
Introduction
Following the Fundamentals of AI module, this module takes a more practical approach to
applying machine learning techniques. Instead of focusing solely on theory, you will now
engage in hands-on activities that involve building and evaluating real models. Throughout
this process, you will gain experience with the end-to-end workflow of AI development, from
exploring datasets to training and testing models.

You will construct three distinct AI models in this module:

Throughout the module, you will encounter python code blocks that guide you step-by-
step through the model-building process.

You will learn more about Jupyter later in this module, but for now, understand that you can
copy and paste these code snippets into a Jupyter notebook to execute them in sequence,
either in the playground VM, or your environment.

You can train most of these models in your own environment. For a decent experience, you
will need at least 4GB of RAM and at least 4 CPU cores.

Note: Throughout this module, all sections marked as interactive contain code blocks for
you to follow along. Not all interactive sections contain separate exercises.

Environment Setup

Setting up a proper environment is essential before diving into the exciting world of AI. This
module offers two paths for an enviroment.

The Playground
The first is The Playground. Because we acknowledge that not everyone will have the
computer resources required to build the models in this module, we have provided a Virtual
Playground Environment for you to use if you absolutely need it.

Because this is separate from PwnBox, there are specific sections where you can spawn this
VM. You can connect to it using your HTB VPN profile or PwnBox. The VM exposes Jupyter

1. A Spam Classifier to determine whether an SMS message is spam or not.
2. A Network Anomaly Detection Model designed to identify abnormal or potentially

malicious network traffic.
3. A Malware Classifier using byteplots , which are visual representations of binary

data.

hƩps://t.me/CyberFreeCourses

https://academy.hackthebox.com/module/details/290
af://h1-1
af://h1-2
af://h2-3

for you to work in, which will be covered in the next section, but you can access it on
http://<VM-IP>:8888 . You can spawn the VM and extend instance time if needed at the
bottom of this section or any of the Model Evaluation sections in the module.

Note: While the Playground environment is sufficient to follow along with everything
discussed in this module, it lacks in performance to provide an environment that encourages
experimentation. Therefore, we recommend setting up an environment on your own system,
provided you have sufficiently powerful hardware. This will result in shorter training times and
enable experimentation with different parameters, resulting in a more enjoyable way to work
through the module and improve your understanding of the performance impact of different
training parameters.

The second is to set up an environment on your own system, which you can do by following
the rest of this section. For this module you will need at least 4GB of RAM. In a majority of
cases, your own environment will provide faster training times than the playground VM.

Miniconda
Miniconda is a minimal installer for the Anaconda distribution of the Python programming
language. It provides the conda package manager and a core Python environment without
automatically installing the full suite of data science libraries available in Anaconda . Users
can selectively install additional packages, creating a customized environment that aligns
with their specific needs.

Both Miniconda and Anaconda rely on the conda package manager, allowing for simplified
installation, updating, and management of Python packages and their dependencies. In
essence, Miniconda offers a lighter starting point, while Anaconda comes pre-loaded with a
broader range of commonly used data science tools.

Why Miniconda?

hƩps://t.me/CyberFreeCourses

af://h2-4
af://h3-5

You might wonder why we use Miniconda instead of a standard Python installation. Here
are a few compelling reasons:

By using Miniconda , you'll streamline your workflow, avoid compatibility issues, and ensure
that your deep learning environment is optimized for performance and efficiency.

Installing Miniconda
Windows
While the traditional installer works well, we can streamline the process on Windows using
Scoop , a command-line installer for Windows. Scoop simplifies the installation and
management of various applications, including Miniconda .

First, install Scoop . Open PowerShell and run:

Next, add the extras bucket, which contains Miniconda :

Finally, install Miniconda with:

This command installs the latest Python 3 version of Miniconda .

To verify the installation, close and reopen PowerShell. Type conda --version to check if
Miniconda is installed correctly.

Performance: Miniconda often performs data science and machine learning tasks
better due to optimized packages and libraries.
Package Management: The Conda package manager simplifies package installation
and management, ensuring compatibility and resolving dependencies. This is
particularly crucial in deep learning, where projects often rely on a complex web of
interconnected libraries.
Environment Isolation: Miniconda allows you to create isolated environments for
different projects. This prevents conflicts between packages and ensures each project
has its dedicated dependencies.

C:\> Set-ExecutionPolicy RemoteSigned -scope CurrentUser # Allow scripts

to run

C:\> irm get.scoop.sh | iex

C:\> scoop bucket add extras

C:\> scoop install miniconda3

hƩps://t.me/CyberFreeCourses

af://h2-6
af://h3-7

MacOS

Homebrew, a popular package manager for macOS, simplifies software installation and
keeps it up-to-date. It also provides a convenient way for macOS users to install Miniconda.

If you don't have Homebrew , install it first by pasting the following command in your terminal:

Once Homebrew is set up, you can install Miniconda with this simple command:

This command installs the latest version of Miniconda with Python 3.

To verify the installation, close and reopen your terminal. Type conda --version to confirm
that Miniconda is installed correctly.

Linux
Miniconda provides a straightforward installation process that relies not solely on a
distribution’s package manager. You can obtain the latest Miniconda installer directly from
the official repository, run it silently, and then load the conda environment for your user shell.
This approach ensures that conda commands and environments are readily available
without manual configuration.

C:\> conda --version

conda 24.9.2

/bin/bash -c "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

brew install --cask miniconda

conda --version

conda 24.9.2

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

chmod +x Miniconda3-latest-Linux-x86_64.sh

./Miniconda3-latest-Linux-x86_64.sh -b -u

eval "$(/home/$USER/miniconda3/bin/conda shell.$(ps -p $$ -o comm=) hook)"

hƩps://t.me/CyberFreeCourses

af://h3-8
af://h3-9

Confirm that Miniconda is installed correctly by running:

Init
The init command configures your shell to recognize and utilize conda . This step is
essential for:

To initialize conda for your shell, run the following command after installing Miniconda :

This command will modify your shell configuration files (e.g., .bashrc or .zshrc) to include
the necessary conda settings. You might need to close and reopen your terminal for the
changes to take effect.

Finally, run these two commands to complete the init process

Deactivating Base
After installing Miniconda , you'll notice that the base environment is activated by default
every time you open a new terminal. This is indicated by the (base) prefix on your path.

While this can be useful, it's often preferable to start with a clean slate and activate
environments only when needed. Personally, I wouldn't say I like seeing the (base) prefix

conda --version

conda 24.9.2

Activating environments: Allows you to use conda activate to switch between
environments.
Using conda commands: Ensures that conda commands are available in your shell.

conda init

conda config --add channels defaults

conda config --add channels conda-forge

conda config --add channels nvidia # only needed if you are on a PC that

has a nvidia gpu

conda config --add channels pytorch

conda config --set channel_priority strict

(base) $

hƩps://t.me/CyberFreeCourses

af://h2-10
af://h2-11

all the time, either.

To prevent the base environment from activating automatically, you can use the following
command:

This command modifies the condarc configuration file and disables the automatic activation
of the base environment.

When you open a new terminal, you won't see the (base) prefix in your prompt anymore.

Managing Virtual Environments
In software development, managing dependencies can quickly become a complex task,
especially when working on multiple projects with different library requirements.

This is where virtual environments come into play. A virtual environment is an isolated
space where you can install packages and dependencies specific to a particular project,
without interfering with other projects or your system's global Python installation.

They are critical for AI tasks for a few reasons:

conda provides a simple way to create virtual environments. For example, to create a new
environment named ai with Python 3.11, use the following command:

This will create a virtual environment, ai , which can then be used to contain all ai-related
packages.

Activating the Environment

To activate the myenv environment, use:

conda config --set auto_activate_base false

Dependency Isolation: Each project can have its own set of dependencies, even if
they conflict with those of other projects.
Clean Project Structure: Keeps your project directory clean and organized by
containing all dependencies within the environment.
Reproducibility: Ensures that your project can be easily reproduced on different
systems with the same dependencies.
System Stability: Prevents conflicts with your global Python installation and avoids
breaking other projects.

conda create -n ai python=3.11

hƩps://t.me/CyberFreeCourses

af://h2-12
af://h3-13

You'll notice that your terminal prompt now includes the environment name in parentheses
(ai) , indicating that the environment is active. Any packages you install using conda or
pip will now be installed within this environment.

To deactivate the environment, use:

The environment name will disappear from your prompt, and you'll be back to your base
Python environment.

Essential Setup
With your Miniconda environment set up, you can install the essential packages for your AI
journey. These packages generally cover what will be needed in this module.

While conda provides a broad range of packages through its curated channels, it may not
include every tool you require. In such cases, you can still use pip within the conda
environment. This approach ensures you can install any additional packages that conda
does not cover.

Use the conda install command to install the following core packages:

Updates
conda provides a method to keep conda-managed packages up to date. Running the
following command updates all conda-installed packages within the (ai) environment, but
it does not update packages installed with pip . Any pip-installed packages must be
managed separately, and mixing pip and conda installations may increase the risk of
dependency conflicts.

conda activate ai

conda deactivate

conda install -y numpy scipy pandas scikit-learn matplotlib seaborn

transformers datasets tokenizers accelerate evaluate optimum

huggingface_hub nltk category_encoders

conda install -y pytorch torchvision torchaudio pytorch-cuda=12.4 -c

pytorch -c nvidia

pip install requests requests_toolbelt

conda update --all

hƩps://t.me/CyberFreeCourses

af://h2-14
af://h2-15

JupyterLab

JupyterLab is an interactive development environment that provides web-based coding,
data, and visualization interfaces. Due to its flexibility and interactive features, it's a popular
choice for data scientists and machine learning practitioners.

Why JupyterLab?

JupyterLab can be easily installed using conda , if it isn't already installed:

Make sure you are running the command from within your ai environment.

To start JupyterLab , simply run:

This will open a new tab in your web browser with the JupyterLab interface.

Using JupyterLab

Interactive Environment : JupyterLab allows running code in individual cells,
facilitating experimentation and iterative development.
Data Exploration and Visualization : It integrates seamlessly with libraries like
matplotlib and seaborn for creating visualizations and exploring data.
Documentation and Sharing : JupyterLab supports markdown and LaTeX for
creating rich documentation and sharing code with others.

conda install -y jupyter jupyterlab notebook ipykernel

jupyter lab

hƩps://t.me/CyberFreeCourses

af://h1-16
af://h2-17
af://h2-18

JupyterLab 's primary component is the notebook, which allows combining code, text, and
visualizations in a single document. Notebooks are organized into cells, where each cell can
contain either code or markdown text.

Click the "Python 3" icon under the "Notebook" section in the Launcher interface to create a
new notebook. This will open a notebook with a single empty code cell.

Type your Python code into the code cell and press Shift + Enter to execute it. For
example:

Code cells : Execute code in various languages (Python, R, Julia).
Markdown cells : Create formatted text, equations, and images using markdown
syntax.
Raw cells : Untyped raw text.

print("Hello, JupyterLab!")

hƩps://t.me/CyberFreeCourses

The output of the code will appear below the cell.

Jupyter notebooks use a stateful environment, which means that variables, functions,
and imports defined in one cell remain available to all later cells. Once you execute a cell,
any changes it makes to the environment, such as assigning new variables or redefining
functions, persist as long as the kernel is running. This differs from a stateless model,
where each code execution is isolated and does not retain information from previous
executions.

Being aware of the stateful nature of a notebook is important. For example, if you execute
cells out of order, you might observe unexpected results due to previously defined or
modified variables. Similarly, re-importing modules or updating variable values affects
subsequent cell executions, but not those that were previously run.

Say you have a cell that does this:

then in a later cell you might have:

If you change the first cell to:

and re-run it before running the print(x) cell, the value of x in the environment becomes
2 , so the output will now be different when you run the print cell.

x = 1

print(x) # This will print '1' because 'x' was defined previously.

x = 2

hƩps://t.me/CyberFreeCourses

Click the "+" button in the toolbar to add new cells. You can choose between code cells and
markdown cells using the Dropdown on the toolbar. Markdown cells allow you to write
formatted text and include headings, lists, and links.

JupyterLab integrates with libraries like pandas , matplotlib , and seaborn for data
exploration and visualization. Here's an example of loading a dataset with pandas and
creating a simple plot:
-- Leaked By hide01.ir

This code now generates a sample DataFrame with two columns, column1 and column2 ,
containing random values. The rest of the code remains the same, demonstrating how to

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

Create a sample DataFrame

data = pd.DataFrame({

 "column1": np.random.rand(50), # 50 random values for column1

 "column2": np.random.rand(50) * 10 # 50 random values (multiplied by

10) for column2

})

Display the first few rows

print(data.head())

Create a scatter plot

plt.scatter(data["column1"], data["column2"])

plt.xlabel("Column 1")

plt.ylabel("Column 2")

plt.title("Scatter Plot")

plt.show()

hƩps://t.me/CyberFreeCourses

display the DataFrame's contents and create a scatter plot using the generated data.

To save your notebook, click the save icon in the toolbar or use the Ctrl + S shortcut.
Don't forget to rename your Notebook. You can right-click on the Notebook tab or the
Notebook in the file browser.

Restarting the Kernel
JupyterLab uses a kernel to run your code. The kernel is a separate process
responsible for executing code and maintaining the state of your computations. Sometimes,
you may need to reset your environment if it becomes cluttered with variables or you
encounter unexpected behavior.

Restarting the kernel clears all variables, functions, and imported modules from memory,
allowing you to start fresh without shutting down JupyterLab entirely.

To restart the kernel :

After restarting, re-run any cells containing variable definitions, imports, or computations to
restore the environment. This ensures that the notebook state accurately reflects the code
you have most recently executed.

This is just a brief overview of Jupyter to get you up and running for this module. For an in-
depth guide, refer to the JupyerLab Documentation.

Python Libraries for AI

Python is a versatile programming language widely used in Artificial Intelligence (AI) due to
its rich library ecosystem that provides efficient and user-friendly tools for developing AI
applications. This section focuses on two prominent Python libraries for AI development:
Scikit-learn and PyTorch .

Just a quick note. This section provides a high-level overview of key Python libraries for AI,
aiming to familiarize you with their purpose, structure, and common use cases. It offers a
foundation for identifying relevant APIs and understanding the general landscape of these
libraries. The official documentation will be your best resource to learning every small detail
about the libraries. You do not need to copy and run these code snippets.

Scikit-learn

1. Open the Kernel menu in the top toolbar.
2. Select Restart Kernel to reset the environment while preserving cell outputs, or

Restart Kernel and Clear All Outputs to also remove all previously generated
outputs from the notebook.

hƩps://t.me/CyberFreeCourses

https://jupyterlab.readthedocs.io/en/latest/getting_started/overview.html
af://h2-19
af://h1-20
af://h2-21

Scikit-learn is a comprehensive library built on NumPy , SciPy , and Matplotlib . It
offers a wide range of algorithms and tools for machine learning tasks and provides a
consistent and intuitive API, making implementing various machine learning models easy.

Data Preprocessing
Scikit-learn offers a rich set of tools for preprocessing data, a crucial step in preparing
data for machine learning algorithms. These tools help transform raw data into a suitable
format that improves the accuracy and efficiency of models.

Feature scaling is essential to ensure that all features have a similar scale, preventing
features with larger values from dominating the learning process. Scikit-learn provides
various scaling techniques:

Supervised Learning: Scikit-learn provides a vast collection of supervised
learning algorithms, including:

Linear Regression

Logistic Regression

Support Vector Machines (SVMs)

Decision Trees

Naive Bayes

Ensemble Methods (e.g., Random Forests, Gradient Boosting)

Unsupervised Learning: It also offers various unsupervised learning algorithms,
such as:

Clustering (K-Means, DBSCAN)
Dimensionality Reduction (PCA, t-SNE)

Model Selection and Evaluation: Scikit-learn includes tools for model
selection, hyperparameter tuning, and performance evaluation, enabling developers to
optimize their models effectively.
Data Preprocessing: It provides functionalities for data preprocessing, including:

Feature scaling and normalization
Handling missing values
Encoding categorical variables

StandardScaler : Standardizes features by removing the mean and scaling to unit
variance.
MinMaxScaler : Scales features to a given range, typically between 0 and 1.
RobustScaler : Scales features using statistics that are robust to outliers.

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

hƩps://t.me/CyberFreeCourses

af://h3-22

Categorical features, representing data in categories or groups, need to be converted into
numerical representations for machine learning algorithms to process them. Scikit-learn
offers encoding techniques:

Real-world datasets often contain missing values. Scikit-learn provides methods to
handle these missing values:

Model Selection and Evaluation
Scikit-learn offers tools for selecting the best model and evaluating its performance.

Splitting data into training and testing sets is crucial to evaluating the model's generalization
ability to unseen data.

Cross-validation provides a more robust evaluation by splitting the data into multiple folds
and training/testing on different combinations.

X_scaled = scaler.fit_transform(X)

OneHotEncoder : Creates binary (0 or 1) columns for each category.
LabelEncoder : Assigns a unique integer to each category.

from sklearn.preprocessing import OneHotEncoder

encoder = OneHotEncoder()

X_encoded = encoder.fit_transform(X)

SimpleImputer : Replaces missing values with a specified strategy (e.g., mean,
median, most frequent).
KNNImputer : Imputes missing values using the k-Nearest Neighbors algorithm.

from sklearn.impute import SimpleImputer

imputer = SimpleImputer(strategy='mean')

X_imputed = imputer.fit_transform(X)

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

hƩps://t.me/CyberFreeCourses

af://h3-23

Scikit-learn provides various metrics to evaluate model performance:

Model Training and Prediction
Scikit-learn follows a consistent API for training and predicting with different models.

Create an instance of the desired model with appropriate hyperparameters.

Train the model using the fit() method with the training data.

Make predictions on new data using the predict() method.

PyTorch
PyTorch is an open-source machine learning library developed by Facebook's AI Research
lab. It provides a flexible and powerful framework for building and deploying various types of
machine learning models, including deep learning models.

from sklearn.model_selection import cross_val_score

scores = cross_val_score(model, X, y, cv=5)

accuracy_score : For classification tasks.
mean_squared_error : For regression tasks.
precision_score , recall_score , f1_score : For classification tasks with
imbalanced classes.

from sklearn.metrics import accuracy_score

accuracy = accuracy_score(y_test, y_pred)

from sklearn.linear_model import LogisticRegression

model = LogisticRegression(C=1.0)

model.fit(X_train, y_train)

y_pred = model.predict(X_test)

hƩps://t.me/CyberFreeCourses

af://h3-24
af://h2-25

Key Features

Dynamic Computational Graphs and Tensors
At the heart of PyTorch lies the concept of dynamic computational graphs. A dynamic
computational graph is created on the fly during the forward pass, allowing for more flexible
and dynamic model building. This makes it easier to implement complex and non-linear
models.

Tensors are multi-dimensional arrays that hold the data being processed. They can be
constants, variables, or placeholders. PyTorch tensors are similar to NumPy arrays but can
run on GPUs for faster computation.

Building Models with PyTorch

PyTorch provides a flexible and intuitive interface for building and training deep learning
models. The torch.nn module contains various layers and modules for constructing neural
networks.

The Sequential API allows building models layer by layer, adding each layer sequentially.

Deep Learning: PyTorch excels in deep learning, enabling the development of
complex neural networks with multiple layers and architectures.
Dynamic Computational Graphs: Unlike static computational graphs used in libraries
like TensorFlow, PyTorch uses dynamic computational graphs, which allow for more
flexible and intuitive model building and debugging.
GPU Support: PyTorch supports GPU acceleration, significantly speeding up the
training process for computationally intensive models.
TorchVision Integration: TorchVision is a library integrated with PyTorch that
provides a user-friendly interface for image datasets, pre-trained models, and common
image transformations.
Automatic Differentiation: PyTorch uses autograd to automatically compute
gradients, simplifying the process of backpropagation.
Community and Ecosystem: PyTorch has a large and active community, leading to a
rich ecosystem of tools, libraries, and resources.

import torch

Creating a tensor

x = torch.tensor([1.0, 2.0, 3.0])

Tensors can be moved to GPU if available

if torch.cuda.is_available():

 x = x.to('cuda')

hƩps://t.me/CyberFreeCourses

af://h3-26
af://h3-27
af://h3-28

The Module class provides more flexibility for building complex models with non-linear
topologies, shared layers, and multiple inputs/outputs.

Training and Evaluation
PyTorch provides tools for training and evaluating models.

Optimizers are algorithms that adjust the model's parameters during training to minimize
the loss function. PyTorch offers various optimizers:

import torch.nn as nn

model = nn.Sequential(

 nn.Linear(784, 128),

 nn.ReLU(),

 nn.Linear(128, 10),

 nn.Softmax(dim=1)

)

import torch.nn as nn

class CustomModel(nn.Module):

 def __init__(self):

 super(CustomModel, self).__init__()

 self.layer1 = nn.Linear(784, 128)

 self.relu = nn.ReLU()

 self.layer2 = nn.Linear(128, 10)

 self.softmax = nn.Softmax(dim=1)

 def forward(self, x):

 x = self.layer1(x)

 x = self.relu(x)

 x = self.layer2(x)

 x = self.softmax(x)

 return x

model = CustomModel()

Adam

SGD (Stochastic Gradient Descent)
RMSprop

import torch.optim as optim

hƩps://t.me/CyberFreeCourses

af://h3-29

Loss Functions measure the difference between the model's predictions and the actual
target values. PyTorch provides a variety of loss functions:

Metrics evaluate the model's performance during training and testing.

The training loop updates the model's parameters based on the training data.

optimizer = optim.Adam(model.parameters(), lr=0.001)

CrossEntropyLoss : For multi-class classification.
BCEWithLogitsLoss : For binary classification.
MSELoss : For regression.

import torch.nn as nn

loss_fn = nn.CrossEntropyLoss()

Accuracy

Precision

Recall

def accuracy(output, target):

 _, predicted = torch.max(output, 1)

 correct = (predicted == target).sum().item()

 return correct / len(target)

import torch

epochs = 10

num_batches = 100

for epoch in range(epochs):

 for batch in range(num_batches):

 # Get batch of data

 x_batch, y_batch = get_batch(batch)

 # Forward pass

 y_pred = model(x_batch)

 # Calculate loss

 loss = loss_fn(y_pred, y_batch)

 # Backward pass and optimization

hƩps://t.me/CyberFreeCourses

Data Loading and Preprocessing
PyTorch provides the torch.utils.data.Dataset and DataLoader classes for handling
data loading and preprocessing.

Model Saving and Loading
PyTorch allows models to be saved and loaded for inference or further training.

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 # Optional: print loss or other metrics

 if batch % 10 == 0:

 print(f'Epoch [{epoch+1}/{epochs}], Batch

[{batch+1}/{num_batches}], Loss: {loss.item():.4f}')

from torch.utils.data import Dataset, DataLoader

class CustomDataset(Dataset):

 def __init__(self, data, labels):

 self.data = data

 self.labels = labels

 def __len__(self):

 return len(self.data)

 def __getitem__(self, idx):

 return self.data[idx], self.labels[idx]

Example usage

dataset = CustomDataset(data, labels)

dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

Save model

torch.save(model.state_dict(), 'model.pth')

Load model

model = CustomModel()

model.load_state_dict(torch.load('model.pth'))

model.eval() # Set the model to evaluation mode

hƩps://t.me/CyberFreeCourses

af://h3-30
af://h3-31

Datasets

In AI, the quality and characteristics of the data used to train models significantly impact their
performance and accuracy. Datasets , which are collections of data points used for analysis
and model training, come in various forms and formats, each with its own properties and
considerations. Data preprocessing is a crucial step in the machine-learning pipeline that
involves transforming raw data into a suitable format for algorithms to process effectively.

Understanding Datasets
Datasets are structured collections of data used for analysis and model training. They
come in various forms, including:

The quality of a dataset is fundamental to the success of any data analysis or machine
learning project. Here’s why:

What Makes a Dataset 'Good'

Several key attributes characterize a good dataset:

Tabular Data : Data organized into tables with rows and columns, common in
spreadsheets or databases.
Image Data : Sets of images represented numerically as pixel arrays.
Text Data : Unstructured data composed of sentences, paragraphs, or full documents.
Time Series Data : Sequential data points collected over time, emphasizing temporal
patterns.

Model Accuracy : High-quality datasets produce more accurate models. Poor-quality
data—such as noisy, incomplete, or biased datasets—leads to reduced model
performance.
Generalization : Carefully curated datasets enable models to generalize effectively to
unseen data. This minimizes overfitting and ensures consistent performance in real-
world applications.
Efficiency : Clean, well-prepared data reduces both training time and computational
demands, streamlining the entire process.
Reliability : Reliable datasets lead to trustworthy insights and decisions. In critical
domains like healthcare or finance, data quality directly affects the dependability of
results.

hƩps://t.me/CyberFreeCourses

af://h1-32
af://h2-33
af://h3-34

Attribute Description Example

Relevance The data should be relevant to
the problem at hand. Irrelevant
data can introduce noise and
reduce model performance.

Text data from social media
posts is more relevant than
stock market prices for a
sentiment analysis task.

Completeness The dataset should have minimal
missing values. Missing data can
lead to biased models and
incorrect predictions.

Techniques like imputation
can handle missing values,
but it's best to start with a
complete dataset if possible.

Consistency Data should be consistent in
format and structure.
Inconsistencies can cause errors
during preprocessing and model
training.

Ensure that date formats
are uniform across the
dataset (e.g., YYYY-MM-DD).

Quality The data should be accurate and
free from errors. Errors can arise
from data collection, entry, or
transmission issues.

Data validation and
verification processes can
help ensure data quality.

Representativeness The dataset should be
representative of the population it
aims to model. A biased or
unrepresentative dataset can
lead to biased models.

A facial recognition
system's dataset should
include a diverse range of
faces from different
ethnicities, ages, and
genders.

Balance The dataset should be balanced,
especially for classification tasks.
Imbalanced datasets can lead to
biased models that perform
poorly on minority classes.

Techniques like
oversampling,
undersampling, or
generating synthetic data
can help balance the
dataset.

Size The dataset should be large
enough to capture the complexity
of the problem. Small datasets
may not provide enough
information for the model to learn
effectively.

However, large datasets
can also be computationally
expensive and require
more powerful hardware.

The Dataset
The provided dataset, demo_dataset.csv is a CSV file containing network log entries. Each
record describes a network event and includes details such as the source IP address,
destination port, protocol used, the volume of data transferred, and an associated threat
level. Analyzing these entries allows one to simulate various network scenarios that are
useful for developing and evaluating intrusion detection systems.

hƩps://t.me/CyberFreeCourses

https://academy.hackthebox.com/storage/modules/292/demo_dataset.zip
af://h2-35

Dataset Structure

The dataset consists of multiple columns, each serving a specific purpose:

Challenges and Considerations
Before processing, it is essential to note potential difficulties:

Acknowledging these challenges early allows the data to be properly cleaned and
transformed, facilitating accurate and reliable analysis.

Loading the Dataset
We first load it into a pandas DataFrame to begin working with the dataset. A pandas
DataFrame is a flexible, two-dimensional labeled data structure that supports a variety of
operations for data exploration and preprocessing. Key advantages include labeled axes,
heterogeneous data handling, and integration with other Python libraries.

Utilizing a DataFrame simplifies subsequent tasks like inspection, cleaning, encoding, and
data transformation.

In this code, pd.read_csv("./demo_dataset.csv") loads the downloaded CSV file into a
DataFrame named data . From here, inspecting, manipulating, and preparing the dataset for
further steps in the analysis pipeline becomes straightforward.

log_id : Unique identifier for each log entry.
source_ip : Source IP address for the network event.
destination_port : Destination port number used by the event.
protocol : Network protocol employed (e.g., TCP , TLS , SSH).
bytes_transferred : Total bytes transferred during the event.
threat_level : Indicator of the event's severity. 0 denotes normal traffic, 1 indicates
low-threat activity, and 2 signifies a high-threat event.

The dataset contains a mix of numerical and categorical data.
Missing values and invalid entries appear in some columns, requiring data cleaning.
Certain numeric columns may contain non-numeric strings, which must be converted or
removed.
The threat_level column includes unknown values (e.g., ? , -1) that must be
standardized or addressed during preprocessing.

import pandas as pd

Load the dataset

data = pd.read_csv("./demo_dataset.csv")

hƩps://t.me/CyberFreeCourses

af://h3-36
af://h3-37
af://h2-38

Exploring the Dataset
After loading the dataset, we employ various operations to understand its structure, identify
anomalies, and determine the nature of cleaning or transformations needed.

Viewing Sample Entries
We examine the first few rows to get a quick overview, which can help detect obvious issues
like unexpected column names, incorrect data types, or irregular patterns.

This command outputs the initial rows of the DataFrame, offering an immediate glimpse into
the dataset's overall organization.

Inspecting Data Structure and Types

Understanding the data types and completeness of each column is essential. We can quickly
review the dataset's information, including which columns have null values and the total
number of entries per column.

The info() method reveals the dataset's shape, column names, data types, and how many
entries are present for each column, enabling early detection of columns with missing or
unexpected data.

Checking for Missing Values

Missing values or anomalies must be handled to maintain the dataset's integrity. The next
step is to identify how many missing values each column contains.

This command returns the count of null values for each column, helping to prioritize which
features need attention. Addressing these missing values may involve imputation, removal,
or other cleaning strategies to ensure the dataset remains reliable and valid for further
analysis.

Display the first few rows of the dataset

print(data.head())

Get a summary of column data types and non-null counts

print(data.info())

Identify columns with missing values

print(data.isnull().sum())

hƩps://t.me/CyberFreeCourses

af://h2-39
af://h3-40
af://h3-41
af://h3-42

Data Preprocessing

Data preprocessing transforms raw data into a suitable format for machine learning
algorithms. Key techniques include:

Effective preprocessing addresses inconsistencies, missing values, outliers, noise, and
feature scaling, improving the accuracy, efficiency, and robustness of machine learning
models.

Identifying Invalid Values
In addition to missing values, we need to check for invalid values in specific columns. Here
are some common checks for the given dataset.

Checking for Invalid IP Addresses
To identify invalid source_ip values, you can use a regular expression to validate the IP
addresses:

Checking for Invalid Port Numbers

To identify invalid destination_port values, you can check if the port numbers are within
the valid range (0-65535):

Data Cleaning : Handling missing values, removing duplicates, and smoothing noisy
data.
Data Transformation : Normalizing, encoding, scaling, and reducing data.
Data Integration : Merging and aggregating data from multiple sources.
Data Formatting : Converting data types and reshaping data structures.

import re

def is_valid_ip(ip):

 pattern = re.compile(r'^((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}

(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$')

 return bool(pattern.match(ip))

Check for invalid IP addresses

invalid_ips = data[~data['source_ip'].astype(str).apply(is_valid_ip)]

print(invalid_ips)

hƩps://t.me/CyberFreeCourses

af://h1-43
af://h2-44
af://h3-45
af://h3-46

Checking for Invalid Protocol Values

To identify invalid protocol values, you can check against a list of known protocols:

Checking for Invalid Bytes Transferred
To identify invalid bytes_transferred values, you can check if the values are numeric and
non-negative:

Checking for Invalid Threat Levels

To identify invalid threat_level values, you can check if the values are within a valid range
(e.g., 0-2):

def is_valid_port(port):

 try:

 port = int(port)

 return 0 <= port <= 65535

 except ValueError:

 return False

Check for invalid port numbers

invalid_ports = data[~data['destination_port'].apply(is_valid_port)]

print(invalid_ports)

valid_protocols = ['TCP', 'TLS', 'SSH', 'POP3', 'DNS', 'HTTPS', 'SMTP',

'FTP', 'UDP', 'HTTP']

Check for invalid protocol values

invalid_protocols = data[~data['protocol'].isin(valid_protocols)]

print(invalid_protocols)

def is_valid_bytes(bytes):

 try:

 bytes = int(bytes)

 return bytes >= 0

 except ValueError:

 return False

Check for invalid bytes transferred

invalid_bytes = data[~data['bytes_transferred'].apply(is_valid_bytes)]

print(invalid_bytes)

hƩps://t.me/CyberFreeCourses

af://h3-47
af://h3-48
af://h3-49

Handling Invalid Entries
There are a few different ways we can approach this bad data.

Dropping Invalid Entries
The most straightforward approach is to discard the invalid entries entirely. This ensures that
the remaining dataset is clean and free of potentially misleading information.

This method is generally preferred when data accuracy is paramount, and the loss of some
data points does not significantly compromise the overall analysis. However, it may not
always be feasible, especially if the dataset is small or the invalid entries constitute a
substantial portion of the data.

After dropping the bad data from our dataset, we are only left with 77 clean entries.

It is sometimes possible to clean or transform invalid entries into valid and usable data
instead of discarding them. This approach aims to retain as much information as possible
from the dataset.

Imputing Missing Values

def is_valid_threat_level(threat_level):

 try:

 threat_level = int(threat_level)

 return 0 <= threat_level <= 2

 except ValueError:

 return False

Check for invalid threat levels

invalid_threat_levels =

data[~data['threat_level'].apply(is_valid_threat_level)]

print(invalid_threat_levels)

the ignore errors covers the fact that there might be some overlap

between indexes that match other invalid criteria

data = data.drop(invalid_ips.index, errors='ignore')

data = data.drop(invalid_ports.index, errors='ignore')

data = data.drop(invalid_protocols.index, errors='ignore')

data = data.drop(invalid_bytes.index, errors='ignore')

data = data.drop(invalid_threat_levels.index, errors='ignore')

print(data.describe(include='all'))

hƩps://t.me/CyberFreeCourses

af://h2-50
af://h3-51
af://h3-52

Imputing is the process of replacing missing or invalid values in a dataset with estimated
values. This is crucial for maintaining the integrity and usability of the data, especially in
machine learning and data analysis tasks where missing values can lead to biased or
inaccurate results.

First, convert all invalid or corrupted entries, such as MISSING_IP , INVALID_IP ,
STRING_PORT , UNUSED_PORT , NON_NUMERIC , or ? , into NaN . This approach standardizes
the representation of missing values, enabling uniform downstream imputation steps.

After this step, NaN represents all missing or invalid data points.

For basic numeric columns like bytes_transferred , use simple methods such as the
median or mean. For categorical columns like protocol , use the most frequent value.

import pandas as pd

import numpy as np

import re

from ipaddress import ip_address

df = pd.read_csv('demo_dataset.csv')

invalid_ips = ['INVALID_IP', 'MISSING_IP']

invalid_ports = ['STRING_PORT', 'UNUSED_PORT']

invalid_bytes = ['NON_NUMERIC', 'NEGATIVE']

invalid_threat = ['?']

df.replace(invalid_ips + invalid_ports + invalid_bytes + invalid_threat,

np.nan, inplace=True)

df['destination_port'] = pd.to_numeric(df['destination_port'],

errors='coerce')

df['bytes_transferred'] = pd.to_numeric(df['bytes_transferred'],

errors='coerce')

df['threat_level'] = pd.to_numeric(df['threat_level'], errors='coerce')

def is_valid_ip(ip):

 pattern = re.compile(r'^((25[0-5]|2[0-4][0-9]|[01]?\d?\d)\.){3}(25[0-

5]|2[0-4]\d|[01]?\d?\d)$')

 if pd.isna(ip) or not pattern.match(str(ip)):

 return np.nan

 return ip

df['source_ip'] = df['source_ip'].apply(is_valid_ip)

from sklearn.impute import SimpleImputer

numeric_cols = ['destination_port', 'bytes_transferred', 'threat_level']

hƩps://t.me/CyberFreeCourses

These imputations ensure that all columns have valid, non-missing values, though they do
not consider complex relationships among features.

For more sophisticated scenarios, employ advanced techniques like KNNImputer or
IterativeImputer . These methods consider relationships among features to produce
contextually meaningful imputations.

After cleaning and imputations, apply domain knowledge. For source_ip values that remain
missing, assign a default such as 0.0.0.0 . Validate protocol values against known valid
protocols. For ports, ensure values fall within the valid range 0-65535 , and for protocols that
imply certain ports, consider mode-based assignments or domain-specific mappings.

Perform final verification steps to confirm that distributions are reasonable and categorical
sets remain valid. Adjust imputation strategies and transformations or remove problematic
records if anomalies persist.

Data Transformation

categorical_cols = ['protocol']

num_imputer = SimpleImputer(strategy='median')

df[numeric_cols] = num_imputer.fit_transform(df[numeric_cols])

cat_imputer = SimpleImputer(strategy='most_frequent')

df[categorical_cols] = cat_imputer.fit_transform(df[categorical_cols])

from sklearn.impute import KNNImputer

knn_imputer = KNNImputer(n_neighbors=5)

df[numeric_cols] = knn_imputer.fit_transform(df[numeric_cols])

valid_protocols = ['TCP', 'TLS', 'SSH', 'POP3', 'DNS', 'HTTPS', 'SMTP',

'FTP', 'UDP', 'HTTP']

df.loc[~df['protocol'].isin(valid_protocols), 'protocol'] =

df['protocol'].mode()[0]

df['source_ip'] = df['source_ip'].fillna('0.0.0.0')

df['destination_port'] = df['destination_port'].clip(lower=0, upper=65535)

print(df.describe(include='all'))

hƩps://t.me/CyberFreeCourses

af://h1-53

Data transformations improve the representation and distribution of features, making
them more suitable for machine learning models. These transformations ensure that models
can efficiently capture underlying patterns by converting categorical variables into machine-
readable formats and addressing skewed numerical distributions. They also enhance trained
models' stability, interpretability, and predictive performance.

Encoding Categorical Features
Encoding converts categorical values into numeric form so machine learning algorithms can
utilize these features. Depending on the situation, you can choose:

After encoding, verify that the transformed features are meaningful and do not introduce
artificial ordering.

One-Hot Encoding
One-hot encoding takes a categorical feature and converts it into a set of new binary
features, where each binary feature corresponds to one possible category value. This
process creates a set of indicator columns that hold 1 or 0 , indicating the presence or
absence of a particular category in each row.

For example, consider the categorical feature color , which can take on the values red ,
green , or blue . In a dataset, you might have rows where color is red in one instance,
green in another, and so on. By applying one-hot encoding , instead of keeping a single
column with values like red , green , or blue , the encoding creates three new binary
columns:

Each of these new columns corresponds to one of the original categories. If a row had
color set to red , the color_red column for that row would be 1 , and the other two
columns (color_green and color_blue) would be 0 . Similarly, if color was originally
green , then the color_green column would be 1 , while the color_red and color_blue
columns would be 0 .

OneHotEncoder for binary indicator features that represent each category separately.
LabelEncoder for integer codes, though this may imply unintended order.
HashingEncoder or frequency-based methods to handle high-cardinality features and
control feature space size.

color_red

color_green

color_blue

hƩps://t.me/CyberFreeCourses

af://h2-54
af://h3-55

This approach prevents models from misinterpreting category values as numeric hierarchies.
However, it can increase the number of features if a category has many unique values.

In this case, we are going to encode the protocol feature.

The original protocol feature is replaced with distinct binary columns, ensuring the model
interprets each category independently.

Handling Skewed Data
When a feature is skewed , its values are unevenly distributed, often with most observations
clustered near one end and a few extreme values stretching out the distribution. Such skew
can affect the performance of machine learning models, especially those sensitive to outliers
or that assume more uniform or normal-like data distributions.

Scaling or transforming these skewed features helps models better capture patterns in the
data. One common transformation is applying a log transform to compress large values
more than small ones, resulting in a more balanced distribution and less dominated by
outliers. By doing this, models often gain improved stability, accuracy, and generalization
ability.

Below, we show how to apply a log transform using the log1p function. This approach
adds 1 to each value before taking the log , ensuring that the transform is defined even for
values at or near zero.

from sklearn.preprocessing import OneHotEncoder

encoder = OneHotEncoder(handle_unknown='ignore', sparse_output=False)

encoded = encoder.fit_transform(df[['protocol']])

encoded_df = pd.DataFrame(encoded,

columns=encoder.get_feature_names_out(['protocol']))

df = pd.concat([df.drop('protocol', axis=1), encoded_df], axis=1)

hƩps://t.me/CyberFreeCourses

af://h2-56

The code above transforms the bytes_transferred feature. Before this transformation, the
feature might have had a few very large values, overshadowing the majority of smaller
observations. After the transformation, the distribution is evener, helping the model treat all
data points fairly and reducing the risk of overfitting outliers.

Visual comparisons of the distribution before and after the transform (as shown by the above
figure) confirm that the original skew has been substantially reduced. Although no
information is lost, the model now views the data through a lens that downplays extreme
cases and highlights underlying patterns more clearly.

Data Splitting
Data splitting involves dividing a dataset into three distinct subsets— training ,
validation , and testing —to ensure reliable model evaluation. By having separate sets,
you can train your model on one subset, fine-tune it on another, and finally test its
performance on data it has never seen before.

The code below demonstrates one approach using train_test_split from scikit-
learn . The initial split allocates 80% of the data for training and 20% for testing. A
subsequent split divides the 80% training portion into 60% for final training and 20% for
validation.

import numpy as np

Apply logarithmic transformation to a skewed feature to reduce its

skewness

df["bytes_transferred"] = np.log1p(df["bytes_transferred"]) # Add 1 to

avoid log(0)

Training Set : Used to fit the model. Typically accounts for around 60-80% of the
entire dataset.
Validation Set : Used for tuning hyperparameters and model selection. Often around
10-20% of the entire dataset.
Test Set : Used only after all model selections and tuning are complete. Often around
10-20% of the entire dataset.

hƩps://t.me/CyberFreeCourses

af://h2-57

Note that test_size=0.25 in the second split refers to 25% of the previously created
training subset (which is 80% of the data). In other words, 0.8 × 0.25 = 0.2 (20% of the
entire dataset), leaving 60% for training and 20% for validation overall.

These subsets support a structured workflow:

Metrics for Evaluating a Model

When assessing a trained machine learning model, one examines a set of numerical metrics
to gauge how well the model performs on a given task. These metrics often quantify the
relationship between predictions and known ground-truth labels.

In the Fundamentals of AI module, we briefly covered metrics such as accuracy ,
precision , recall , and F1-score , and we know that these metrics provide different
perspectives on model behavior.

Accuracy
Accuracy is the proportion of correct predictions out of all predictions made. It measures
how often the model classifies instances correctly. A model with accuracy: 0.9950
indicates that it makes correct predictions 99.50% of the time.

Key points about accuracy :

from sklearn.model_selection import train_test_split

Separate features (X) and target (y)

X = df.drop("threat_level", axis=1)

y = df["threat_level"]

Initial split: 80% training, 20% testing

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=1337)

Second split: from the 80% training portion, allocate 60% for final

training and 20% for validation

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train,

test_size=0.25, random_state=1337)

Train the model on X_train and y_train .
Tune hyperparameters or compare different models using X_val and y_val .
Finally, evaluate the performance on the untouched X_test and y_test .

hƩps://t.me/CyberFreeCourses

https://academy.hackthebox.com/module/details/290
af://h1-58
af://h2-59

While accuracy appears intuitive, relying on it alone can hide important details. Consider a
spam classification scenario where only 1% of incoming emails are spam and 99% are
legitimate. A model that always predicts every email as legitimate will achieve accuracy:
0.99 , but it will never catch any spam.

In this case, accuracy fails to highlight the model’s inability to correctly identify the minority
class. This underscores the importance of complementary metrics, such as precision ,
recall , or F1-score , which provide a more nuanced understanding of performance when
dealing with imbalanced datasets.

Precision
Precision measures how often the model’s predicted positives are truly positive. For
precision: 0.9949 , when the model labels an instance as positive, it is correct 99.49% of
the time.

Key points about precision :

With the spam classification example, if the model labels 100 emails as spam, and 99 of
them are actually spam, then its precision is high. This reduces the inconvenience of
losing important, legitimate emails to the spam folder. However, if the model rarely identifies
spam in the first place, it may fail to catch a large portion of malicious emails. High
precision alone does not guarantee that the model is finding all the spam it should.

-- Leaked By hide01.ir

Recall
Recall measures the model’s ability to identify all positive instances. For recall: 0.9950 ,
the model detects 99.50% of all positives.

Key points about recall :

Measures overall correctness.
Computed as (true positives + true negatives) / (all instances) .
May be misleading in cases of class imbalance.

Reflects quality of positive predictions.
Computed as true positives / (true positives + false positives) .
High precision reduces wasted effort caused by false alarms.

Reflects completeness of positive detection.
Computed as true positives / (true positives + false negatives) .
High recall reduces the risk of missing critical cases.

hƩps://t.me/CyberFreeCourses

af://h2-60
af://h2-61

In the spam classification scenario, a model with high recall correctly flags most spam
emails. This helps ensure that suspicious content does not slip through unnoticed. However,
a model with very high recall but low precision might flood the spam folder with benign
emails. Although it rarely misses spam, it inconveniences the user by misclassifying too
many legitimate emails as spam.

F1-Score
F1-score is the harmonic mean of precision and recall . For F1-score: 0.9949 , the
metric indicates a near-perfect balance between these two aspects.

Key points about F1-score :

Continuing with the spam classification scenario, the F1-score ensures that the model not
only minimizes the misclassification of legitimate emails (high precision) but also
effectively identifies the majority of spam messages (high recall). By focusing on the
balance rather than just one metric, the F1-score provides a more complete picture of the
model’s performance in identifying and correctly handling both spam and non-spam emails.

Additional Considerations
While these four metrics are common, other measures may provide further insights:

Such metrics and visualizations help confirm that the given high values truly reflect robust
performance, not just favorable conditions in the dataset.

Contextualizing the Metrics
When evaluating a model’s metrics (accuracy: 0.9750 , precision: 0.9300 , recall:
0.9100 , F1-score: 0.9200), consider the following:

Balances precision and recall .
Computed as 2 * (precision * recall) / (precision + recall) .
Useful for tasks involving class imbalance.

Specificity : Measures how effectively the model identifies negatives.
AUC : The Area Under the ROC Curve, indicating the model’s discriminative capability at
various thresholds.
Matthews Correlation Coefficient : Useful for highly imbalanced datasets.
Confusion Matrix : Summarizes predictions versus true labels, offering a
comprehensive view of performance.

Are these metrics consistent across different segments of the data?
Does the dataset represent real-world conditions, including the presence of class
imbalances?

hƩps://t.me/CyberFreeCourses

af://h2-62
af://h2-63
af://h2-64

Even metrics that look impressive may not fully capture real-world performance if the dataset
does not reflect operational conditions. For instance, high accuracy could be achieved if
negative cases are heavily overrepresented, making it easier to appear correct by default.
Verifying that both precision and recall remain robust helps ensure the model identifies
important instances without becoming overwhelmed by incorrect predictions.

Depending on the setting, certain trade-offs emerge:

These metrics, considered together, provide a balanced perspective. The relatively high and
reasonably aligned precision and recall values yield a strong F1-score , suggesting
that the model performs consistently well across different classes. This balanced
performance supports confidence that the model’s decisions are both reliable and
meaningful in practice.

Spam Classification

Spam, or unsolicited bulk messaging, has been a persistent issue since the early days of
digital communication. It clutters inboxes, poses security risks, and can be used for
malicious purposes such as phishing attacks. Effective spam detection is crucial for
maintaining the integrity and usability of email systems and other messaging platforms.

Naive Bayes for Spam Detection
Bayes' Theorem is a fundamental concept in probability theory that describes the probability
of an event based on prior knowledge of conditions that might be related to the event.
Mathematically, it is expressed as:

Where:

Are external factors, such as the cost of false positives or false negatives, properly
accounted for?

In threat detection, a model might favor recall to avoid missing critical threats, even if
it occasionally flags benign events.
In environments with limited resources, focusing on precision can reduce the burden
caused by following up on false alarms.

P(A|B) = (P(B|A) * P(A)) / P(B)

P(A|B) is the probability of event A occurring, given that B is true.
P(B|A) is the probability of event B occurring, given that A is true.
P(A) is the prior probability of event A .

hƩps://t.me/CyberFreeCourses

af://h1-65
af://h2-66

In the context of spam detection, A can represent the hypothesis that an email is spam (
Spam), and B can represent the observed features of the email (e.g., words, phrases, etc.).

Applying Bayes' Theorem to Spam Detection

Let's break down how Bayes' Theorem can be applied to determine if an email is spam:

Using Bayes' Theorem, we can express this as:

Simplifying with Naive Assumptions

Naive Bayes makes the "naive" assumption that the presence of a particular feature in an
email is independent of the presence of any other feature, given the class label. This
simplifies the calculation of P(Features|Spam) :

Similarly, for non-spam emails:

P(B) is the prior probability of event B .

1. Hypothesis : We want to determine the probability that an email is spam given its
features.

P(Spam|Features) : Probability that an email is spam given its features.

2. Likelihood : This is the probability of observing the features given that the email is
spam.

P(Features|Spam) : Probability of the features appearing in a spam email.

3. Prior Probability : The probability that any email is spam, irrespective of its
features.

P(Spam) : Prior probability of an email being spam.
4. Marginal Likelihood : The total probability of observing the features, considering

both spam and non-spam emails.
P(Features) : Probability of the features appearing in any email.

P(Spam|Features) = (P(Features|Spam) * P(Spam)) / P(Features)

P(Features|Spam) = P(feature1|Spam) * P(feature2|Spam) * ... *

P(featureN|Spam)

P(Features|Not Spam) = P(feature1|Not Spam) * P(feature2|Not Spam) * ... *

P(featureN|Not Spam)

hƩps://t.me/CyberFreeCourses

af://h3-67
af://h3-68

Using these probabilities, we can calculate the posterior probability of an email being spam
or not spam given its features. The class with the higher posterior probability is chosen as
the predicted class.

Example Calculation

Suppose we have an email with features F1 and F2 . We want to determine if this email is
spam.

Using the Naive Bayes assumption:

Now, applying Bayes' Theorem:

To find P(F1, F2) , we use the law of total probability:

Thus:

Similarly:

P(Spam) = 0.3 : Prior probability that any email is spam.
P(Not Spam) = 0.7 : Prior probability that any email is not spam.
P(F1|Spam) = 0.4 : Probability of feature F1 given the email is spam.
P(F2|Spam) = 0.5 : Probability of feature F2 given the email is spam.
P(F1|Not Spam) = 0.2 : Probability of feature F1 given the email is not spam.
P(F2|Not Spam) = 0.3 : Probability of feature F2 given the email is not spam.

P(F1, F2|Spam) = P(F1|Spam) * P(F2|Spam) = 0.4 * 0.5 = 0.2

P(F1, F2|Not Spam) = P(F1|Not Spam) * P(F2|Not Spam) = 0.2 * 0.3 = 0.06

P(Spam|F1, F2) = (P(F1, F2|Spam) * P(Spam)) / P(F1, F2)

P(F1, F2) = P(F1, F2|Spam) * P(Spam) + P(F1, F2|Not Spam) * P(Not Spam)

 = (0.2 * 0.3) + (0.06 * 0.7)

 = 0.06 + 0.042

 = 0.102

P(Spam|F1, F2) = (0.2 * 0.3) / 0.102

 = 0.06 / 0.102

 ≈ 0.588

hƩps://t.me/CyberFreeCourses

af://h3-69

Since P(Spam|F1, F2) > P(Not Spam|F1, F2) , the email is classified as spam.

The Spam Dataset

We'll explore Bayesian spam classification using the SMS Spam Collection dataset, a
curated resource tailored for developing and evaluating text-based spam filters. This dataset
emerges from the combined efforts of Tiago A. Almeida and Akebo Yamakami at the School
of Electrical and Computer Engineering at the University of Campinas in Brazil, and José
María Gómez Hidalgo at the R&D Department of Optenet in Spain.

Their work, " Contributions to the Study of SMS Spam Filtering: New Collection
and Results ," presented at the 2011 ACM Symposium on Document Engineering, aimed to
address the growing problem of unsolicited mobile phone messages, commonly known as
SMS spam . Recognizing that many existing spam filtering resources focused on email rather
than text messages, the authors assembled this dataset from multiple sources, including the
Grumbletext website, the NUS SMS Corpus, and Caroline Tag’s PhD thesis.

The resulting corpus contains 5,574 text messages annotated as either ham (legitimate) or
spam (unwanted), making it a great resource for building and testing models that can
differentiate meaningful communications from intrusive or deceptive ones. In this context,
ham refers to messages from known contacts, subscriptions, or newsletters that hold value
for the recipient, while spam represents unsolicited content that typically offers no benefit
and may even pose risks to the user.

Downloading the Dataset
The first step in our process is to download this dataset, and we'll do it programmatically in
our notebook.

P(Not Spam|F1, F2) = (P(F1, F2|Not Spam) * P(Not Spam)) / P(F1, F2)

 = (0.06 * 0.7) / 0.102

 = 0.042 / 0.102

 ≈ 0.412

import requests

import zipfile

import io

URL of the dataset

url =

"https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"

Download the dataset

hƩps://t.me/CyberFreeCourses

https://archive.ics.uci.edu/dataset/228/sms+spam+collection
af://h1-70
af://h2-71

We use the requests library to send an HTTP GET request to the URL of the dataset. We
check the status code of the response to determine if the download was successful (
status_code == 200).

After downloading the dataset, we need to extract its contents. The dataset is provided in a
.zip file format, which we will handle using Python's zipfile and io libraries.

Here, response.content contains the binary data of the downloaded .zip file. We use
io.BytesIO to convert this binary data into a bytes-like object that can be processed by
zipfile.ZipFile . The extractall method extracts all files from the archive into a
specified directory, in this case, sms_spam_collection .

It's useful to verify that the extraction was successful and to see what files were extracted.

The os.listdir function lists all files and directories in the specified path, allowing us to
confirm that the SMSSpamCollection file is present.

Loading the Dataset
With the dataset extracted, we can now load it into a pandas DataFrame for further analysis.
The SMS Spam Collection dataset is stored in a tab-separated values (TSV) file format,
which we specify using the sep parameter in pd.read_csv .

response = requests.get(url)

if response.status_code == 200:

 print("Download successful")

else:

 print("Failed to download the dataset")

Extract the dataset

with zipfile.ZipFile(io.BytesIO(response.content)) as z:

 z.extractall("sms_spam_collection")

 print("Extraction successful")

import os

List the extracted files

extracted_files = os.listdir("sms_spam_collection")

print("Extracted files:", extracted_files)

import pandas as pd

Load the dataset

hƩps://t.me/CyberFreeCourses

af://h2-72

Here, we specify that the file is tab-separated (sep="\t"), and since the file does not
contain a header row, we set header=None and provide column names manually using the
names parameter.

After loading the dataset, it is important to inspect it for basic information, missing values,
and duplicates. This helps ensure that the data is clean and ready for analysis.

To get an overview of the dataset, we can use the head , describe , and info methods
provided by pandas.

Checking for missing values is crucial to ensure that our dataset does not contain any
incomplete entries.

The isnull method returns a DataFrame of the same shape as the original, with boolean
values indicating whether each entry is null. The sum method then counts the number of
True values in each column, giving us the total number of missing entries.

df = pd.read_csv(

 "sms_spam_collection/SMSSpamCollection",

 sep="\t",

 header=None,

 names=["label", "message"],

)

Display basic information about the dataset

print("-------------------- HEAD --------------------")

print(df.head())

print("-------------------- DESCRIBE --------------------")

print(df.describe())

print("-------------------- INFO --------------------")

print(df.info())

df.head() displays the first few rows of the DataFrame, giving us a quick look at the
data.
df.describe() provides a statistical summary of the numerical columns in the
DataFrame. Although our dataset is primarily text-based, this can still be useful for
understanding the distribution of labels.
df.info() gives a concise summary of the DataFrame, including the number of non-
null entries and the data types of each column.

Check for missing values

print("Missing values:\n", df.isnull().sum())

hƩps://t.me/CyberFreeCourses

Duplicate entries can skew the results of our analysis, so it's important to identify and
remove them.

The duplicated method returns a boolean Series indicating whether each row is a
duplicate or not. The sum method counts the number of True values, giving us the total
number of duplicate entries. We then use the drop_duplicates method to remove these
duplicates from the DataFrame.

Preprocessing the Spam Dataset

After loading the SMS Spam Collection dataset, the next step is preprocessing the text data.
Preprocessing standardizes the text, reduces noise, and extracts meaningful features, all of
which improve the performance of the Bayes spam classifier. The steps outlined here rely on
the nltk library for tasks such as tokenization, stop word removal, and stemming.

Before processing any text, you must download the required NLTK data files. These include
punkt for tokenization and stopwords for removing common words that do not contribute
to meaning. Ensuring all required resources are available at this stage prevents interruptions
during later processing steps.

Lowercasing the Text
Lowercasing the text ensures that the classifier treats words equally, regardless of their
original casing. By converting all characters to lowercase, the model considers " Free " and "
free " as the same token , effectively reducing dimensionality and improving consistency.

Check for duplicates

print("Duplicate entries:", df.duplicated().sum())

Remove duplicates if any

df = df.drop_duplicates()

import nltk

Download the necessary NLTK data files

nltk.download("punkt")

nltk.download("punkt_tab")

nltk.download("stopwords")

print("=== BEFORE ANY PREPROCESSING ===")

print(df.head(5))

hƩps://t.me/CyberFreeCourses

af://h1-73
af://h3-74

After this step, the dataset contains uniformly cased text , preventing the model from
assigning different weights to tokens that differ only by letter case.

Removing Punctuation and Numbers
Removing unnecessary punctuation and numbers simplifies the dataset by focusing on
meaningful words. However, certain symbols such as $ and ! may contain important
context in spam messages. For example, $ might indicate a monetary amount, and ! might
add emphasis.

The code below removes all characters other than lowercase letters, whitespace, dollar
signs, or exclamation marks. This balance between cleaning the data and preserving
important symbols helps the model concentrate on features relevant to distinguishing spam
from ham messages.

After this step, the text is cleaner, more uniform, and better suited for subsequent
preprocessing tasks such as tokenization, stop word removal, or stemming.

Tokenizing the Text
Tokenization divides the message text into individual words or tokens, a crucial step
before further analysis. By converting unstructured text into a sequence of words, we
prepare the data for operations like removing stop words and applying stemming. Each
token corresponds to a meaningful unit , allowing downstream processes to operate
on smaller, standardized elements rather than entire sentences.

Convert all message text to lowercase

df["message"] = df["message"].str.lower()

print("\n=== AFTER LOWERCASING ===")

print(df["message"].head(5))

import re

Remove non-essential punctuation and numbers, keep useful symbols like $

and !

df["message"] = df["message"].apply(lambda x: re.sub(r"[^a-z\s$!]", "",

x))

print("\n=== AFTER REMOVING PUNCTUATION & NUMBERS (except $ and !) ===")

print(df["message"].head(5))

from nltk.tokenize import word_tokenize

Split each message into individual tokens

hƩps://t.me/CyberFreeCourses

af://h2-75
af://h2-76

Once tokenized, the dataset contains messages represented as lists of words, ready for
additional preprocessing steps that further refine the text data.

Removing Stop Words
Stop words are common words like and , the , or is that often do not add meaningful
context. Removing them reduces noise and focuses the model on the words most likely to
help distinguish spam from ham messages. By reducing the number of non-informative
tokens, we help the model learn more efficiently.

The token lists are shorter at this stage and contain fewer non-informative words, setting a
cleaner stage for future text transformations.

Stemming
Stemming normalizes words by reducing them to their base form (e.g., running becomes
run). This consolidates different forms of the same root word, effectively cutting the
vocabulary size and smoothing out the text representation. As a result, the model can better
understand the underlying concepts without being distracted by trivial variations in word
forms.

df["message"] = df["message"].apply(word_tokenize)

print("\n=== AFTER TOKENIZATION ===")

print(df["message"].head(5))

from nltk.corpus import stopwords

Define a set of English stop words and remove them from the tokens

stop_words = set(stopwords.words("english"))

df["message"] = df["message"].apply(lambda x: [word for word in x if word

not in stop_words])

print("\n=== AFTER REMOVING STOP WORDS ===")

print(df["message"].head(5))

from nltk.stem import PorterStemmer

Stem each token to reduce words to their base form

stemmer = PorterStemmer()

df["message"] = df["message"].apply(lambda x: [stemmer.stem(word) for word

in x])

print("\n=== AFTER STEMMING ===")

print(df["message"].head(5))

hƩps://t.me/CyberFreeCourses

af://h2-77
af://h2-78

After stemming, the token lists focus on root word forms, further simplifying the text and
improving the model’s generalization ability.

Joining Tokens Back into a Single String
While tokens are useful for manipulation, many machine-learning algorithms and
vectorization techniques (e.g., TF-IDF) work best with raw text strings. Rejoining the tokens
into a space-separated string restores a format compatible with these methods, allowing the
dataset to move seamlessly into the feature extraction phase.

At this point, the messages are fully preprocessed. Each message is a cleaned, normalized
string ready for vectorization and subsequent model training, ultimately improving the
classifier’s performance.

Feature Extraction

Feature extraction transforms preprocessed SMS messages into numerical vectors
suitable for machine learning algorithms. Since models cannot directly process raw
text data , they rely on numeric representations—such as counts or frequencies of words
—to identify patterns that differentiate spam from ham.

Representing Text as Numerical Features
A common way to represent text numerically is through a bag-of-words model. This
technique constructs a vocabulary of unique terms from the dataset and represents each
message as a vector of term counts. Each element in the vector corresponds to a term in the
vocabulary, and its value indicates how often that term appears in the message.

Using only unigrams (individual words) does not preserve the original word order; it treats
each document as a collection of terms and their frequencies, independent of sequence.

To introduce a limited sense of order, we also include bigrams , which are pairs of
consecutive words. By incorporating bigrams, we capture some local ordering information.

For example, the bigram free prize might help distinguish a spam message promising a
reward from a simple statement containing the word free alone. However, beyond these
small sequences, the global order of words and sentence structure remains largely lost. In

Rejoin tokens into a single string for feature extraction

df["message"] = df["message"].apply(lambda x: " ".join(x))

print("\n=== AFTER JOINING TOKENS BACK INTO STRINGS ===")

print(df["message"].head(5))

hƩps://t.me/CyberFreeCourses

af://h2-79
af://h1-80
af://h2-81

other words, CountVectorizer does not preserve complete word order; it only captures
localized patterns defined by the chosen ngram_range .

Using CountVectorizer for the Bag-of-Words Approach
CountVectorizer from the scikit-learn library efficiently implements the bag-of-words
approach. It converts a collection of documents into a matrix of term counts, where each row
represents a message and each column corresponds to a term (unigram or bigram). Before
transformation, CountVectorizer applies tokenization, builds a vocabulary, and then maps
each document to a numeric vector.

Key parameters for refining the feature set:

After this step, X becomes a numerical feature matrix ready to be fed into a classifier, such
as Naive Bayes.

How CountVectorizer Works
CountVectorizer operates in three main stages:

min_df=1 : A term must appear in at least one document to be included. While this
threshold is set to 1 here, higher values can be used in practice to exclude rare terms.
max_df=0.9 : Terms that appear in more than 90% of the documents are excluded,
removing overly common words that provide limited differentiation.
ngram_range=(1, 2) : The feature matrix captures individual words and common word
pairs by including unigrams and bigrams, potentially improving the model’s ability to
detect spam patterns.

from sklearn.feature_extraction.text import CountVectorizer

Initialize CountVectorizer with bigrams, min_df, and max_df to focus on

relevant terms

vectorizer = CountVectorizer(min_df=1, max_df=0.9, ngram_range=(1, 2))

Fit and transform the message column

X = vectorizer.fit_transform(df["message"])

Labels (target variable)

y = df["label"].apply(lambda x: 1 if x == "spam" else 0) # Converting

labels to 1 and 0

1. Tokenization : Splits the text into tokens based on the specified ngram_range . For
ngram_range=(1, 2) , it extracts both unigrams (like " message ") and bigrams (like "
free prize ").

hƩps://t.me/CyberFreeCourses

af://h2-82
af://h3-83

Example with Unigrams
Consider five documents:

If we use ngram_range=(1, 1) (unigrams only) and min_df=1 , max_df=0.9 , the word
The will be removed from unigram vocabulary by max_df=0.9 since it appears more than
90% in the documents, leaving the below unigram matrix:

Document free prize is waiting for you spam message offers a

1 1 1 1 1 1 1 0 0 0 0

2 1 1 0 0 0 0 1 1 1 1

3 0 0 0 0 0 0 1 0 0 0

4 1 0 0 0 0 1 0 0 0 1

5 0 0 1 0 0 0 0 1 0 0

Example with Bigrams

Using ngram_range=(1, 2) , the final vocabulary includes all of the above unigrams and
any valid bigrams containing those unigrams. For instance, free prize occurs in
Documents 1 and 2. The resulting matrix provides additional context, helping the model
differentiate messages more effectively:

Document free prize is waiting for you spam message offers a

1 1 1 1 1 1 1 0 0 0 0

2 1 1 0 0 0 0 1 1 1 1

3 0 0 0 0 0 0 1 0 0 0

2. Building the Vocabulary : Uses min_df and max_df to decide which terms to
include. Terms that are too rare or common are filtered out, leaving a vocabulary that
balances informative and distinctive terms.

3. Vectorization : Transforms each document into a vector of term counts. Each vector
entry corresponds to a term from the vocabulary, and its value represents how many
times that term appears in the document.

1. The free prize is waiting for you
2. The spam message offers a free prize now
3. The spam filter might detect this
4. The important news says you won a free trip
5. The message truly is important

hƩps://t.me/CyberFreeCourses

af://h3-84
af://h3-85

Document free prize is waiting for you spam message offers a

4 1 0 0 0 0 1 0 0 0 1

5 0 0 1 0 0 0 0 1 0 0

This feature extraction process, using CountVectorizer , has transformed our text data into
a resulting matrix provides a concise, numerical representation of each message, ready for
training a classification model.

Training and Evaluation (Spam Detection)

Training
After preprocessing the text data and extracting meaningful features, we train a machine-
learning model for spam detection. We use the Multinomial Naive Bayes classifier, which
is well-suited for text classification tasks due to its probabilistic nature and ability to efficiently
handle large, sparse feature sets.

To streamline the entire process, we employ a Pipeline . A pipeline chains together the
vectorization and modeling steps, ensuring that the same data transformation (in this case,
CountVectorizer) is consistently applied before feeding the transformed data into the
classifier. This approach simplifies both development and maintenance by encapsulating the
feature extraction and model training into a single, unified workflow.

With the pipeline in place, we can easily integrate hyperparameter tuning to improve model
performance. The objective is to find optimal parameter values for the classifier, ensuring
that the model generalizes well and avoids overfitting.

To achieve this, we use GridSearchCV . This method systematically searches through
specified hyperparameter values to identify the configuration that produces the best
performance. In the case of MultinomialNB , we focus on the alpha parameter, a

from sklearn.model_selection import train_test_split, GridSearchCV

from sklearn.naive_bayes import MultinomialNB

from sklearn.pipeline import Pipeline

Build the pipeline by combining vectorization and classification

pipeline = Pipeline([

 ("vectorizer", vectorizer),

 ("classifier", MultinomialNB())

])

hƩps://t.me/CyberFreeCourses

af://h1-86
af://h2-87

smoothing factor that adjusts how the model handles unseen words and prevents
probabilities from being zero. We can balance bias and variance by tuning alpha , ultimately
improving the model’s robustness.

The combination of Pipeline and GridSearchCV ensures a clean, consistent workflow.
First, CountVectorizer converts raw text into numeric features suitable for the classifier.
Next, MultinomialNB applies its probabilistic principles to distinguish between spam and
ham messages.

Finally, by evaluating alpha values and leveraging cross-validation, we reliably select the
best configuration based on the F1-score, a balanced metric for precision and recall.

Evaluation

Define the parameter grid for hyperparameter tuning

param_grid = {

 "classifier__alpha": [0.01, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1.0]

}

Perform the grid search with 5-fold cross-validation and the F1-score as

metric

grid_search = GridSearchCV(

 pipeline,

 param_grid,

 cv=5,

 scoring="f1"

)

Fit the grid search on the full dataset

grid_search.fit(df["message"], y)

Extract the best model identified by the grid search

best_model = grid_search.best_estimator_

print("Best model parameters:", grid_search.best_params_)

hƩps://t.me/CyberFreeCourses

af://h2-88

After training and fine-tuning the spam detection model, assessing its performance on new,
unseen SMS messages is critical. This evaluation helps verify how well the model
generalizes to real-world data and highlights improvement areas. The evaluation mirrors the
preprocessing and feature extraction steps applied during training, ensuring a consistent and
fair assessment of the model’s true predictive capabilities.

Setting Up the Evaluation Messages

We begin by providing a list of new SMS messages for evaluation. These messages
represent the types of inputs the model might receive in real-world use, including
promotional offers, routine communications, urgent alerts, reminders, and incentive-based
spam.

Example SMS messages for evaluation

new_messages = [

 "Congratulations! You've won a $1000 Walmart gift card. Go to

http://bit.ly/1234 to claim now.",

 "Hey, are we still meeting up for lunch today?",

 "Urgent! Your account has been compromised. Verify your details here:

www.fakebank.com/verify",

 "Reminder: Your appointment is scheduled for tomorrow at 10am.",

hƩps://t.me/CyberFreeCourses

af://h3-89

Preprocessing New Messages

Before predicting with the trained model, we must preprocess the new messages using the
same steps applied during training. Consistent preprocessing ensures that the model
receives data in the same format it was trained on. The preprocess_message function
converts each message to lowercase, removes non-alphabetic characters, tokenizes the
text, removes stop words, and applies stemming.

Next, we apply this function to each of the new messages:

Vectorizing the Processed Messages
The model expects numerical input features. To achieve this, we apply the same
vectorization method used during training. The CountVectorizer saved within the pipeline (
best_model.named_steps["vectorizer"]) transforms the preprocessed text into a
numerical feature matrix.

Making Predictions

 "FREE entry in a weekly competition to win an iPad. Just text WIN to

80085 now!",

]

import numpy as np

import re

Preprocess function that mirrors the training-time preprocessing

def preprocess_message(message):

 message = message.lower()

 message = re.sub(r"[^a-z\s$!]", "", message)

 tokens = word_tokenize(message)

 tokens = [word for word in tokens if word not in stop_words]

 tokens = [stemmer.stem(word) for word in tokens]

 return " ".join(tokens)

Preprocess and vectorize messages

processed_messages = [preprocess_message(msg) for msg in new_messages]

Transform preprocessed messages into feature vectors

X_new = best_model.named_steps["vectorizer"].transform(processed_messages)

hƩps://t.me/CyberFreeCourses

af://h3-90
af://h3-91
af://h3-92

With the data properly preprocessed and vectorized, we feed the new messages into the
trained MultinomialNB classifier (best_model.named_steps["classifier"]). This
classifier outputs both a predicted label (spam or not spam) and class probabilities,
indicating the model’s confidence in its decision.

Displaying Predictions and Probabilities

The next step is to present the evaluation results. For each message, we display:

This output provides insight into the model’s reasoning and confidence levels, making it
easier to understand and trust the predictions.

A representative output might look like this:

Predict with the trained classifier

predictions = best_model.named_steps["classifier"].predict(X_new)

prediction_probabilities =

best_model.named_steps["classifier"].predict_proba(X_new)

The original text of the message.
The predicted label (Spam or Not-Spam).
The probability that the message is spam.
The probability that the message is not spam.

Display predictions and probabilities for each evaluated message

for i, msg in enumerate(new_messages):

 prediction = "Spam" if predictions[i] == 1 else "Not-Spam"

 spam_probability = prediction_probabilities[i][1] # Probability of

being spam

 ham_probability = prediction_probabilities[i][0] # Probability of

being not spam

 print(f"Message: {msg}")

 print(f"Prediction: {prediction}")

 print(f"Spam Probability: {spam_probability:.2f}")

 print(f"Not-Spam Probability: {ham_probability:.2f}")

 print("-" * 50)

Message: Congratulations! You've won a $1000 Walmart gift card. Go to

http://bit.ly/1234 to claim now.

Prediction: Spam

Spam Probability: 1.00

Not-Spam Probability: 0.00

--

hƩps://t.me/CyberFreeCourses

af://h3-93

These results show that the model can differentiate between benign messages and a range
of spam content, providing both a categorical decision and the underlying probability
estimates.

Using joblib for Saving Models

After confirming satisfactory performance, preserving the trained model to be reused later is
often necessary. By saving the model to a file, users can avoid the computational expense of
retraining it from scratch each time. This is especially helpful in production environments
where quick predictions are required.

joblib is a Python library designed to efficiently serialize and deserialize Python objects,
particularly those containing large arrays such as NumPy arrays or scikit-learn models.
Serialization converts an in-memory object into a format that can be stored on disk or
transmitted across networks. Deserialization involves converting the stored
representation back into an in-memory object with the exact same state it had when saved.

joblib works by leveraging optimized binary file formats that compress and split objects, if
necessary, to handle large datasets or complex models. When a model, such as a scikit-
learn pipeline, is saved with joblib , it stores the entire model state including learned
parameters and configurations. Later, when the model is reloaded, it will immediately be
ready to make predictions as if it had just been trained.

Message: Hey, are we still meeting up for lunch today?

Prediction: Not-Spam

Spam Probability: 0.00

Not-Spam Probability: 1.00

--

Message: Urgent! Your account has been compromised. Verify your details

here: www.fakebank.com/verify

Prediction: Spam

Spam Probability: 0.94

Not-Spam Probability: 0.06

--

Message: Reminder: Your appointment is scheduled for tomorrow at 10am.

Prediction: Not-Spam

Spam Probability: 0.00

Not-Spam Probability: 1.00

--

Message: FREE entry in a weekly competition to win an iPad. Just text WIN

to 80085 now!

Prediction: Spam

Spam Probability: 1.00

Not-Spam Probability: 0.00

--

hƩps://t.me/CyberFreeCourses

af://h3-94

By doing so, joblib helps streamline the deployment process. Instead of retraining the
model every time the application restarts, developers and operations teams can load the
saved model into memory and start making predictions. This reduces both computational
overhead and startup latency.

In this example, best_model likely refers to a finalized and tested pipeline or classifier. The
file spam_detection_model.joblib will contain all the necessary information to predict new
data. To reuse the model later, load it back into the environment:

This approach ensures that the entire workflow—training, evaluating, and deploying the
model—remains efficient and easily reproducible.

Model Evaluation (Spam Detection)

To evaluate your model, upload it to the evaluation portal running on the Playground VM. If
you are not currently using the Playground VM, you can initialize it at the bottom of the page.

If you have the Playground VM running, you can use this Python script to upload your model
from Jupyter directly. Once evaluated, if your model meets the required performance criteria,
you will receive a flag value. This flag can be used to answer the question or verify the
model’s success.

import joblib

Save the trained model to a file for future use

model_filename = 'spam_detection_model.joblib'

joblib.dump(best_model, model_filename)

print(f"Model saved to {model_filename}")

loaded_model = joblib.load(model_filename)

predictions = loaded_model.predict(new_messages)

import requests

import json

Define the URL of the API endpoint

url = "http://localhost:8000/api/upload"

Path to the model file you want to upload

model_file_path = "spam_detection_model.joblib"

hƩps://t.me/CyberFreeCourses

af://h1-95

If you are working from your own machine, ensure you have configured the HTB VPN to
connect to the remote VM and spawned it. After connecting, access the model upload portal
by navigating to http://<VM-IP>:8000/ in your browser and then uploading your model.

Network Anomaly Detection

Anomaly detection identifies data points that deviate significantly from the norm. In
cybersecurity, such anomalies can indicate malicious activities, network intrusions, or other
security breaches. Random forests , which are ensembles of decision trees , effectively
handle complex, high-dimensional data and can be used to detect these anomalous
patterns.

Random Forests
A Random Forest is an ensemble machine-learning algorithm that builds multiple decision
trees and aggregates their predictions. In classification tasks, each tree votes for a class,
and the class receiving the majority votes is chosen. In regression tasks, the final prediction
is the average of the individual tree outputs.

By combining the outputs of multiple trees, random forests often generalize better than a
single decision tree, reducing overfitting and providing robust performance even in high-
dimensional feature spaces.

Three key concepts shape the construction of a random forest:

Random Forests for Anomaly Detection

Open the file in binary mode and send the POST request

with open(model_file_path, "rb") as model_file:

 files = {"model": model_file}

 response = requests.post(url, files=files)

Pretty print the response from the server

print(json.dumps(response.json(), indent=4))

1. Bootstrapping : Multiple subsets of the training data are created via sampling with
replacement. Each subset trains a separate decision tree.

2. Tree Construction : For each tree, a random subset of features is considered at
every split, ensuring diversity and reducing correlations among trees.

3. Voting : After all trees are trained, classification involves majority voting, while
regression involves averaging predictions.

hƩps://t.me/CyberFreeCourses

af://h1-96
af://h2-97
af://h2-98

When used for anomaly detection, a random forest is trained exclusively on data
representing normal conditions. New, unseen data points are then evaluated against this
learned normal behavior. Points that do not fit well, or that produce low confidence
predictions, are flagged as potential anomalies.

This allows the model to detect unusual patterns, making it useful in scenarios such as
identifying suspicious network traffic.

NSL-KDD Dataset
The NSL-KDD dataset refines the original KDD Cup 1999 dataset by eliminating redundant
entries and correcting imbalanced class distributions. Researchers commonly adopt it as a
standard reference for measuring the performance of various intrusion detection models.

NSL-KDD presents balanced, labeled instances of both normal and malicious network
activities. This allows practitioners to perform not only binary classification (normal vs.
abnormal) but also multi-class detection tasks targeting specific attack types. Such versatility
makes NSL-KDD an invaluable resource for developing and testing intrusion detection
techniques.

We'll be using a modified version of this dataset.

Downloading the Dataset
Before loading the NSL-KDD dataset, we must retrieve it from the provided URL. We can
download the .zip file using Python's standard libraries and then extract it locally for further
processing.

Loading the Dataset
Properly loading the NSL-KDD dataset is essential before starting the preprocessing stage.
This ensures that the data is consistently structured, with each column containing the correct
information. Once loaded, the dataset can be inspected for quality, completeness, and
potential preprocessing needs.

import requests, zipfile, io

URL for the NSL-KDD dataset

url = "https://academy.hackthebox.com/storage/modules/292/KDD_dataset.zip"

Download the zip file and extract its contents

response = requests.get(url)

z = zipfile.ZipFile(io.BytesIO(response.content))

z.extractall('.') # Extracts to the current directory

hƩps://t.me/CyberFreeCourses

af://h2-99
af://h2-100
af://h2-101

Importing Libraries

We begin by importing all necessary libraries.

In this snippet:

Defining Column Names and File Path

The NSL-KDD dataset includes a set of predefined features and labels. We must map these
features to meaningful column names to work with them directly. We define a list of column
names corresponding to the various observed characteristics of network connections and
attacks. Additionally, we set file_path to point to the dataset file, ensuring that pandas
know where to read the data from.

import numpy as np

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score, precision_score, recall_score,

f1_score, confusion_matrix, classification_report

import seaborn as sns

import matplotlib.pyplot as plt

numpy and pandas handle data loading and cleaning.
RandomForestClassifier provides the algorithm we will use for anomaly detection.
train_test_split and other metrics from sklearn.metrics support model
evaluation and validation.
seaborn and matplotlib assist in visualizing distributions, relationships, and model
results.

Set the file path to the dataset

file_path = r'KDD+.txt'

Define the column names corresponding to the NSL-KDD dataset

columns = [

 'duration', 'protocol_type', 'service', 'flag', 'src_bytes',

'dst_bytes',

 'land', 'wrong_fragment', 'urgent', 'hot', 'num_failed_logins',

'logged_in',

 'num_compromised', 'root_shell', 'su_attempted', 'num_root',

'num_file_creations',

 'num_shells', 'num_access_files', 'num_outbound_cmds',

'is_host_login', 'is_guest_login',

 'count', 'srv_count', 'serror_rate', 'srv_serror_rate', 'rerror_rate',

'srv_rerror_rate',

hƩps://t.me/CyberFreeCourses

af://h3-102
af://h3-103

These column names ensure that each feature and label is properly identified. They include
generic network statistics (e.g., duration , src_bytes , dst_bytes), categorical fields (
protocol_type , service), and labels (attack , level), which classify the type of traffic
observed.

Reading the Dataset into a DataFrame

With the file path and column names defined, we load the data into a pandas DataFrame.
This provides a structured, tabular representation of the dataset, making it easier to inspect,
preprocess, and visualize.

By executing this code, we now have a DataFrame df containing all the data from the NSL-
KDD dataset with the appropriate column headers. The DataFrame is ready for further
inspection, cleaning, and preprocessing steps. Before proceeding, we can briefly examine
the dataset’s structure, check for missing values, and confirm that all features align with their
intended data types.

Preprocessing and Splitting the Dataset

Preprocessing the Dataset
This section prepares the NSL-KDD dataset to train a random forest anomaly detection
model. The primary goal is to transform the raw network traffic data into a usable format by
creating classification targets, encoding categorical variables, and selecting important
numeric features. We will produce both binary and multi-class targets, ensure that

 'same_srv_rate', 'diff_srv_rate', 'srv_diff_host_rate',

'dst_host_count', 'dst_host_srv_count',

 'dst_host_same_srv_rate', 'dst_host_diff_srv_rate',

'dst_host_same_src_port_rate',

 'dst_host_srv_diff_host_rate', 'dst_host_serror_rate',

'dst_host_srv_serror_rate',

 'dst_host_rerror_rate', 'dst_host_srv_rerror_rate', 'attack', 'level'

]

Read the combined NSL-KDD dataset into a DataFrame

df = pd.read_csv(file_path, names=columns)

print(df.head())

hƩps://t.me/CyberFreeCourses

af://h3-104
af://h1-105
af://h2-106

categorical data is machine-readable, and retain numeric metrics critical to the detection of
abnormal traffic patterns.

Creating a Binary Classification Target

The binary classification target identifies whether network traffic is normal or anomalous. We
create a new column attack_flag in the DataFrame df to achieve this. Each row receives
a label of 0 if the traffic is normal and 1 if it is an attack. This transformation simplifies the
initial detection problem into a basic normal-versus-attack classification, which can be a
starting point for a more granular analysis.

The value normal comes from the dataset; if we look at the dataset, you can see that all
traffic is labeled normal or not:

Creating the Multi-Class Classification Target
While a binary target is useful, it lacks granularity. To address this, we also create a multi-
class classification target that distinguishes between different categories of attacks. We
define lists categorizing specific attacks into four major groups:

A custom function map_attack checks the type of attack and assigns it an integer:

Binary classification target

Maps normal traffic to 0 and any type of attack to 1

df['attack_flag'] = df['attack'].apply(lambda a: 0 if a == 'normal' else

1)

0,tcp,ftp_data,SF,491,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.0,0.0,0.0,0.

0,1.0,0.0,0.0,150,25,0.17,0.03,0.17,0.0,0.0,0.0,0.05,0.0,normal,20

0,tcp,private,S0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,123,6,1.0,1.0,0.0,0.0

,0.05,0.07,0.0,255,26,0.1,0.05,0.0,0.0,1.0,1.0,0.0,0.0,neptune,19

DoS (Denial of Service) attacks such as neptune and smurf
Probe attacks that scan networks for vulnerabilities, like satan or ipsweep
Privilege Escalation attacks that attempt to gain unauthorized admin-level control,
such as buffer_overflow
Access attacks that seek to breach system access controls, like guess_passwd

0 for normal traffic
1 for DoS attacks
2 for Probe attacks
3 for Privilege Escalation attacks

hƩps://t.me/CyberFreeCourses

af://h3-107
af://h3-108

This expanded classification target allows models to learn to distinguish between normal and
abnormal traffic and the nature of the observed attacks.

Encoding Categorical Variables

Network traffic data often includes categorical attributes that are not directly usable by
machine learning algorithms, which generally require numeric inputs. Two important features
in the NSL-KDD dataset are protocol_type (e.g., tcp , udp) and service (e.g., http ,
ftp). These features categorize the nature of network interactions but must be transformed
into numeric form.

We use one-hot encoding, provided by the get_dummies function in pandas. This approach
creates a binary indicator variable for each category, ensuring that no ordinal relationship is
implied between different protocols or services. After encoding, each categorical value is
represented by a separate column indicating its presence (1) or absence (0).

4 for Access attacks

Multi-class classification target categories

dos_attacks = ['apache2', 'back', 'land', 'neptune', 'mailbomb', 'pod',

 'processtable', 'smurf', 'teardrop', 'udpstorm', 'worm']

probe_attacks = ['ipsweep', 'mscan', 'nmap', 'portsweep', 'saint',

'satan']

privilege_attacks = ['buffer_overflow', 'loadmdoule', 'perl', 'ps',

 'rootkit', 'sqlattack', 'xterm']

access_attacks = ['ftp_write', 'guess_passwd', 'http_tunnel', 'imap',

 'multihop', 'named', 'phf', 'sendmail', 'snmpgetattack',

 'snmpguess', 'spy', 'warezclient', 'warezmaster',

 'xclock', 'xsnoop']

def map_attack(attack):

 if attack in dos_attacks:

 return 1

 elif attack in probe_attacks:

 return 2

 elif attack in privilege_attacks:

 return 3

 elif attack in access_attacks:

 return 4

 else:

 return 0

Assign multi-class category to each row

df['attack_map'] = df['attack'].apply(map_attack)

hƩps://t.me/CyberFreeCourses

af://h3-109

Selecting Numeric Features

Beyond categorical variables, the dataset contains a range of numeric features that describe
various aspects of network traffic. These include basic metrics like duration , src_bytes ,
and dst_bytes , as well as more specialized features such as serror_rate and
dst_host_srv_diff_host_rate , which capture statistical properties of the network
sessions. By selecting these numeric features, we ensure the model has access to both raw
volume data and more nuanced, derived statistics that help distinguish normal from
abnormal patterns.

Preparing the Dataset
The final step is to combine the one-hot encoded categorical features with the selected
numeric features. We join them into a single DataFrame train_set that will serve as the
primary input to our machine-learning model. We also store the multi-class target variable
attack_map as multi_y for classification tasks. At this stage, the data is in a suitable
format for splitting into training, validation, test sets, and subsequently training the random
forest anomaly detection model.

Encoding categorical variables

features_to_encode = ['protocol_type', 'service']

encoded = pd.get_dummies(df[features_to_encode])

Numeric features that capture various statistical properties of the

traffic

numeric_features = [

 'duration', 'src_bytes', 'dst_bytes', 'wrong_fragment', 'urgent',

'hot',

 'num_failed_logins', 'num_compromised', 'root_shell', 'su_attempted',

 'num_root', 'num_file_creations', 'num_shells', 'num_access_files',

 'num_outbound_cmds', 'count', 'srv_count', 'serror_rate',

 'srv_serror_rate', 'rerror_rate', 'srv_rerror_rate', 'same_srv_rate',

 'diff_srv_rate', 'srv_diff_host_rate', 'dst_host_count',

'dst_host_srv_count',

 'dst_host_same_srv_rate', 'dst_host_diff_srv_rate',

 'dst_host_same_src_port_rate', 'dst_host_srv_diff_host_rate',

 'dst_host_serror_rate', 'dst_host_srv_serror_rate',

'dst_host_rerror_rate',

 'dst_host_srv_rerror_rate'

]

Combine encoded categorical variables and numeric features

train_set = encoded.join(df[numeric_features])

hƩps://t.me/CyberFreeCourses

af://h3-110
af://h3-111

Splitting the Dataset
In the Data Transformation section, we discussed the rationale and methods for splitting
data into training, validation, and test sets. We now apply those principles specifically to the
NSL-KDD dataset, ensuring that our random forest anomaly detection model is trained,
tuned, and evaluated on distinct subsets.

Splitting Data into Training and Test Sets
We use train_test_split to allocate a portion of the data for testing, ensuring that our
final evaluations occur on unseen data.

Creating a Validation Set from the Training Data

We further split the training data to create a validation set. This supports model tuning and
hyperparameter optimization without contaminating the final test data.

Final Split Variables

After splitting, we have:

This careful partitioning, applied after the transformations and encodings discussed earlier,
ensures that the model development process remains consistent and that the final
evaluation is unbiased and reflective of real-world performance.

Multi-class target variable

multi_y = df['attack_map']

Split data into training and test sets for multi-class classification

train_X, test_X, train_y, test_y = train_test_split(train_set, multi_y,

test_size=0.2, random_state=1337)

Further split the training set into separate training and validation

sets

multi_train_X, multi_val_X, multi_train_y, multi_val_y =

train_test_split(train_X, train_y, test_size=0.3, random_state=1337)

train_X , train_y : Core training set
test_X , test_y : Reserved for the final performance evaluation
multi_train_X , multi_train_y : Training subset for fitting the model
multi_val_X , multi_val_y : Validation subset for hyperparameter tuning

hƩps://t.me/CyberFreeCourses

af://h2-112
af://h3-113
af://h3-114
af://h3-115

Training and Evaluation (Network Anomaly
Detection)

In this section, we will train a random forest model on the NSL-KDD dataset for multi-class
classification. The goal is to build a model that can accurately classify network traffic into
different attack categories or as normal traffic.

Training the Model

The first step in this process is to train the random forest model using the training subset of
the dataset. We initialize a RandomForestClassifier with the random_state parameter
set to 1337 to ensure reproducibility. The fit method is then used to train the model on the
features multi_train_X and the target variable multi_train_y . This step builds the
model by learning patterns from the training data.

Evaluating the Model on the Validation Set
Next, we will evaluate the performance of the trained random forest model on the validation
set. The goal is to assess the model's accuracy and other performance metrics to ensure it
generalizes well to unseen data.

Train RandomForest model for multi-class classification

rf_model_multi = RandomForestClassifier(random_state=1337)

rf_model_multi.fit(multi_train_X, multi_train_y)

Predict and evaluate the model on the validation set

multi_predictions = rf_model_multi.predict(multi_val_X)

accuracy = accuracy_score(multi_val_y, multi_predictions)

precision = precision_score(multi_val_y, multi_predictions,

average='weighted')

recall = recall_score(multi_val_y, multi_predictions, average='weighted')

f1 = f1_score(multi_val_y, multi_predictions, average='weighted')

print(f"Validation Set Evaluation:")

print(f"Accuracy: {accuracy:.4f}")

print(f"Precision: {precision:.4f}")

print(f"Recall: {recall:.4f}")

print(f"F1-Score: {f1:.4f}")

Confusion Matrix for Validation Set

conf_matrix = confusion_matrix(multi_val_y, multi_predictions)

class_labels = ['Normal', 'DoS', 'Probe', 'Privilege', 'Access']

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',

hƩps://t.me/CyberFreeCourses

af://h1-116
af://h2-117
af://h2-118

After training the model, we use it to make predictions on the validation set. The predict
method of the RandomForestClassifier is used to generate predictions for the features
multi_val_X . We then calculate various performance metrics using functions from
sklearn.metrics :

These metrics are printed to evaluate the model's performance on the validation set
comprehensively.

We also generate a confusion matrix using confusion_matrix and visualize it using
seaborn and matplotlib . The confusion matrix provides a detailed breakdown of the
model's predictions, showing each class's number of true positives, true negatives, false
positives, and false negatives.

Finally, we print a classification report that includes precision, recall, F1-score, and support
for each class. This report gives a more granular view of the model's performance across
different classes.

Testing the Model on the Test Set

 xticklabels=class_labels,

 yticklabels=class_labels)

plt.title('Network Anomaly Detection - Validation Set')

plt.xlabel('Predicted')

plt.ylabel('Actual')

plt.show()

Classification Report for Validation Set

print("Classification Report for Validation Set:")

print(classification_report(multi_val_y, multi_predictions,

target_names=class_labels))

Accuracy : The proportion of correctly classified instances.
Precision : The ratio of true positive predictions to the total predicted positives.
Recall : The ratio of true positive predictions to the total actual positives.
F1-Score : The harmonic mean of precision and recall.

hƩps://t.me/CyberFreeCourses

af://h2-119

Next, we will evaluate the final performance of the trained random forest model on the test
set. The goal is to assess the model's ability to generalize to completely unseen data and
provide a final evaluation of its performance.

Final evaluation on the test set

test_multi_predictions = rf_model_multi.predict(test_X)

test_accuracy = accuracy_score(test_y, test_multi_predictions)

test_precision = precision_score(test_y, test_multi_predictions,

average='weighted')

test_recall = recall_score(test_y, test_multi_predictions,

average='weighted')

test_f1 = f1_score(test_y, test_multi_predictions, average='weighted')

print("\nTest Set Evaluation:")

print(f"Accuracy: {test_accuracy:.4f}")

print(f"Precision: {test_precision:.4f}")

print(f"Recall: {test_recall:.4f}")

print(f"F1-Score: {test_f1:.4f}")

Confusion Matrix for Test Set

test_conf_matrix = confusion_matrix(test_y, test_multi_predictions)

sns.heatmap(test_conf_matrix, annot=True, fmt='d', cmap='Blues',

 xticklabels=class_labels,

 yticklabels=class_labels)

plt.title('Network Anomaly Detection')

plt.xlabel('Predicted')

plt.ylabel('Actual')

hƩps://t.me/CyberFreeCourses

The final step in our process is to evaluate the model on the test set. We use the predict
method to generate predictions for the features test_X . Similar to the validation set
evaluation, we calculate and print various performance metrics:

We also generate a confusion matrix for the test set and visualize it using seaborn and
matplotlib . This matrix provides a detailed breakdown of the model's predictions on the
test data, showing each class's number of true positives, true negatives, false positives, and
false negatives.

Finally, we print a classification report that includes precision, recall, F1-score, and support
for each class. This report gives a comprehensive view of the model's performance across
different classes on the test set.

By executing this code, we have trained a random forest model, evaluated its performance
on both the validation and test sets, and generated detailed reports and visualizations to
assess its effectiveness in classifying network traffic.

Saving Model
Save your model using this code:

Model Evaluation (Network Anomaly Detection)

plt.show()

Classification Report for Test Set

print("Classification Report for Test Set:")

print(classification_report(test_y, test_multi_predictions,

target_names=class_labels))

Accuracy : The proportion of correctly classified instances.
Precision : The ratio of true positive predictions to the total predicted positives.
Recall : The ratio of true positive predictions to the total actual positives.
F1-Score : The harmonic mean of precision and recall.

import joblib

Save the trained model to a file

model_filename = 'network_anomaly_detection_model.joblib'

joblib.dump(rf_model_multi, model_filename)

print(f"Model saved to {model_filename}")

hƩps://t.me/CyberFreeCourses

af://h2-120
af://h1-121

To evaluate your model, upload it to the evaluation portal running on the Playground VM. If
you are not currently using the Playground VM, you can initialize it at the bottom of the page.

If you have the Playground VM running, you can use this Python script to upload your model
from Jupyter directly. Once evaluated, if your model meets the required performance criteria,
you will receive a flag value. This flag can be used to answer the question or verify the
model’s success.

If you are working from your own machine, ensure you have configured the HTB VPN to
connect to the remote VM and spawned it. After connecting, access the model upload portal
by navigating to http://<VM-IP>:8001/ in your browser and then uploading your model.

Malware Classification

Malware is software designed to cause damage or unauthorized actions on a computer
system or network. Malware can be categorized based on its characteristics, mode of
operation, and purpose, among other factors. A malware category is commonly referred to
as a malware family . We can look at malpedia to explore details about different malware
families. Famous examples include Emotet and WannaCry.

Features of malware to consider for classification include its behavior or functionality,
delivery and propagation methods, and technical traits. As such, manual malware
classification requires a combination of static and dynamic analysis, including time-
consuming reverse engineering of the malware binary. Thus, using ML classifiers to aid in
malware classification can significantly speed up the process.

import requests

import json

Define the URL of the API endpoint

url = "http://localhost:8001/api/upload"

Path to the model file you want to upload

model_file_path = "network_anomaly_detection_model.joblib"

Open the file in binary mode and send the POST request

with open(model_file_path, "rb") as model_file:

 files = {"model": model_file}

 response = requests.post(url, files=files)

Pretty print the response from the server

print(json.dumps(response.json(), indent=4))

hƩps://t.me/CyberFreeCourses

https://malpedia.caad.fkie.fraunhofer.de/families
https://malpedia.caad.fkie.fraunhofer.de/details/win.emotet
https://malpedia.caad.fkie.fraunhofer.de/details/win.wannacryptor
af://h1-122

In this section, we will implement a malware classifier based on the technique explored in
this paper, which explores malware classification based on malware images.

Malware Image Classification
While classifying malware based on images might initially sound counterintuitive, we will
explore the dataset in the upcoming section and learn why this approach makes sense. For
this module, training a classifier on images has the obvious advantage that we do not have
to handle potentially dangerous malicious binaries directly. By only handling images that
represent these binaries, we cannot accidentally infect our system with malware. Therefore,
it is more appropriate for a learning environment than dealing with the binary files directly.

In the upcoming sections, we will explore the process of training a CNN to classify the
malware images.

The Malware Dataset

The dataset of malware images we will be using is the malimg dataset, which we can obtain
here or here. It was proposed in this paper.

Malimg Dataset
We can download and unpack the dataset using the following commands:

The dataset consists of 9339 image files for 25 different malware families. The dataset is
organized in folders, where each folder contains all samples for a single malware family. The
folder name corresponds to the malware family's name:

wget https://www.kaggle.com/api/v1/datasets/download/ikrambenabd/malimg-

original -O malimg.zip

unzip malimg.zip

ls malimg_paper_dataset_imgs

 Adialer.C C2LOP.P Lolyda.AA3 'Swizzor.gen!I'

 Agent.FYI Dialplatform.B Lolyda.AT VB.AT

 Allaple.A Dontovo.A 'Malex.gen!J' Wintrim.BX

hƩps://t.me/CyberFreeCourses

https://arxiv.org/pdf/2010.16108
https://drive.google.com/file/d/1M83VzyIQj_kuE9XzhClGK5TZWh1T_pr-/view
https://www.kaggle.com/api/v1/datasets/download/ikrambenabd/malimg-original
https://dl.acm.org/doi/10.1145/2016904.2016908
af://h2-123
af://h1-124
af://h2-125

Each image contains a visual representation of a PE file, which is a Windows executable.
The images are grayscale in png format:

These images are a direct representation of the malware binaries. Each pixel in the image
represents a single byte in the binary. The byte can be any value in the 0-255 range. The
exact value is represented in the corresponding pixel's brightness. A byte with the value 0
results in a black pixel, a value of 255 results in a white pixel, and a value in between
results in the corresponding gray pixel.

Each binary byte is fully encoded within the image, meaning the image can be used to
exactly reconstruct the binary without any loss of information. Furthermore, the images can

 Allaple.L Fakerean Obfuscator.AD Yuner.A

'Alueron.gen!J' Instantaccess 'Rbot!gen'

 Autorun.K Lolyda.AA1 Skintrim.N

'C2LOP.gen!g' Lolyda.AA2 'Swizzor.gen!E'

hƩps://t.me/CyberFreeCourses

visibly convey patterns in the binary. For instance, consider the following two image samples
from the FakeRean malware family. We can see distinct patterns in both malware images.

Exploring the Dataset
To familiarize ourselves with the dataset, let's start exploring it by creating a plot of the class
distribution within it. This enables us to spot classes that are over- or underrepresented.

To achieve this, we will need the following imports as well as a base path to the folder
containing the data:

import os

import matplotlib.pyplot as plt

import seaborn as sns

hƩps://t.me/CyberFreeCourses

af://h2-126

Afterward, we can iterate over all malware families and count the number of images within
the corresponding folder to compute the overall class distribution:

Finally, we can create a barplot to visualize the class distribution:

From the resulting diagram, we can identify which malware families are represented more
than others, potentially skewing the model. Suppose the trained model does not provide the
expected performance in accuracy, number of false positives, and number of false negatives.

DATA_BASE_PATH = "./malimg_paper_dataset_imgs/"

compute the class distribution

dist = {}

for mlw_class in os.listdir(DATA_BASE_PATH):

 mlw_dir = os.path.join(DATA_BASE_PATH, mlw_class)

 dist[mlw_class] = len(os.listdir(mlw_dir))

plot the class distribution

HTB Color Palette

htb_green = "#9FEF00"

node_black = "#141D2B"

hacker_grey = "#A4B1CD"

data

classes = list(dist.keys())

frequencies = list(dist.values())

plot

plt.figure(facecolor=node_black)

sns.barplot(y=classes, x=frequencies, edgecolor = "black", orient='h',

color=htb_green)

plt.title("Malware Class Distribution", color=htb_green)

plt.xlabel("Malware Class Frequency", color=htb_green)

plt.ylabel("Malware Class", color=htb_green)

plt.xticks(color=hacker_grey)

plt.yticks(color=hacker_grey)

ax = plt.gca()

ax.set_facecolor(node_black)

ax.spines['bottom'].set_color(hacker_grey)

ax.spines['top'].set_color(node_black)

ax.spines['right'].set_color(node_black)

ax.spines['left'].set_color(hacker_grey)

plt.show()

hƩps://t.me/CyberFreeCourses

In that case, we may want to fine-tune the dataset before training to ensure a more balanced
class distribution.

Preprocessing the Malware Dataset

We need to prepare the data before we can feed the images to a CNN for training and
inference. In particular, we need to split the data into two distinct datasets: a training and a
test set. Furthermore, we need to apply the preprocessing functions expected by our model
so the model can work on the images. Lastly, we must create DataLoaders that we can use
during training and inference.

Preparing the Datasets
To split the data into two distinct datasets, one for training and one for testing, we will use the
library split-folders, which we can install with pip :

Afterward, we can use the following code to split the data accordingly. We will use an 80-20
split, meaning 80% of the data will be used for training and 20% for testing:

pip3 install split-folders

import splitfolders

DATA_BASE_PATH = "./malimg_paper_dataset_imgs/"

hƩps://t.me/CyberFreeCourses

https://pypi.org/project/split-folders/
af://h1-127
af://h2-128

After running the code once, a new directory ./newdata/ will be created containing three
folders:

The test folder contains the test dataset, the train folder contains the training dataset,
and the val folder contains the validation dataset. In this case, we will not use a validation
data set, which is why the validation data set is empty. We can confirm the 80-20 split by
counting the number of files in each dataset:

The split was successful, as we can see. We can now create DataLoaders for training and
inference and apply the required preprocessing to the images.

TARGET_BASE_PATH = "./newdata/"

TRAINING_RATIO = 0.8

TEST_RATIO = 1 - TRAINING_RATIO

splitfolders.ratio(input=DATA_BASE_PATH, output=TARGET_BASE_PATH, ratio=

(TRAINING_RATIO, 0, TEST_RATIO))

ls -la ./newdata/

total 0

drwxr-xr-x 1 t t 24 26. Nov 10:52 .

drwxr-xr-x 1 t t 160 26. Nov 10:52 ..

drwxr-xr-x 1 t t 498 26. Nov 10:52 test

drwxr-xr-x 1 t t 498 26. Nov 10:52 train

drwxr-xr-x 1 t t 498 26. Nov 10:52 val

find ./newdata/test/ -type f | wc -l

1880

find ./newdata/train/ -type f | wc -l

7459

find ./newdata/val/ -type f | wc -l

0

hƩps://t.me/CyberFreeCourses

Applying Preprocessing & Creating DataLoaders
In the first step, let us define the preprocessing required for our model to read the data. For
CNNs, this typically requires a resizing such that all input images are the same size and a
normalization. Normalization ensures that the data is standardized before the data is fed to
the model. This results in a model that is easier to train. In PyTorch, our preprocessing looks
like this:

Afterward, we can load the datasets from their corresponding folders and apply the
preprocessing functions. We need to specify the root folder for each dataset in the root
parameter and the preprocessing transform in the transform parameter. As we have
discussed above, the root folders for the datasets are ./newdata/train/ and
./newdata/test/ , respectively.

Finally, we can create DataLoader instances, which we can use to iterate over the data for
training and inference. We can supply a batch size and specify the number of workers to

from torchvision import transforms

Define preprocessing transforms

transform = transforms.Compose([

transforms.Resize((75, 75)),

 transforms.ToTensor(),

 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,

0.225])

])

from torchvision.datasets import ImageFolder

import os

BASE_PATH = "./newdata/"

Load training and test datasets

train_dataset = ImageFolder(

root=os.path.join(BASE_PATH, "train"),

 transform=transform

)

test_dataset = ImageFolder(

root=os.path.join(BASE_PATH, "test"),

 transform=transform

)

hƩps://t.me/CyberFreeCourses

af://h2-129

load the data in the num_workers parameter. This enables parallelization and will speed up
the data handling:

Let us take a look at one of the preprocessed images to see its effects:

from torch.utils.data import DataLoader

TRAIN_BATCH_SIZE = 1024

TEST_BATCH_SIZE = 1024

Create data loaders

train_loader = DataLoader(

 train_dataset,

batch_size=TRAIN_BATCH_SIZE,

 shuffle=True,

 num_workers=2

)

test_loader = DataLoader(

 test_dataset,

 batch_size=TEST_BATCH_SIZE,

 shuffle=False,

 num_workers=2

)

import matplotlib.pyplot as plt

HTB Color Palette

htb_green = "#9FEF00"

node_black = "#141D2B"

hacker_grey = "#A4B1CD"

image

sample = next(iter(train_loader))[0][0]

plot

plt.figure(facecolor=node_black)

plt.imshow(sample.permute(1,2,0))

plt.xticks(color=hacker_grey)

plt.yticks(color=hacker_grey)

ax = plt.gca()

ax.set_facecolor(node_black)

ax.spines['bottom'].set_color(hacker_grey)

ax.spines['top'].set_color(node_black)

ax.spines['right'].set_color(node_black)

ax.spines['left'].set_color(hacker_grey)

ax.tick_params(axis='x', colors=hacker_grey)

hƩps://t.me/CyberFreeCourses

This is the raw malware image:

This is the resized and normalized image from our DataLoader that we will feed to the
model:

ax.tick_params(axis='y', colors=hacker_grey)

plt.show()

hƩps://t.me/CyberFreeCourses

The details can be roughly discerned from the raw image. However, many of the fine details
have been lost.

After combining the above code into a single function, we end up with the following code:

from torchvision import transforms

from torch.utils.data import DataLoader

from torchvision.datasets import ImageFolder

import os

def load_datasets(base_path, train_batch_size, test_batch_size):

 # Define preprocessing transforms

 transform = transforms.Compose([

 transforms.Resize((75, 75)),

 transforms.ToTensor(),

 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229,

0.224, 0.225])

])

 # Load training and test datasets

 train_dataset = ImageFolder(

 root=os.path.join(base_path, "train"),

 transform=transform

)

 test_dataset = ImageFolder(

hƩps://t.me/CyberFreeCourses

Note that the function also returns the number of classes in the dataset. As we have
mentioned before, the Malimg dataset consists of 25 classes, so we could omit this step
and simply assume there are always 25 classes. However, by reading this information
dynamically from the data itself, we can use the same code even after making changes to
the dataset, either by removing one of the classes or adding new classes to the dataset.

The Model

The heart of any classifier is the model. As discussed previously, we will be using a CNN
model. To speed up the training process, we will base our model on a pre-trained version of
a well-established CNN called ResNet50.

ResNet50
The ResNet family of CNNs was proposed in 2015 in this paper. We will use a variant called
ResNet50 . This model is 50 layers deep, where it got its name, and consists of roughly 23
million parameters. This model is strong in image classification tasks, which perfectly fits our
needs for malware classification.

 root=os.path.join(base_path, "test"),

 transform=transform

)

 # Create data loaders

 train_loader = DataLoader(

 train_dataset,

 batch_size=train_batch_size,

 shuffle=True,

 num_workers=2

)

 test_loader = DataLoader(

 test_dataset,

 batch_size=test_batch_size,

 shuffle=False,

 num_workers=2

)

 n_classes = len(train_dataset.classes)

 return train_loader, test_loader, n_classes

hƩps://t.me/CyberFreeCourses

https://arxiv.org/pdf/1512.03385
af://h1-130
af://h2-131

To significantly speed up the training process, we will not start with randomly initialized
weights but rather with a pre-trained ResNet50 model. Our code will download pre-trained
weights and apply them to our model as a baseline. We will then run our training on the
malware image dataset to fine-tune it for our purpose. This approach will save us training
time in the magnitude of multiple days or even weeks.

Furthermore, to further speed up the training process, we will freeze the weights of all
ResNet layers except for the final one. Thus, during our training process, only the weights of
the final layer will change. While this may reduce our classifier's performance, it will
significantly benefit our training time and be a good trade-off for our simple proof-of-concept
experiment. We will also adjust the final layer according to our needs. In particular, we may
adjust the number of neurons in the final layer and fix the output size to the number of
classes in our training data. This results in the following MalwareClassifier class:

When initializing the model, we need to specify the number of classes. Since our dataset
consists of 25 classes, we can initialize the model like so:

import torch.nn as nn

import torchvision.models as models

HIDDEN_LAYER_SIZE = 1000

class MalwareClassifier(nn.Module):

 def __init__(self, n_classes):

 super(MalwareClassifier, self).__init__()

 # Load pretrained ResNet50

 self.resnet = models.resnet50(weights='DEFAULT')

 # Freeze ResNet parameters

 for param in self.resnet.parameters():

 param.requires_grad = False

 # Replace the last fully connected layer

 num_features = self.resnet.fc.in_features

 self.resnet.fc = nn.Sequential(

 nn.Linear(num_features, HIDDEN_LAYER_SIZE),

 nn.ReLU(),

 nn.Linear(HIDDEN_LAYER_SIZE, n_classes)

)

 def forward(self, x):

 return self.resnet(x)

model = MalwareClassifier(25)

hƩps://t.me/CyberFreeCourses

However, as discussed in the previous section, the advantage of dynamically setting the
number of classes is that we can directly use it from the dataset. By combining the above
code with the code from the previous section, we can take the number of classes from the
dataset and initialize the model accordingly:

Training and Evaluation (Malware Image
Classification)

After loading the datasets and initializing the model, let's finally discuss model training and
evaluation to see how well our model performs.

Training
Let us define a training function that takes a model, a training loader, and the number of
epochs. We will then specify the loss function as CrossEntropyLoss and use the Adam
optimizer. Afterward, we iterate the entire training data for each epoch and run the forward
and backward passes. For a refresher on backpropagation and gradient descent ,
check out the Fundamentals of AI module.

The final training function looks like this:

DATA_PATH = "./newdata/"

TRAINING_BATCH_SIZE = 1024

TEST_BATCH_SIZE = 1024

Load datasets

train_loader, test_loader, n_classes = load_datasets(DATA_PATH,

TRAINING_BATCH_SIZE, TEST_BATCH_SIZE)

Initialize model

model = MalwareClassifier(n_classes)

import torch

import time

def train(model, train_loader, n_epochs, verbose=False):

 model.train()

 criterion = torch.nn.CrossEntropyLoss()

 optimizer = torch.optim.Adam(model.parameters())

hƩps://t.me/CyberFreeCourses

https://academy.hackthebox.com/module/details/290
af://h1-132
af://h2-133

Note that much of the code within the training function keeps track of information about the
training, such as time elapsed, accuracy, and loss.

Additionally, we will define a function to save the trained model to disk for later use:

Evaluation

 training_data = {"accuracy": [], "loss": []}

 for epoch in range(n_epochs):

 running_loss = 0

 n_total = 0

 n_correct = 0

 checkpoint = time.time() * 1000

 for inputs, labels in train_loader:

 optimizer.zero_grad()

 outputs = model(inputs)

 loss = criterion(outputs, labels)

 loss.backward()

 optimizer.step()

 _, predicted = outputs.max(1)

 n_total += labels.size(0)

 n_correct += predicted.eq(labels).sum().item()

 running_loss += loss.item()

 epoch_loss = running_loss / len(train_loader)

 epoch_duration = int(time.time() * 1000 - checkpoint)

 epoch_accuracy = compute_accuracy(n_correct, n_total)

 training_data["accuracy"].append(epoch_accuracy)

 training_data["loss"].append(epoch_loss)

 if verbose:

 print(f"[i] Epoch {epoch+1} of {n_epochs}: Acc:

{epoch_accuracy:.2f}% Loss: {epoch_loss:.4f} (Took {epoch_duration} ms).")

 return training_data

def save_model(model, path):

model_scripted = torch.jit.script(model)

model_scripted.save(path)

hƩps://t.me/CyberFreeCourses

af://h2-134

To evaluate the model, we will first define a function that runs the model on a single input
and returns the predicted class:

We set the model to evaluation mode using the call model.eval() and disable gradient
calculation using torch.no_grad() . From there, we can write an evaluation function that
iterates over the entire test dataset and evaluates the model's performance in terms of
accuracy:

Plots
Lastly, let us define a couple of helper functions that create simple plots for the training
accuracy and loss per epoch, respectively:

def predict(model, test_data):

 model.eval()

 with torch.no_grad():

 output = model(test_data)

 _, predicted = torch.max(output.data, 1)

 return predicted

def compute_accuracy(n_correct, n_total):

 return round(100 * n_correct / n_total, 2)

def evaluate(model, test_loader):

 model.eval()

 n_correct = 0

 n_total = 0

 with torch.no_grad():

 for data, target in test_loader:

 predicted = predict(model, data)

 n_total += target.size(0)

 n_correct += (predicted == target).sum().item()

 accuracy = compute_accuracy(n_correct, n_total)

 return accuracy

hƩps://t.me/CyberFreeCourses

af://h2-135

Running the Code
After defining all helper functions, we can write a script that defines all parameters and runs
the helper functions to load the data, initialize the model, train the model, save the model,
and finally evaluate the model:

import matplotlib.pyplot as plt

def plot(data, title, label, xlabel, ylabel):

 # HTB Color Palette

 htb_green = "#9FEF00"

 node_black = "#141D2B"

 hacker_grey = "#A4B1CD"

 # plot

 plt.figure(figsize=(10, 6), facecolor=node_black)

 plt.plot(range(1, len(data)+1), data, label=label, color=htb_green)

 plt.title(title, color=htb_green)

 plt.xlabel(xlabel, color=htb_green)

 plt.ylabel(ylabel, color=htb_green)

 plt.xticks(color=hacker_grey)

 plt.yticks(color=hacker_grey)

 ax = plt.gca()

 ax.set_facecolor(node_black)

 ax.spines['bottom'].set_color(hacker_grey)

 ax.spines['top'].set_color(node_black)

 ax.spines['right'].set_color(node_black)

 ax.spines['left'].set_color(hacker_grey)

 legend = plt.legend(facecolor=node_black, edgecolor=hacker_grey,

fontsize=10)

 plt.setp(legend.get_texts(), color=htb_green)

 plt.show()

def plot_training_accuracy(training_data):

 plot(training_data['accuracy'], "Training Accuracy", "Accuracy",

"Epoch", "Accuracy (%)")

def plot_training_loss(training_data):

 plot(training_data['loss'], "Training Loss", "Loss", "Epoch", "Loss")

data parameters

DATA_PATH = "./newdata/"

hƩps://t.me/CyberFreeCourses

af://h2-136

Running the final code, we can achieve an accuracy of 88.54% on the test dataset:

training parameters

N_EPOCHS = 10

TRAINING_BATCH_SIZE = 512

TEST_BATCH_SIZE = 1024

model parameters

HIDDEN_LAYER_SIZE = 1000

MODEL_FILE = "malware_classifier.pth"

Load datasets

train_loader, test_loader, n_classes = load_datasets(DATA_PATH,

TRAINING_BATCH_SIZE, TEST_BATCH_SIZE)

Initialize model

model = MalwareClassifier(n_classes)

Train model

print("[i] Starting Training...")

training_information = train(model, train_loader, N_EPOCHS, verbose=True)

Save model

save_model(model, MODEL_FILE)

evaluate model

accuracy = evaluate(model, test_loader)

print(f"[i] Inference accuracy: {accuracy}%.")

Plot training details

plot_training_accuracy(training_information)

plot_training_loss(training_information)

python3 main.py

[i] Epoch 1 of 10: Acc: 57.09% Loss: 1.4741 (Took 41128 ms).

[i] Epoch 2 of 10: Acc: 85.01% Loss: 0.4631 (Took 40630 ms).

[i] Epoch 3 of 10: Acc: 89.60% Loss: 0.2880 (Took 39567 ms).

[i] Epoch 4 of 10: Acc: 91.88% Loss: 0.2294 (Took 39464 ms).

[i] Epoch 5 of 10: Acc: 92.97% Loss: 0.2113 (Took 39367 ms).

[i] Epoch 6 of 10: Acc: 93.86% Loss: 0.1744 (Took 39172 ms).

[i] Epoch 7 of 10: Acc: 95.13% Loss: 0.1572 (Took 39804 ms).

[i] Epoch 8 of 10: Acc: 94.81% Loss: 0.1501 (Took 39092 ms).

[i] Epoch 9 of 10: Acc: 96.51% Loss: 0.1188 (Took 39328 ms).

[i] Epoch 10 of 10: Acc: 96.26% Loss: 0.1198 (Took 39125 ms).

hƩps://t.me/CyberFreeCourses

During the training process, we can observe a steady increase in accuracy up until the final
couple of epochs:

While the final accuracy is not great, it is acceptable, provided our simple training setup. We
have tweaked many parameters to favor training time instead of model performance. Keep in
mind that the model's accuracy may vary depending on the random split of the datasets.
Additionally, tweaking the parameters affects both training time and model performance. Feel
free to play around with all the parameters the script defines to determine their effects.

Model Evaluation (Malware Image Classification)

To evaluate your model, upload it to the evaluation portal running on the Playground VM. If
you are not currently using the Playground VM, you can initialize it at the bottom of the page.

If you have the Playground VM running, you can use this Python script to upload your model
from Jupyter directly. Once evaluated, if your model meets the required performance criteria,
you will receive a flag value. This flag can be used to answer the question or verify the
model’s success.

[i] Inference accuracy: 88.54%.

import requests

import json

hƩps://t.me/CyberFreeCourses

af://h1-137

If you are working from your own machine, ensure you have configured the HTB VPN to
connect to the remote VM, and you have spawned it. After connecting, access the model
upload portal by navigating to http://<VM-IP>:8002/ in your browser, and then upload
your model.

Note: Training time for a single epoch in the Playground environment may take up to 10
minutes. Three epochs should be sufficient to reach the required accuracy. Evaluating an
uploaded model may take up to two minutes. Training time on your own system should be
much faster, depending on your hardware.

Skills Assessment

The IMDB dataset introduced by Maas et al. (2011) provides a collection of movie reviews
extracted from the Internet Movie Database, annotated for sentiment analysis . It includes
50,000 reviews split evenly into training and test sets, and its carefully curated mixture of
positive and negative examples allows researchers to benchmark and improve various
natural language processing techniques. The IMDB dataset has influenced subsequent
work in developing vector-based word representations and remains a popular baseline
resource for evaluating classification performance and model architectures in sentiment
classification tasks (Maas et al., 2011).

Your goal is to train a model that can predict whether a movie review is positive (1) or
negative (0). You can download the dataset from the question, or from here.

Out of interest, these exact same techniques can be applied into things such as text
moderation for instance.

Define the URL of the API endpoint

url = "http://localhost:8002/api/upload"

Path to the model file you want to upload

model_file_path = "malware_classifier.pth"

Open the file in binary mode and send the POST request

with open(model_file_path, "rb") as model_file:

 files = {"model": model_file}

 response = requests.post(url, files=files)

Pretty print the response from the server

print(json.dumps(response.json(), indent=4))

hƩps://t.me/CyberFreeCourses

http://www.aclweb.org/anthology/P11-1015
https://academy.hackthebox.com/storage/modules/292/skills_assessment_data.zip
af://h1-138

To evaluate your model, upload it to the evaluation portal running on the Playground VM. If
you are not currently using the Playground VM, you can initialize it at the bottom of the page.

If you have the Playground VM running, you can use this Python script to upload your model
from Jupyter directly. Once evaluated, if your model meets the required performance criteria,
you will receive a flag value. This flag can be used to answer the question or verify the
model’s success.

If you are working from your own machine, ensure you have configured the HTB VPN to
connect to the remote VM and spawned it. After connecting, access the model upload portal
by navigating to http://VM-IP:5000/ in your browser and then uploading your model.

import requests

import json

Define the URL of the API endpoint

url = "http://localhost:5000/api/upload"

Path to the model file you want to upload

model_file_path = "skills_assessment.joblib"

Open the file in binary mode and send the POST request

with open(model_file_path, "rb") as model_file:

 files = {"model": model_file}

 response = requests.post(url, files=files)

Pretty print the response from the server

print(json.dumps(response.json(), indent=4))

hƩps://t.me/CyberFreeCourses

	Introduction
	Environment Setup
	The Playground
	Miniconda
	Why Miniconda?

	Installing Miniconda
	Windows
	MacOS
	Linux

	Init
	Deactivating Base
	Managing Virtual Environments
	Activating the Environment

	Essential Setup
	Updates

	JupyterLab
	Why JupyterLab?
	Using JupyterLab
	Restarting the Kernel

	Python Libraries for AI
	Scikit-learn
	Data Preprocessing
	Model Selection and Evaluation
	Model Training and Prediction

	PyTorch
	Key Features
	Dynamic Computational Graphs and Tensors
	Building Models with PyTorch
	Training and Evaluation
	Data Loading and Preprocessing
	Model Saving and Loading

	Datasets
	Understanding Datasets
	What Makes a Dataset 'Good'

	The Dataset
	Dataset Structure
	Challenges and Considerations

	Loading the Dataset
	Exploring the Dataset
	Viewing Sample Entries
	Inspecting Data Structure and Types
	Checking for Missing Values

	Data Preprocessing
	Identifying Invalid Values
	Checking for Invalid IP Addresses
	Checking for Invalid Port Numbers
	Checking for Invalid Protocol Values
	Checking for Invalid Bytes Transferred
	Checking for Invalid Threat Levels

	Handling Invalid Entries
	Dropping Invalid Entries
	Imputing Missing Values

	Data Transformation
	Encoding Categorical Features
	One-Hot Encoding

	Handling Skewed Data
	Data Splitting

	Metrics for Evaluating a Model
	Accuracy
	Precision
	Recall
	F1-Score
	Additional Considerations
	Contextualizing the Metrics

	Spam Classification
	Naive Bayes for Spam Detection
	Applying Bayes' Theorem to Spam Detection
	Simplifying with Naive Assumptions
	Example Calculation

	The Spam Dataset
	Downloading the Dataset
	Loading the Dataset

	Preprocessing the Spam Dataset
	Lowercasing the Text
	Removing Punctuation and Numbers
	Tokenizing the Text
	Removing Stop Words
	Stemming
	Joining Tokens Back into a Single String

	Feature Extraction
	Representing Text as Numerical Features
	Using CountVectorizer for the Bag-of-Words Approach
	How CountVectorizer Works
	Example with Unigrams
	Example with Bigrams

	Training and Evaluation (Spam Detection)
	Training
	Evaluation
	Setting Up the Evaluation Messages
	Preprocessing New Messages
	Vectorizing the Processed Messages
	Making Predictions
	Displaying Predictions and Probabilities
	Using joblib for Saving Models

	Model Evaluation (Spam Detection)
	Network Anomaly Detection
	Random Forests
	Random Forests for Anomaly Detection
	NSL-KDD Dataset
	Downloading the Dataset
	Loading the Dataset
	Importing Libraries
	Defining Column Names and File Path
	Reading the Dataset into a DataFrame

	Preprocessing and Splitting the Dataset
	Preprocessing the Dataset
	Creating a Binary Classification Target
	Creating the Multi-Class Classification Target
	Encoding Categorical Variables
	Selecting Numeric Features
	Preparing the Dataset

	Splitting the Dataset
	Splitting Data into Training and Test Sets
	Creating a Validation Set from the Training Data
	Final Split Variables

	Training and Evaluation (Network Anomaly Detection)
	Training the Model
	Evaluating the Model on the Validation Set
	Testing the Model on the Test Set
	Saving Model

	Model Evaluation (Network Anomaly Detection)
	Malware Classification
	Malware Image Classification

	The Malware Dataset
	Malimg Dataset
	Exploring the Dataset

	Preprocessing the Malware Dataset
	Preparing the Datasets
	Applying Preprocessing & Creating DataLoaders

	The Model
	ResNet50

	Training and Evaluation (Malware Image Classification)
	Training
	Evaluation
	Plots
	Running the Code

	Model Evaluation (Malware Image Classification)
	Skills Assessment

