
small sequences, the global order of words and sentence structure remains largely lost. In

# Rejoin tokens into a single string for feature extraction

df["message"] = df["message"].apply(lambda x: " ".join(x))

print("\n=== AFTER JOINING TOKENS BACK INTO STRINGS ===")

print(df["message"].head(5))
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other words, CountVectorizer  does not preserve complete word order; it only captures
localized patterns defined by the chosen ngram_range .

Using CountVectorizer for the Bag-of-Words Approach
CountVectorizer  from the scikit-learn  library efficiently implements the bag-of-words
approach. It converts a collection of documents into a matrix of term counts, where each row
represents a message and each column corresponds to a term (unigram or bigram). Before
transformation, CountVectorizer  applies tokenization, builds a vocabulary, and then maps
each document to a numeric vector.

Key parameters for refining the feature set:

After this step, X  becomes a numerical feature matrix ready to be fed into a classifier, such
as Naive Bayes.

How CountVectorizer Works
CountVectorizer  operates in three main stages:

min_df=1 : A term must appear in at least one document to be included. While this
threshold is set to 1  here, higher values can be used in practice to exclude rare terms.
max_df=0.9 : Terms that appear in more than 90% of the documents are excluded,
removing overly common words that provide limited differentiation.
ngram_range=(1, 2) : The feature matrix captures individual words and common word
pairs by including unigrams and bigrams, potentially improving the model’s ability to
detect spam patterns.

from sklearn.feature_extraction.text import CountVectorizer

# Initialize CountVectorizer with bigrams, min_df, and max_df to focus on 

relevant terms

vectorizer = CountVectorizer(min_df=1, max_df=0.9, ngram_range=(1, 2))

# Fit and transform the message column

X = vectorizer.fit_transform(df["message"])

# Labels (target variable)

y = df["label"].apply(lambda x: 1 if x == "spam" else 0)  # Converting 

labels to 1 and 0

1. Tokenization : Splits the text into tokens based on the specified ngram_range . For
ngram_range=(1, 2) , it extracts both unigrams (like " message ") and bigrams (like "
free prize ").
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Example with Unigrams
Consider five documents:

If we use ngram_range=(1, 1)  (unigrams only) and min_df=1 , max_df=0.9 , the word
The  will be removed from unigram vocabulary by max_df=0.9  since it appears more than
90% in the documents, leaving the below unigram matrix:

Document free prize is waiting for you spam message offers a

1 1 1 1 1 1 1 0 0 0 0

2 1 1 0 0 0 0 1 1 1 1

3 0 0 0 0 0 0 1 0 0 0

4 1 0 0 0 0 1 0 0 0 1

5 0 0 1 0 0 0 0 1 0 0

Example with Bigrams

Using ngram_range=(1, 2) , the final vocabulary includes all of the above unigrams and
any valid bigrams containing those unigrams. For instance, free prize  occurs in
Documents 1 and 2. The resulting matrix provides additional context, helping the model
differentiate messages more effectively:

Document free prize is waiting for you spam message offers a

1 1 1 1 1 1 1 0 0 0 0

2 1 1 0 0 0 0 1 1 1 1

3 0 0 0 0 0 0 1 0 0 0

2. Building the Vocabulary : Uses min_df  and max_df  to decide which terms to
include. Terms that are too rare or common are filtered out, leaving a vocabulary that
balances informative and distinctive terms.

3. Vectorization : Transforms each document into a vector of term counts. Each vector
entry corresponds to a term from the vocabulary, and its value represents how many
times that term appears in the document.

1. The free prize is waiting for you
2. The spam message offers a free prize now
3. The spam filter might detect this
4. The important news says you won a free trip
5. The message truly is important
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Document free prize is waiting for you spam message offers a

4 1 0 0 0 0 1 0 0 0 1

5 0 0 1 0 0 0 0 1 0 0

This feature extraction process, using CountVectorizer , has transformed our text data into
a resulting matrix provides a concise, numerical representation of each message, ready for
training a classification model.

Training and Evaluation (Spam Detection)

Training
After preprocessing the text data and extracting meaningful features, we train a machine-
learning model for spam detection. We use the Multinomial Naive Bayes  classifier, which
is well-suited for text classification tasks due to its probabilistic nature and ability to efficiently
handle large, sparse feature sets.

To streamline the entire process, we employ a Pipeline . A pipeline chains together the
vectorization and modeling steps, ensuring that the same data transformation (in this case,
CountVectorizer ) is consistently applied before feeding the transformed data into the
classifier. This approach simplifies both development and maintenance by encapsulating the
feature extraction and model training into a single, unified workflow.

With the pipeline in place, we can easily integrate hyperparameter tuning to improve model
performance. The objective is to find optimal parameter values for the classifier, ensuring
that the model generalizes well and avoids overfitting.

To achieve this, we use GridSearchCV . This method systematically searches through
specified hyperparameter values to identify the configuration that produces the best
performance. In the case of MultinomialNB , we focus on the alpha  parameter, a

from sklearn.model_selection import train_test_split, GridSearchCV

from sklearn.naive_bayes import MultinomialNB

from sklearn.pipeline import Pipeline

# Build the pipeline by combining vectorization and classification

pipeline = Pipeline([

    ("vectorizer", vectorizer),

    ("classifier", MultinomialNB())

])
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smoothing factor that adjusts how the model handles unseen words and prevents
probabilities from being zero. We can balance bias and variance by tuning alpha , ultimately
improving the model’s robustness.

The combination of Pipeline  and GridSearchCV  ensures a clean, consistent workflow.
First, CountVectorizer  converts raw text into numeric features suitable for the classifier.
Next, MultinomialNB  applies its probabilistic principles to distinguish between spam and
ham messages.

Finally, by evaluating alpha  values and leveraging cross-validation, we reliably select the
best configuration based on the F1-score, a balanced metric for precision and recall.

Evaluation

# Define the parameter grid for hyperparameter tuning

param_grid = {

    "classifier__alpha": [0.01, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1.0]

}

# Perform the grid search with 5-fold cross-validation and the F1-score as 

metric

grid_search = GridSearchCV(

    pipeline,

    param_grid,

    cv=5,

    scoring="f1"

)

# Fit the grid search on the full dataset

grid_search.fit(df["message"], y)

# Extract the best model identified by the grid search

best_model = grid_search.best_estimator_

print("Best model parameters:", grid_search.best_params_)
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After training and fine-tuning the spam detection model, assessing its performance on new,
unseen SMS messages is critical. This evaluation helps verify how well the model
generalizes to real-world data and highlights improvement areas. The evaluation mirrors the
preprocessing and feature extraction steps applied during training, ensuring a consistent and
fair assessment of the model’s true predictive capabilities.

Setting Up the Evaluation Messages

We begin by providing a list of new SMS messages for evaluation. These messages
represent the types of inputs the model might receive in real-world use, including
promotional offers, routine communications, urgent alerts, reminders, and incentive-based
spam.

# Example SMS messages for evaluation

new_messages = [

    "Congratulations! You've won a $1000 Walmart gift card. Go to 

http://bit.ly/1234 to claim now.",

    "Hey, are we still meeting up for lunch today?",

    "Urgent! Your account has been compromised. Verify your details here: 

www.fakebank.com/verify",

    "Reminder: Your appointment is scheduled for tomorrow at 10am.",
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Preprocessing New Messages

Before predicting with the trained model, we must preprocess the new messages using the
same steps applied during training. Consistent preprocessing ensures that the model
receives data in the same format it was trained on. The preprocess_message  function
converts each message to lowercase, removes non-alphabetic characters, tokenizes the
text, removes stop words, and applies stemming.

Next, we apply this function to each of the new messages:

Vectorizing the Processed Messages
The model expects numerical input features. To achieve this, we apply the same
vectorization method used during training. The CountVectorizer  saved within the pipeline (
best_model.named_steps["vectorizer"] ) transforms the preprocessed text into a
numerical feature matrix.

Making Predictions

    "FREE entry in a weekly competition to win an iPad. Just text WIN to 

80085 now!",

]

import numpy as np

import re

# Preprocess function that mirrors the training-time preprocessing

def preprocess_message(message):

    message = message.lower()

    message = re.sub(r"[^a-z\s$!]", "", message)

    tokens = word_tokenize(message)

    tokens = [word for word in tokens if word not in stop_words]

    tokens = [stemmer.stem(word) for word in tokens]

    return " ".join(tokens)

# Preprocess and vectorize messages

processed_messages = [preprocess_message(msg) for msg in new_messages]

# Transform preprocessed messages into feature vectors

X_new = best_model.named_steps["vectorizer"].transform(processed_messages)
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With the data properly preprocessed and vectorized, we feed the new messages into the
trained MultinomialNB  classifier ( best_model.named_steps["classifier"] ). This
classifier outputs both a predicted label (spam or not spam) and class probabilities,
indicating the model’s confidence in its decision.

Displaying Predictions and Probabilities

The next step is to present the evaluation results. For each message, we display:

This output provides insight into the model’s reasoning and confidence levels, making it
easier to understand and trust the predictions.

A representative output might look like this:

# Predict with the trained classifier

predictions = best_model.named_steps["classifier"].predict(X_new)

prediction_probabilities = 

best_model.named_steps["classifier"].predict_proba(X_new)

The original text of the message.
The predicted label ( Spam  or Not-Spam ).
The probability that the message is spam.
The probability that the message is not spam.

# Display predictions and probabilities for each evaluated message

for i, msg in enumerate(new_messages):

    prediction = "Spam" if predictions[i] == 1 else "Not-Spam"

    spam_probability = prediction_probabilities[i][1]  # Probability of 

being spam

    ham_probability = prediction_probabilities[i][0]   # Probability of 

being not spam

    print(f"Message: {msg}")

    print(f"Prediction: {prediction}")

    print(f"Spam Probability: {spam_probability:.2f}")

    print(f"Not-Spam Probability: {ham_probability:.2f}")

    print("-" * 50)

Message: Congratulations! You've won a $1000 Walmart gift card. Go to 

http://bit.ly/1234 to claim now.

Prediction: Spam

Spam Probability: 1.00

Not-Spam Probability: 0.00

--------------------------------------------------
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These results show that the model can differentiate between benign messages and a range
of spam content, providing both a categorical decision and the underlying probability
estimates.

Using joblib for Saving Models

After confirming satisfactory performance, preserving the trained model to be reused later is
often necessary. By saving the model to a file, users can avoid the computational expense of
retraining it from scratch each time. This is especially helpful in production environments
where quick predictions are required.

joblib  is a Python library designed to efficiently serialize and deserialize Python objects,
particularly those containing large arrays such as NumPy arrays or scikit-learn models.
Serialization  converts an in-memory object into a format that can be stored on disk or
transmitted across networks. Deserialization  involves converting the stored
representation back into an in-memory object with the exact same state it had when saved.

joblib  works by leveraging optimized binary file formats that compress and split objects, if
necessary, to handle large datasets or complex models. When a model, such as a scikit-
learn pipeline, is saved with joblib , it stores the entire model state including learned
parameters and configurations. Later, when the model is reloaded, it will immediately be
ready to make predictions as if it had just been trained.

Message: Hey, are we still meeting up for lunch today?

Prediction: Not-Spam

Spam Probability: 0.00

Not-Spam Probability: 1.00

--------------------------------------------------

Message: Urgent! Your account has been compromised. Verify your details 

here: www.fakebank.com/verify

Prediction: Spam

Spam Probability: 0.94

Not-Spam Probability: 0.06

--------------------------------------------------

Message: Reminder: Your appointment is scheduled for tomorrow at 10am.

Prediction: Not-Spam

Spam Probability: 0.00

Not-Spam Probability: 1.00

--------------------------------------------------

Message: FREE entry in a weekly competition to win an iPad. Just text WIN 

to 80085 now!

Prediction: Spam

Spam Probability: 1.00

Not-Spam Probability: 0.00

--------------------------------------------------
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By doing so, joblib  helps streamline the deployment process. Instead of retraining the
model every time the application restarts, developers and operations teams can load the
saved model into memory and start making predictions. This reduces both computational
overhead and startup latency.

In this example, best_model  likely refers to a finalized and tested pipeline or classifier. The
file spam_detection_model.joblib  will contain all the necessary information to predict new
data. To reuse the model later, load it back into the environment:

This approach ensures that the entire workflow—training, evaluating, and deploying the
model—remains efficient and easily reproducible.

Model Evaluation (Spam Detection)

To evaluate your model, upload it to the evaluation portal running on the Playground VM. If
you are not currently using the Playground VM, you can initialize it at the bottom of the page.

If you have the Playground VM running, you can use this Python script to upload your model
from Jupyter directly. Once evaluated, if your model meets the required performance criteria,
you will receive a flag value. This flag can be used to answer the question or verify the
model’s success.

import joblib

# Save the trained model to a file for future use

model_filename = 'spam_detection_model.joblib'

joblib.dump(best_model, model_filename)

print(f"Model saved to {model_filename}")

loaded_model = joblib.load(model_filename)

predictions = loaded_model.predict(new_messages)

import requests

import json

# Define the URL of the API endpoint

url = "http://localhost:8000/api/upload"

# Path to the model file you want to upload

model_file_path = "spam_detection_model.joblib"
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If you are working from your own machine, ensure you have configured the HTB VPN to
connect to the remote VM and spawned it. After connecting, access the model upload portal
by navigating to http://<VM-IP>:8000/  in your browser and then uploading your model.

Network Anomaly Detection

Anomaly detection  identifies data points that deviate significantly from the norm. In
cybersecurity, such anomalies can indicate malicious activities, network intrusions, or other
security breaches. Random forests , which are ensembles of decision trees , effectively
handle complex, high-dimensional data and can be used to detect these anomalous
patterns.

Random Forests
A Random Forest  is an ensemble machine-learning algorithm that builds multiple decision
trees  and aggregates their predictions. In classification tasks, each tree votes for a class,
and the class receiving the majority votes is chosen. In regression tasks, the final prediction
is the average of the individual tree outputs.

By combining the outputs of multiple trees, random forests often generalize better than a
single decision tree, reducing overfitting  and providing robust performance even in high-
dimensional feature spaces.

Three key concepts shape the construction of a random forest:

Random Forests for Anomaly Detection

# Open the file in binary mode and send the POST request

with open(model_file_path, "rb") as model_file:

    files = {"model": model_file}

    response = requests.post(url, files=files)

# Pretty print the response from the server

print(json.dumps(response.json(), indent=4))

1. Bootstrapping : Multiple subsets of the training data are created via sampling with
replacement. Each subset trains a separate decision tree.

2. Tree Construction : For each tree, a random subset of features is considered at
every split, ensuring diversity and reducing correlations among trees.

3. Voting : After all trees are trained, classification involves majority voting, while
regression involves averaging predictions.

hƩps://t.me/CyberFreeCourses

af://h1-96
af://h2-97
af://h2-98


When used for anomaly detection, a random forest is trained exclusively on data
representing normal conditions. New, unseen data points are then evaluated against this
learned normal behavior. Points that do not fit well, or that produce low confidence
predictions, are flagged as potential anomalies.

This allows the model to detect unusual patterns, making it useful in scenarios such as
identifying suspicious network traffic.

NSL-KDD Dataset
The NSL-KDD  dataset refines the original KDD Cup 1999  dataset by eliminating redundant
entries and correcting imbalanced class distributions. Researchers commonly adopt it as a
standard reference for measuring the performance of various intrusion detection models.

NSL-KDD  presents balanced, labeled instances of both normal and malicious network
activities. This allows practitioners to perform not only binary classification (normal vs.
abnormal) but also multi-class detection tasks targeting specific attack types. Such versatility
makes NSL-KDD  an invaluable resource for developing and testing intrusion detection
techniques.

We'll be using a modified version of this dataset.

Downloading the Dataset
Before loading the NSL-KDD dataset, we must retrieve it from the provided URL. We can
download the .zip  file using Python's standard libraries and then extract it locally for further
processing.

Loading the Dataset
Properly loading the NSL-KDD dataset is essential before starting the preprocessing stage.
This ensures that the data is consistently structured, with each column containing the correct
information. Once loaded, the dataset can be inspected for quality, completeness, and
potential preprocessing needs.

import requests, zipfile, io

# URL for the NSL-KDD dataset

url = "https://academy.hackthebox.com/storage/modules/292/KDD_dataset.zip"

# Download the zip file and extract its contents

response = requests.get(url)

z = zipfile.ZipFile(io.BytesIO(response.content))

z.extractall('.')  # Extracts to the current directory
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Importing Libraries

We begin by importing all necessary libraries.

In this snippet:

Defining Column Names and File Path

The NSL-KDD dataset includes a set of predefined features and labels. We must map these
features to meaningful column names to work with them directly. We define a list of column
names corresponding to the various observed characteristics of network connections and
attacks. Additionally, we set file_path  to point to the dataset file, ensuring that pandas
know where to read the data from.

import numpy as np

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score, precision_score, recall_score, 

f1_score, confusion_matrix, classification_report

import seaborn as sns

import matplotlib.pyplot as plt

numpy  and pandas  handle data loading and cleaning.
RandomForestClassifier  provides the algorithm we will use for anomaly detection.
train_test_split  and other metrics from sklearn.metrics  support model
evaluation and validation.
seaborn  and matplotlib  assist in visualizing distributions, relationships, and model
results.

# Set the file path to the dataset

file_path = r'KDD+.txt'

# Define the column names corresponding to the NSL-KDD dataset

columns = [

    'duration', 'protocol_type', 'service', 'flag', 'src_bytes', 

'dst_bytes',

    'land', 'wrong_fragment', 'urgent', 'hot', 'num_failed_logins', 

'logged_in',

    'num_compromised', 'root_shell', 'su_attempted', 'num_root', 

'num_file_creations',

    'num_shells', 'num_access_files', 'num_outbound_cmds', 

'is_host_login', 'is_guest_login',

    'count', 'srv_count', 'serror_rate', 'srv_serror_rate', 'rerror_rate', 

'srv_rerror_rate',
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These column names ensure that each feature and label is properly identified. They include
generic network statistics (e.g., duration , src_bytes , dst_bytes ), categorical fields (
protocol_type , service ), and labels ( attack , level ), which classify the type of traffic
observed.

Reading the Dataset into a DataFrame

With the file path and column names defined, we load the data into a pandas  DataFrame.
This provides a structured, tabular representation of the dataset, making it easier to inspect,
preprocess, and visualize.

By executing this code, we now have a DataFrame df  containing all the data from the NSL-
KDD dataset with the appropriate column headers. The DataFrame is ready for further
inspection, cleaning, and preprocessing steps. Before proceeding, we can briefly examine
the dataset’s structure, check for missing values, and confirm that all features align with their
intended data types.

Preprocessing and Splitting the Dataset

Preprocessing the Dataset
This section prepares the NSL-KDD dataset to train a random forest anomaly detection
model. The primary goal is to transform the raw network traffic data into a usable format by
creating classification targets, encoding categorical variables, and selecting important
numeric features. We will produce both binary and multi-class targets, ensure that

    'same_srv_rate', 'diff_srv_rate', 'srv_diff_host_rate', 

'dst_host_count', 'dst_host_srv_count',

    'dst_host_same_srv_rate', 'dst_host_diff_srv_rate', 

'dst_host_same_src_port_rate',

    'dst_host_srv_diff_host_rate', 'dst_host_serror_rate', 

'dst_host_srv_serror_rate',

    'dst_host_rerror_rate', 'dst_host_srv_rerror_rate', 'attack', 'level'

]

# Read the combined NSL-KDD dataset into a DataFrame

df = pd.read_csv(file_path, names=columns)

print(df.head())
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categorical data is machine-readable, and retain numeric metrics critical to the detection of
abnormal traffic patterns.

Creating a Binary Classification Target

The binary classification target identifies whether network traffic is normal or anomalous. We
create a new column attack_flag  in the DataFrame df  to achieve this. Each row receives
a label of 0  if the traffic is normal and 1  if it is an attack. This transformation simplifies the
initial detection problem into a basic normal-versus-attack classification, which can be a
starting point for a more granular analysis.

The value normal  comes from the dataset; if we look at the dataset, you can see that all
traffic is labeled normal  or not:

Creating the Multi-Class Classification Target
While a binary target is useful, it lacks granularity. To address this, we also create a multi-
class classification target that distinguishes between different categories of attacks. We
define lists categorizing specific attacks into four major groups:

A custom function map_attack  checks the type of attack and assigns it an integer:

# Binary classification target

# Maps normal traffic to 0 and any type of attack to 1

df['attack_flag'] = df['attack'].apply(lambda a: 0 if a == 'normal' else 

1)

0,tcp,ftp_data,SF,491,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.0,0.0,0.0,0.

0,1.0,0.0,0.0,150,25,0.17,0.03,0.17,0.0,0.0,0.0,0.05,0.0,normal,20

0,tcp,private,S0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,123,6,1.0,1.0,0.0,0.0

,0.05,0.07,0.0,255,26,0.1,0.05,0.0,0.0,1.0,1.0,0.0,0.0,neptune,19

DoS  (Denial of Service) attacks such as neptune  and smurf
Probe  attacks that scan networks for vulnerabilities, like satan  or ipsweep
Privilege Escalation  attacks that attempt to gain unauthorized admin-level control,
such as buffer_overflow
Access  attacks that seek to breach system access controls, like guess_passwd

0  for normal traffic
1  for DoS attacks
2  for Probe attacks
3  for Privilege Escalation attacks
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This expanded classification target allows models to learn to distinguish between normal and
abnormal traffic and the nature of the observed attacks.

Encoding Categorical Variables

Network traffic data often includes categorical attributes that are not directly usable by
machine learning algorithms, which generally require numeric inputs. Two important features
in the NSL-KDD dataset are protocol_type  (e.g., tcp , udp ) and service  (e.g., http ,
ftp ). These features categorize the nature of network interactions but must be transformed
into numeric form.

We use one-hot encoding, provided by the get_dummies  function in pandas. This approach
creates a binary indicator variable for each category, ensuring that no ordinal relationship is
implied between different protocols or services. After encoding, each categorical value is
represented by a separate column indicating its presence ( 1 ) or absence ( 0 ).

4  for Access attacks

# Multi-class classification target categories

dos_attacks = ['apache2', 'back', 'land', 'neptune', 'mailbomb', 'pod',

               'processtable', 'smurf', 'teardrop', 'udpstorm', 'worm']

probe_attacks = ['ipsweep', 'mscan', 'nmap', 'portsweep', 'saint', 

'satan']

privilege_attacks = ['buffer_overflow', 'loadmdoule', 'perl', 'ps',

                     'rootkit', 'sqlattack', 'xterm']

access_attacks = ['ftp_write', 'guess_passwd', 'http_tunnel', 'imap',

                  'multihop', 'named', 'phf', 'sendmail', 'snmpgetattack',

                  'snmpguess', 'spy', 'warezclient', 'warezmaster',

                  'xclock', 'xsnoop']

def map_attack(attack):

    if attack in dos_attacks:

        return 1

    elif attack in probe_attacks:

        return 2

    elif attack in privilege_attacks:

        return 3

    elif attack in access_attacks:

        return 4

    else:

        return 0

# Assign multi-class category to each row

df['attack_map'] = df['attack'].apply(map_attack)
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Selecting Numeric Features

Beyond categorical variables, the dataset contains a range of numeric features that describe
various aspects of network traffic. These include basic metrics like duration , src_bytes ,
and dst_bytes , as well as more specialized features such as serror_rate  and
dst_host_srv_diff_host_rate , which capture statistical properties of the network
sessions. By selecting these numeric features, we ensure the model has access to both raw
volume data and more nuanced, derived statistics that help distinguish normal from
abnormal patterns.

Preparing the Dataset
The final step is to combine the one-hot encoded categorical features with the selected
numeric features. We join them into a single DataFrame train_set  that will serve as the
primary input to our machine-learning model. We also store the multi-class target variable
attack_map  as multi_y  for classification tasks. At this stage, the data is in a suitable
format for splitting into training, validation, test sets, and subsequently training the random
forest anomaly detection model.

# Encoding categorical variables

features_to_encode = ['protocol_type', 'service']

encoded = pd.get_dummies(df[features_to_encode])

# Numeric features that capture various statistical properties of the 

traffic

numeric_features = [

    'duration', 'src_bytes', 'dst_bytes', 'wrong_fragment', 'urgent', 

'hot',

    'num_failed_logins', 'num_compromised', 'root_shell', 'su_attempted',

    'num_root', 'num_file_creations', 'num_shells', 'num_access_files',

    'num_outbound_cmds', 'count', 'srv_count', 'serror_rate',

    'srv_serror_rate', 'rerror_rate', 'srv_rerror_rate', 'same_srv_rate',

    'diff_srv_rate', 'srv_diff_host_rate', 'dst_host_count', 

'dst_host_srv_count',

    'dst_host_same_srv_rate', 'dst_host_diff_srv_rate',

    'dst_host_same_src_port_rate', 'dst_host_srv_diff_host_rate',

    'dst_host_serror_rate', 'dst_host_srv_serror_rate', 

'dst_host_rerror_rate',

    'dst_host_srv_rerror_rate'

]

# Combine encoded categorical variables and numeric features

train_set = encoded.join(df[numeric_features])
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Splitting the Dataset
In the Data Transformation  section, we discussed the rationale and methods for splitting
data into training, validation, and test sets. We now apply those principles specifically to the
NSL-KDD dataset, ensuring that our random forest anomaly detection model is trained,
tuned, and evaluated on distinct subsets.

Splitting Data into Training and Test Sets
We use train_test_split  to allocate a portion of the data for testing, ensuring that our
final evaluations occur on unseen data.

Creating a Validation Set from the Training Data

We further split the training data to create a validation set. This supports model tuning and
hyperparameter optimization without contaminating the final test data.

Final Split Variables

After splitting, we have:

This careful partitioning, applied after the transformations and encodings discussed earlier,
ensures that the model development process remains consistent and that the final
evaluation is unbiased and reflective of real-world performance.

# Multi-class target variable

multi_y = df['attack_map']

# Split data into training and test sets for multi-class classification

train_X, test_X, train_y, test_y = train_test_split(train_set, multi_y, 

test_size=0.2, random_state=1337)

# Further split the training set into separate training and validation 

sets

multi_train_X, multi_val_X, multi_train_y, multi_val_y = 

train_test_split(train_X, train_y, test_size=0.3, random_state=1337)

train_X , train_y : Core training set
test_X , test_y : Reserved for the final performance evaluation
multi_train_X , multi_train_y : Training subset for fitting the model
multi_val_X , multi_val_y : Validation subset for hyperparameter tuning
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Training and Evaluation (Network Anomaly
Detection)

In this section, we will train a random forest model on the NSL-KDD dataset for multi-class
classification. The goal is to build a model that can accurately classify network traffic into
different attack categories or as normal traffic.

Training the Model

The first step in this process is to train the random forest model using the training subset of
the dataset. We initialize a RandomForestClassifier  with the random_state  parameter
set to 1337  to ensure reproducibility. The fit  method is then used to train the model on the
features multi_train_X  and the target variable multi_train_y . This step builds the
model by learning patterns from the training data.

Evaluating the Model on the Validation Set
Next, we will evaluate the performance of the trained random forest model on the validation
set. The goal is to assess the model's accuracy and other performance metrics to ensure it
generalizes well to unseen data.

# Train RandomForest model for multi-class classification

rf_model_multi = RandomForestClassifier(random_state=1337)

rf_model_multi.fit(multi_train_X, multi_train_y)

# Predict and evaluate the model on the validation set

multi_predictions = rf_model_multi.predict(multi_val_X)

accuracy = accuracy_score(multi_val_y, multi_predictions)

precision = precision_score(multi_val_y, multi_predictions, 

average='weighted')

recall = recall_score(multi_val_y, multi_predictions, average='weighted')

f1 = f1_score(multi_val_y, multi_predictions, average='weighted')

print(f"Validation Set Evaluation:")

print(f"Accuracy: {accuracy:.4f}")

print(f"Precision: {precision:.4f}")

print(f"Recall: {recall:.4f}")

print(f"F1-Score: {f1:.4f}")

# Confusion Matrix for Validation Set

conf_matrix = confusion_matrix(multi_val_y, multi_predictions)

class_labels = ['Normal', 'DoS', 'Probe', 'Privilege', 'Access']

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
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After training the model, we use it to make predictions on the validation set. The predict
method of the RandomForestClassifier  is used to generate predictions for the features
multi_val_X . We then calculate various performance metrics using functions from
sklearn.metrics :

These metrics are printed to evaluate the model's performance on the validation set
comprehensively.

We also generate a confusion matrix using confusion_matrix  and visualize it using
seaborn  and matplotlib . The confusion matrix provides a detailed breakdown of the
model's predictions, showing each class's number of true positives, true negatives, false
positives, and false negatives.

Finally, we print a classification report that includes precision, recall, F1-score, and support
for each class. This report gives a more granular view of the model's performance across
different classes.

Testing the Model on the Test Set

            xticklabels=class_labels,

            yticklabels=class_labels)

plt.title('Network Anomaly Detection - Validation Set')

plt.xlabel('Predicted')

plt.ylabel('Actual')

plt.show()

# Classification Report for Validation Set

print("Classification Report for Validation Set:")

print(classification_report(multi_val_y, multi_predictions, 

target_names=class_labels))

Accuracy : The proportion of correctly classified instances.
Precision : The ratio of true positive predictions to the total predicted positives.
Recall : The ratio of true positive predictions to the total actual positives.
F1-Score : The harmonic mean of precision and recall.
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Next, we will evaluate the final performance of the trained random forest model on the test
set. The goal is to assess the model's ability to generalize to completely unseen data and
provide a final evaluation of its performance.

# Final evaluation on the test set

test_multi_predictions = rf_model_multi.predict(test_X)

test_accuracy = accuracy_score(test_y, test_multi_predictions)

test_precision = precision_score(test_y, test_multi_predictions, 

average='weighted')

test_recall = recall_score(test_y, test_multi_predictions, 

average='weighted')

test_f1 = f1_score(test_y, test_multi_predictions, average='weighted')

print("\nTest Set Evaluation:")

print(f"Accuracy: {test_accuracy:.4f}")

print(f"Precision: {test_precision:.4f}")

print(f"Recall: {test_recall:.4f}")

print(f"F1-Score: {test_f1:.4f}")

# Confusion Matrix for Test Set

test_conf_matrix = confusion_matrix(test_y, test_multi_predictions)

sns.heatmap(test_conf_matrix, annot=True, fmt='d', cmap='Blues',

            xticklabels=class_labels,

            yticklabels=class_labels)

plt.title('Network Anomaly Detection')

plt.xlabel('Predicted')

plt.ylabel('Actual')
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The final step in our process is to evaluate the model on the test set. We use the predict
method to generate predictions for the features test_X . Similar to the validation set
evaluation, we calculate and print various performance metrics:

We also generate a confusion matrix for the test set and visualize it using seaborn  and
matplotlib . This matrix provides a detailed breakdown of the model's predictions on the
test data, showing each class's number of true positives, true negatives, false positives, and
false negatives.

Finally, we print a classification report that includes precision, recall, F1-score, and support
for each class. This report gives a comprehensive view of the model's performance across
different classes on the test set.

By executing this code, we have trained a random forest model, evaluated its performance
on both the validation and test sets, and generated detailed reports and visualizations to
assess its effectiveness in classifying network traffic.

Saving Model
Save your model using this code:

Model Evaluation (Network Anomaly Detection)

plt.show()

# Classification Report for Test Set

print("Classification Report for Test Set:")

print(classification_report(test_y, test_multi_predictions, 

target_names=class_labels))

Accuracy : The proportion of correctly classified instances.
Precision : The ratio of true positive predictions to the total predicted positives.
Recall : The ratio of true positive predictions to the total actual positives.
F1-Score : The harmonic mean of precision and recall.

import joblib

# Save the trained model to a file

model_filename = 'network_anomaly_detection_model.joblib'

joblib.dump(rf_model_multi, model_filename)

print(f"Model saved to {model_filename}")
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To evaluate your model, upload it to the evaluation portal running on the Playground VM. If
you are not currently using the Playground VM, you can initialize it at the bottom of the page.

If you have the Playground VM running, you can use this Python script to upload your model
from Jupyter directly. Once evaluated, if your model meets the required performance criteria,
you will receive a flag value. This flag can be used to answer the question or verify the
model’s success.

If you are working from your own machine, ensure you have configured the HTB VPN to
connect to the remote VM and spawned it. After connecting, access the model upload portal
by navigating to http://<VM-IP>:8001/  in your browser and then uploading your model.

Malware Classification

Malware is software designed to cause damage or unauthorized actions on a computer
system or network. Malware can be categorized based on its characteristics, mode of
operation, and purpose, among other factors. A malware category is commonly referred to
as a malware family . We can look at malpedia to explore details about different malware
families. Famous examples include Emotet and WannaCry.

Features of malware to consider for classification include its behavior or functionality,
delivery and propagation methods, and technical traits. As such, manual malware
classification requires a combination of static and dynamic analysis, including time-
consuming reverse engineering of the malware binary. Thus, using ML classifiers to aid in
malware classification can significantly speed up the process.

import requests

import json

# Define the URL of the API endpoint

url = "http://localhost:8001/api/upload"

# Path to the model file you want to upload

model_file_path = "network_anomaly_detection_model.joblib"

# Open the file in binary mode and send the POST request

with open(model_file_path, "rb") as model_file:

    files = {"model": model_file}

    response = requests.post(url, files=files)

# Pretty print the response from the server

print(json.dumps(response.json(), indent=4))
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In this section, we will implement a malware classifier based on the technique explored in
this paper, which explores malware classification based on malware images.

Malware Image Classification
While classifying malware based on images might initially sound counterintuitive, we will
explore the dataset in the upcoming section and learn why this approach makes sense. For
this module, training a classifier on images has the obvious advantage that we do not have
to handle potentially dangerous malicious binaries directly. By only handling images that
represent these binaries, we cannot accidentally infect our system with malware. Therefore,
it is more appropriate for a learning environment than dealing with the binary files directly.

In the upcoming sections, we will explore the process of training a CNN to classify the
malware images.

The Malware Dataset

The dataset of malware images we will be using is the malimg  dataset, which we can obtain
here or here. It was proposed in this paper.

Malimg Dataset
We can download and unpack the dataset using the following commands:

The dataset consists of 9339 image files for 25 different malware families. The dataset is
organized in folders, where each folder contains all samples for a single malware family. The
folder name corresponds to the malware family's name:

wget https://www.kaggle.com/api/v1/datasets/download/ikrambenabd/malimg-

original -O malimg.zip

unzip malimg.zip

ls malimg_paper_dataset_imgs

 Adialer.C        C2LOP.P          Lolyda.AA3      'Swizzor.gen!I'

 Agent.FYI        Dialplatform.B   Lolyda.AT        VB.AT

 Allaple.A        Dontovo.A       'Malex.gen!J'     Wintrim.BX
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Each image contains a visual representation of a PE file, which is a Windows executable.
The images are grayscale in png  format:

These images are a direct representation of the malware binaries. Each pixel in the image
represents a single byte in the binary. The byte can be any value in the 0-255 range. The
exact value is represented in the corresponding pixel's brightness. A byte with the value 0
results in a black pixel, a value of 255  results in a white pixel, and a value in between
results in the corresponding gray pixel.

Each binary byte is fully encoded within the image, meaning the image can be used to
exactly reconstruct the binary without any loss of information. Furthermore, the images can

 Allaple.L        Fakerean         Obfuscator.AD    Yuner.A

'Alueron.gen!J'   Instantaccess   'Rbot!gen'

 Autorun.K        Lolyda.AA1       Skintrim.N

'C2LOP.gen!g'     Lolyda.AA2      'Swizzor.gen!E'
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visibly convey patterns in the binary. For instance, consider the following two image samples
from the FakeRean  malware family. We can see distinct patterns in both malware images.

Exploring the Dataset
To familiarize ourselves with the dataset, let's start exploring it by creating a plot of the class
distribution within it. This enables us to spot classes that are over- or underrepresented.

To achieve this, we will need the following imports as well as a base path to the folder
containing the data:

import os

import matplotlib.pyplot as plt

import seaborn as sns
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Afterward, we can iterate over all malware families and count the number of images within
the corresponding folder to compute the overall class distribution:

Finally, we can create a barplot to visualize the class distribution:

From the resulting diagram, we can identify which malware families are represented more
than others, potentially skewing the model. Suppose the trained model does not provide the
expected performance in accuracy, number of false positives, and number of false negatives.

DATA_BASE_PATH = "./malimg_paper_dataset_imgs/"

# compute the class distribution

dist = {}

for mlw_class in os.listdir(DATA_BASE_PATH):

    mlw_dir = os.path.join(DATA_BASE_PATH, mlw_class)

    dist[mlw_class] = len(os.listdir(mlw_dir))

# plot the class distribution

# HTB Color Palette

htb_green = "#9FEF00"

node_black = "#141D2B"

hacker_grey = "#A4B1CD"

# data

classes = list(dist.keys())

frequencies = list(dist.values())

# plot

plt.figure(facecolor=node_black)

sns.barplot(y=classes, x=frequencies, edgecolor = "black", orient='h', 

color=htb_green)

plt.title("Malware Class Distribution", color=htb_green)

plt.xlabel("Malware Class Frequency", color=htb_green)

plt.ylabel("Malware Class", color=htb_green)

plt.xticks(color=hacker_grey)

plt.yticks(color=hacker_grey)

ax = plt.gca()

ax.set_facecolor(node_black)

ax.spines['bottom'].set_color(hacker_grey)

ax.spines['top'].set_color(node_black)

ax.spines['right'].set_color(node_black)

ax.spines['left'].set_color(hacker_grey)

plt.show()
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In that case, we may want to fine-tune the dataset before training to ensure a more balanced
class distribution.

Preprocessing the Malware Dataset

We need to prepare the data before we can feed the images to a CNN for training and
inference. In particular, we need to split the data into two distinct datasets: a training and a
test set. Furthermore, we need to apply the preprocessing functions expected by our model
so the model can work on the images. Lastly, we must create DataLoaders  that we can use
during training and inference.

Preparing the Datasets
To split the data into two distinct datasets, one for training and one for testing, we will use the
library split-folders, which we can install with pip :

Afterward, we can use the following code to split the data accordingly. We will use an 80-20
split, meaning 80% of the data will be used for training and 20% for testing:

pip3 install split-folders

import splitfolders

DATA_BASE_PATH = "./malimg_paper_dataset_imgs/"
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After running the code once, a new directory ./newdata/  will be created containing three
folders:

The test  folder contains the test dataset, the train  folder contains the training dataset,
and the val  folder contains the validation dataset. In this case, we will not use a validation
data set, which is why the validation data set is empty. We can confirm the 80-20 split by
counting the number of files in each dataset:

The split was successful, as we can see. We can now create DataLoaders  for training and
inference and apply the required preprocessing to the images.

TARGET_BASE_PATH = "./newdata/"

TRAINING_RATIO = 0.8

TEST_RATIO = 1 - TRAINING_RATIO

splitfolders.ratio(input=DATA_BASE_PATH, output=TARGET_BASE_PATH, ratio=

(TRAINING_RATIO, 0, TEST_RATIO))

ls -la ./newdata/

total 0

drwxr-xr-x 1 t t  24 26. Nov 10:52 .

drwxr-xr-x 1 t t 160 26. Nov 10:52 ..

drwxr-xr-x 1 t t 498 26. Nov 10:52 test

drwxr-xr-x 1 t t 498 26. Nov 10:52 train

drwxr-xr-x 1 t t 498 26. Nov 10:52 val

find ./newdata/test/ -type f | wc -l

1880

find ./newdata/train/ -type f | wc -l

7459

find ./newdata/val/ -type f | wc -l

0
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Applying Preprocessing & Creating DataLoaders
In the first step, let us define the preprocessing required for our model to read the data. For
CNNs, this typically requires a resizing such that all input images are the same size and a
normalization. Normalization ensures that the data is standardized before the data is fed to
the model. This results in a model that is easier to train. In PyTorch, our preprocessing looks
like this:

Afterward, we can load the datasets from their corresponding folders and apply the
preprocessing functions. We need to specify the root folder for each dataset in the root
parameter and the preprocessing transform in the transform  parameter. As we have
discussed above, the root folders for the datasets are ./newdata/train/  and
./newdata/test/ , respectively.

Finally, we can create DataLoader  instances, which we can use to iterate over the data for
training and inference. We can supply a batch size and specify the number of workers to

from torchvision import transforms

# Define preprocessing transforms

transform = transforms.Compose([

transforms.Resize((75, 75)),

    transforms.ToTensor(),

    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 

0.225])

])

from torchvision.datasets import ImageFolder

import os

BASE_PATH = "./newdata/"

# Load training and test datasets

train_dataset = ImageFolder(

root=os.path.join(BASE_PATH, "train"),

    transform=transform

)

test_dataset = ImageFolder(

root=os.path.join(BASE_PATH, "test"),

    transform=transform

)
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load the data in the num_workers  parameter. This enables parallelization and will speed up
the data handling:

Let us take a look at one of the preprocessed images to see its effects:

from torch.utils.data import DataLoader

TRAIN_BATCH_SIZE = 1024

TEST_BATCH_SIZE = 1024

# Create data loaders

train_loader = DataLoader(

    train_dataset,

batch_size=TRAIN_BATCH_SIZE,

    shuffle=True,

    num_workers=2

)

test_loader = DataLoader(

    test_dataset,

    batch_size=TEST_BATCH_SIZE,

    shuffle=False,

    num_workers=2

)

import matplotlib.pyplot as plt

# HTB Color Palette

htb_green = "#9FEF00"

node_black = "#141D2B"

hacker_grey = "#A4B1CD"

# image

sample = next(iter(train_loader))[0][0]

# plot

plt.figure(facecolor=node_black)

plt.imshow(sample.permute(1,2,0))

plt.xticks(color=hacker_grey)

plt.yticks(color=hacker_grey)

ax = plt.gca()

ax.set_facecolor(node_black)

ax.spines['bottom'].set_color(hacker_grey)

ax.spines['top'].set_color(node_black)

ax.spines['right'].set_color(node_black)

ax.spines['left'].set_color(hacker_grey)

ax.tick_params(axis='x', colors=hacker_grey)
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This is the raw malware image:

This is the resized and normalized image from our DataLoader  that we will feed to the
model:

ax.tick_params(axis='y', colors=hacker_grey)

plt.show()
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The details can be roughly discerned from the raw image. However, many of the fine details
have been lost.

After combining the above code into a single function, we end up with the following code:

from torchvision import transforms

from torch.utils.data import DataLoader

from torchvision.datasets import ImageFolder

import os

def load_datasets(base_path, train_batch_size, test_batch_size):

    # Define preprocessing transforms

    transform = transforms.Compose([

        transforms.Resize((75, 75)),

        transforms.ToTensor(),

        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 

0.224, 0.225])

    ])

    # Load training and test datasets

    train_dataset = ImageFolder(

        root=os.path.join(base_path, "train"),

        transform=transform

    )

    test_dataset = ImageFolder(
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Note that the function also returns the number of classes in the dataset. As we have
mentioned before, the Malimg  dataset consists of 25 classes, so we could omit this step
and simply assume there are always 25 classes. However, by reading this information
dynamically from the data itself, we can use the same code even after making changes to
the dataset, either by removing one of the classes or adding new classes to the dataset.

The Model

The heart of any classifier is the model. As discussed previously, we will be using a CNN
model. To speed up the training process, we will base our model on a pre-trained version of
a well-established CNN called ResNet50.

ResNet50
The ResNet family of CNNs was proposed in 2015 in this paper. We will use a variant called
ResNet50 . This model is 50 layers deep, where it got its name, and consists of roughly 23
million parameters. This model is strong in image classification tasks, which perfectly fits our
needs for malware classification.

        root=os.path.join(base_path, "test"),

        transform=transform

    )

    # Create data loaders

    train_loader = DataLoader(

        train_dataset,

        batch_size=train_batch_size,

        shuffle=True,

        num_workers=2

    )

    test_loader = DataLoader(

        test_dataset,

        batch_size=test_batch_size,

        shuffle=False,

        num_workers=2

    )

    n_classes = len(train_dataset.classes)

    return train_loader, test_loader, n_classes
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To significantly speed up the training process, we will not start with randomly initialized
weights but rather with a pre-trained ResNet50 model. Our code will download pre-trained
weights and apply them to our model as a baseline. We will then run our training on the
malware image dataset to fine-tune it for our purpose. This approach will save us training
time in the magnitude of multiple days or even weeks.

Furthermore, to further speed up the training process, we will freeze  the weights of all
ResNet layers except for the final one. Thus, during our training process, only the weights of
the final layer will change. While this may reduce our classifier's performance, it will
significantly benefit our training time and be a good trade-off for our simple proof-of-concept
experiment. We will also adjust the final layer according to our needs. In particular, we may
adjust the number of neurons in the final layer and fix the output size to the number of
classes in our training data. This results in the following MalwareClassifier  class:

When initializing the model, we need to specify the number of classes. Since our dataset
consists of 25 classes, we can initialize the model like so:

import torch.nn as nn

import torchvision.models as models

HIDDEN_LAYER_SIZE = 1000

class MalwareClassifier(nn.Module):

    def __init__(self, n_classes):

        super(MalwareClassifier, self).__init__()

        # Load pretrained ResNet50

        self.resnet = models.resnet50(weights='DEFAULT')

        # Freeze ResNet parameters

        for param in self.resnet.parameters():

            param.requires_grad = False

        # Replace the last fully connected layer

        num_features = self.resnet.fc.in_features

        self.resnet.fc = nn.Sequential(

            nn.Linear(num_features, HIDDEN_LAYER_SIZE),

            nn.ReLU(),

            nn.Linear(HIDDEN_LAYER_SIZE, n_classes)

        )

    def forward(self, x):

        return self.resnet(x)

model = MalwareClassifier(25)
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However, as discussed in the previous section, the advantage of dynamically setting the
number of classes is that we can directly use it from the dataset. By combining the above
code with the code from the previous section, we can take the number of classes from the
dataset and initialize the model accordingly:

Training and Evaluation (Malware Image
Classification)

After loading the datasets and initializing the model, let's finally discuss model training and
evaluation to see how well our model performs.

Training
Let us define a training function that takes a model, a training loader, and the number of
epochs. We will then specify the loss function as CrossEntropyLoss  and use the Adam
optimizer. Afterward, we iterate the entire training data for each epoch and run the forward
and backward passes. For a refresher on backpropagation  and gradient descent ,
check out the Fundamentals of AI module.

The final training function looks like this:

DATA_PATH = "./newdata/"

TRAINING_BATCH_SIZE = 1024

TEST_BATCH_SIZE = 1024

# Load datasets

train_loader, test_loader, n_classes = load_datasets(DATA_PATH, 

TRAINING_BATCH_SIZE, TEST_BATCH_SIZE)

# Initialize model

model = MalwareClassifier(n_classes)

import torch

import time

def train(model, train_loader, n_epochs, verbose=False):

    model.train()

    criterion = torch.nn.CrossEntropyLoss()

    optimizer = torch.optim.Adam(model.parameters())
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Note that much of the code within the training function keeps track of information about the
training, such as time elapsed, accuracy, and loss.

Additionally, we will define a function to save the trained model to disk for later use:

Evaluation

    training_data = {"accuracy": [], "loss": []}

    for epoch in range(n_epochs):

        running_loss = 0

        n_total = 0

        n_correct = 0

        checkpoint = time.time() * 1000

        for inputs, labels in train_loader:

            optimizer.zero_grad()

            outputs = model(inputs)

            loss = criterion(outputs, labels)

            loss.backward()

            optimizer.step()

            _, predicted = outputs.max(1)

            n_total += labels.size(0)

            n_correct += predicted.eq(labels).sum().item()

            running_loss += loss.item()

        epoch_loss = running_loss / len(train_loader)

        epoch_duration = int(time.time() * 1000 - checkpoint)

        epoch_accuracy = compute_accuracy(n_correct, n_total)

        training_data["accuracy"].append(epoch_accuracy)

        training_data["loss"].append(epoch_loss)

        if verbose:

            print(f"[i] Epoch {epoch+1} of {n_epochs}: Acc: 

{epoch_accuracy:.2f}% Loss: {epoch_loss:.4f} (Took {epoch_duration} ms).")

    return training_data

def save_model(model, path):

model_scripted = torch.jit.script(model)

model_scripted.save(path)
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To evaluate the model, we will first define a function that runs the model on a single input
and returns the predicted class:

We set the model to evaluation mode using the call model.eval()  and disable gradient
calculation using torch.no_grad() . From there, we can write an evaluation function that
iterates over the entire test dataset and evaluates the model's performance in terms of
accuracy:

Plots
Lastly, let us define a couple of helper functions that create simple plots for the training
accuracy and loss per epoch, respectively:

def predict(model, test_data):

    model.eval()

    with torch.no_grad():

        output = model(test_data)

        _, predicted = torch.max(output.data, 1)

    return predicted

def compute_accuracy(n_correct, n_total):

    return round(100 * n_correct / n_total, 2)

def evaluate(model, test_loader):

    model.eval()

    n_correct = 0

    n_total = 0

    with torch.no_grad():

        for data, target in test_loader:

            predicted = predict(model, data)

            n_total += target.size(0)

            n_correct += (predicted == target).sum().item()

    accuracy = compute_accuracy(n_correct, n_total)

    return accuracy
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Running the Code
After defining all helper functions, we can write a script that defines all parameters and runs
the helper functions to load the data, initialize the model, train the model, save the model,
and finally evaluate the model:

import matplotlib.pyplot as plt

def plot(data, title, label, xlabel, ylabel):

    # HTB Color Palette

    htb_green = "#9FEF00"

    node_black = "#141D2B"

    hacker_grey = "#A4B1CD"

    # plot

    plt.figure(figsize=(10, 6), facecolor=node_black)

    plt.plot(range(1, len(data)+1), data, label=label, color=htb_green)

    plt.title(title, color=htb_green)

    plt.xlabel(xlabel, color=htb_green)

    plt.ylabel(ylabel, color=htb_green)

    plt.xticks(color=hacker_grey)

    plt.yticks(color=hacker_grey)

    ax = plt.gca()

    ax.set_facecolor(node_black)

    ax.spines['bottom'].set_color(hacker_grey)

    ax.spines['top'].set_color(node_black)

    ax.spines['right'].set_color(node_black)

    ax.spines['left'].set_color(hacker_grey)

    legend = plt.legend(facecolor=node_black, edgecolor=hacker_grey, 

fontsize=10)

    plt.setp(legend.get_texts(), color=htb_green)

    plt.show()

def plot_training_accuracy(training_data):

    plot(training_data['accuracy'], "Training Accuracy", "Accuracy", 

"Epoch", "Accuracy (%)")

def plot_training_loss(training_data):

    plot(training_data['loss'], "Training Loss", "Loss", "Epoch", "Loss")

# data parameters

DATA_PATH = "./newdata/"
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Running the final code, we can achieve an accuracy of 88.54%  on the test dataset:

# training parameters

N_EPOCHS = 10

TRAINING_BATCH_SIZE = 512

TEST_BATCH_SIZE = 1024

# model parameters

HIDDEN_LAYER_SIZE = 1000

MODEL_FILE = "malware_classifier.pth"

# Load datasets

train_loader, test_loader, n_classes = load_datasets(DATA_PATH, 

TRAINING_BATCH_SIZE, TEST_BATCH_SIZE)

# Initialize model

model = MalwareClassifier(n_classes)

# Train model

print("[i] Starting Training...")

training_information = train(model, train_loader, N_EPOCHS, verbose=True)

# Save model

save_model(model, MODEL_FILE)

# evaluate model

accuracy = evaluate(model, test_loader)

print(f"[i] Inference accuracy: {accuracy}%.")

# Plot training details

plot_training_accuracy(training_information)

plot_training_loss(training_information)

python3 main.py

[i] Epoch 1 of 10: Acc: 57.09% Loss: 1.4741 (Took 41128 ms).

[i] Epoch 2 of 10: Acc: 85.01% Loss: 0.4631 (Took 40630 ms).

[i] Epoch 3 of 10: Acc: 89.60% Loss: 0.2880 (Took 39567 ms).

[i] Epoch 4 of 10: Acc: 91.88% Loss: 0.2294 (Took 39464 ms).

[i] Epoch 5 of 10: Acc: 92.97% Loss: 0.2113 (Took 39367 ms).

[i] Epoch 6 of 10: Acc: 93.86% Loss: 0.1744 (Took 39172 ms).

[i] Epoch 7 of 10: Acc: 95.13% Loss: 0.1572 (Took 39804 ms).

[i] Epoch 8 of 10: Acc: 94.81% Loss: 0.1501 (Took 39092 ms).

[i] Epoch 9 of 10: Acc: 96.51% Loss: 0.1188 (Took 39328 ms).

[i] Epoch 10 of 10: Acc: 96.26% Loss: 0.1198 (Took 39125 ms).
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During the training process, we can observe a steady increase in accuracy up until the final
couple of epochs:

While the final accuracy is not great, it is acceptable, provided our simple training setup. We
have tweaked many parameters to favor training time instead of model performance. Keep in
mind that the model's accuracy may vary depending on the random split of the datasets.
Additionally, tweaking the parameters affects both training time and model performance. Feel
free to play around with all the parameters the script defines to determine their effects.

Model Evaluation (Malware Image Classification)

To evaluate your model, upload it to the evaluation portal running on the Playground VM. If
you are not currently using the Playground VM, you can initialize it at the bottom of the page.

If you have the Playground VM running, you can use this Python script to upload your model
from Jupyter directly. Once evaluated, if your model meets the required performance criteria,
you will receive a flag value. This flag can be used to answer the question or verify the
model’s success.

[i] Inference accuracy: 88.54%.

import requests

import json
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If you are working from your own machine, ensure you have configured the HTB VPN to
connect to the remote VM, and you have spawned it. After connecting, access the model
upload portal by navigating to http://<VM-IP>:8002/  in your browser, and then upload
your model.

Note: Training time for a single epoch in the Playground environment may take up to 10
minutes. Three epochs should be sufficient to reach the required accuracy. Evaluating an
uploaded model may take up to two minutes. Training time on your own system should be
much faster, depending on your hardware.

Skills Assessment

The IMDB dataset  introduced by Maas et al. (2011) provides a collection of movie reviews
extracted from the Internet Movie Database, annotated for sentiment analysis . It includes
50,000 reviews split evenly into training and test sets, and its carefully curated mixture of
positive and negative examples allows researchers to benchmark and improve various
natural language processing techniques. The IMDB dataset  has influenced subsequent
work in developing vector-based word representations and remains a popular baseline
resource for evaluating classification performance and model architectures in sentiment
classification tasks ( Maas et al., 2011).

Your goal is to train a model that can predict whether a movie review is positive ( 1 ) or
negative ( 0 ). You can download the dataset from the question, or from here.

Out of interest, these exact same techniques can be applied into things such as text
moderation for instance.

# Define the URL of the API endpoint

url = "http://localhost:8002/api/upload"

# Path to the model file you want to upload

model_file_path = "malware_classifier.pth"

# Open the file in binary mode and send the POST request

with open(model_file_path, "rb") as model_file:

    files = {"model": model_file}

    response = requests.post(url, files=files)

# Pretty print the response from the server

print(json.dumps(response.json(), indent=4))
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To evaluate your model, upload it to the evaluation portal running on the Playground VM. If
you are not currently using the Playground VM, you can initialize it at the bottom of the page.

If you have the Playground VM running, you can use this Python script to upload your model
from Jupyter directly. Once evaluated, if your model meets the required performance criteria,
you will receive a flag value. This flag can be used to answer the question or verify the
model’s success.

If you are working from your own machine, ensure you have configured the HTB VPN to
connect to the remote VM and spawned it. After connecting, access the model upload portal
by navigating to http://VM-IP:5000/  in your browser and then uploading your model.

import requests

import json

# Define the URL of the API endpoint

url = "http://localhost:5000/api/upload"

# Path to the model file you want to upload

model_file_path = "skills_assessment.joblib"

# Open the file in binary mode and send the POST request

with open(model_file_path, "rb") as model_file:

    files = {"model": model_file}

    response = requests.post(url, files=files)

# Pretty print the response from the server

print(json.dumps(response.json(), indent=4))
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