
Symmetric and
Asymmetric Ciphers:
how they work and
what they are for

u

Information theory is a field dealing with information
processing methods. Started by Claude E. Shannon in A
Mathematical Theory of Cryptography and A Mathematical
Theory of Communication

Information Theory

Bit: the smallest unit of information needed to encode which of
two possibilities happened

Entropy: the smallest amount of information needed, on the
average, to encode an event out of a set of events at a given
level of probability

Confusion: hiding the relationships between the plaintext, the
ciphertext and the key. Confusion is measured by how probable
linear approximation is

Diffusion: the distribution of plaintext and key bits over the
ciphertext. Diffusion is measured by the probability of a
successful differential approximation

Information Theory

Symmetric-keyAlgorithms

Encryption

“The quick brown
fox jumps over
the lazy dog”

“AxCv;5bmEseTfid3)fGsm
We#4^,sdgfMwir3:dkJeTs
Y8R\s@!q3%”

“The quick brown
fox jumps over the
lazy dog”

Decryption

Plaintext Ciphertext

Same key
(shared secret)

Plaintext

Pros:
• Speed (1,000 to 10,000 times faster than asymmetric-key algorithms)
• Easy and cheap hardware implementation

Cons:
• Key needs to be negotiated

 If attackers obtain the key, this allows them to both decrypt the messages and also modify it and
encrypt it again in a transparent way

• Enormous number of keys: n(n–1)/2, where n is the number of system users (1,225 for n=50)
 If the sender uses the same key to encrypt messages intended for multiple recipients, each of the

recipients can decrypt the messages intended for other system users

Symmetric-key algorithms

Characteristic features:
• Rounds (by repeating a weak operation you make an attack harder to pull off)
• Round keys

To ensure confusion and diffusion are adequate, symmetric-key algorithms should:
• Distribute plaintext bits randomly and evenly over the ciphertext, or mix the ciphertext
• Diffuse adjacent plaintext bits so that each has a bearing on many (ideally all) ciphertext bits.
• Another plus of this spreading is that changing one bit in the message will change many bits found in many

places in the ciphertext

Depending on the number of data encrypted at a time, symmetric-key algorithms can be divided into:
• Block ciphers, which encrypt and decrypt a set of information (a block of bits) at a time
• Stream ciphers, which encrypt and decrypt a unit of information (bit) at the same time

Symmetric-key algorithms

Most symmetric ciphers are block ciphers

Block cipher mode defines the transformation method of
variable-length messages (streams of data) into fixed-length
blocks

Most block ciphers use Feistel’s network, which may be used
with any encryption function and doesn’t require the function to
be reversible

Block CIPHERS
Feistel’s Network

Encryption rounds look like this:
• A data block is split into two halves, L0 and R0
• One half is encrypted with the function f using the round key

K0
• New data halves are computed, and R0 becomes L1, while the

output of encrypting R0 combined with L0 using XOR
becomes R1

Decryption is the reversal of splitting data in half:
• Rn−1 = Ln
• Ln−1 = f(Kn,Rn−1) XOR Rn = f(Kn,Ln) XOR Rn

Block CIPHERS
Feistel’s Network

The security of the ciphertext emerging from Feistel’s network
rests solely on the function f (the type of symmetric encryption
used). The function f is charged with four tasks:
• Mixing bits to obtain a non-linear pseudo-random

relationship between ciphertext and message
• Perform bit permutation to flip the order of bits
• Diffuse bits to get the avalanche effect (the change of one

plaintext bit results in the change of many bits in the
ciphertext)

• Compress ciphertext to make its length and plaintext length
match

Block Ciphers
Feistel’s Network

Developed by IBM in the 70s

Encrypts 64-bit data blocks (equivalent to 8 letters in the ASCII
code plus a parity bit) using a 56-bit key

Encryption and decryption take 16 Feistel rounds

Prior to the first round a message block undergoes a
permanent permutation, which is of no great consequence to
the security of the ciphertext

Data Encryption standard

In each round, 32-bit halves of the data block are expanded to
48 bits. The result of this expansion is combined using the XOR
operation with a round key, and this value is split into six 8-bit
parts, each of them is processed using a substitution-
permutation network

All networks are 4 x 16 tables, with rows containing all
numbers from 0 to 15. The first and last bit of encrypted parts of
data are used as row numbers, and the rest are used as column
numbers. The numbers contained in a substitution-permutation
network are the result of encryption

Data Encryption standard

Combined outputs of the networks then undergo permanent
permutation

Additionally, after the last round, the ciphertext block
undergoes a permutation that is a reversal of the initial
permutation

Data Encryption standard

DES weak points:
• Block size too small
• Key too short, offering a strength of 28 bits

(half the key length). This allowed DES to
be brute-forced as far back as 1999 in 22
hours

• Strong dependency of round keys on
encryption keys, especially if the key is 0:
round keys will also be 0

• Padding, or the interdependencies
between keys, plaintexts and ciphertexts:
when you encrypt the padding of all
plaintext bits with the key padding you get
the ciphertext padding

Data Encryption standard

Today DES may be cracked in just several
minutes, so it cannot be used to protect the
confidentiality of data

In 2004 NIST recommended that the
original DES algorithm should no longer
be used

Data Encryption standard

DES-X is a DES modification presented by Ron Rivest in May 1984

The goal of this update was to lengthen the key without changing how the algorithm operates. This aimed to
make brute-force attacks and plaintext-ciphertext comparison attacks more difficult to accomplish

Here is how DES-X works:
• A message block is XOR-ed with the first 64-bit key
• The resultant data block is DES-encrypted using a 56-bit key
• The resultant ciphertext is XOR-ed with the third (again 64-bit) key

Des-X

In theory DES-X lengthens the key to 184 bits (64+56+64)

In practice however you need to subtract a logarithm of the number of selected plaintext pairs and
corresponding ciphertexts, which can lower the actual key strength to 88 bits

Because DES-X is more secure than the original algorithm, and is not really significantly slower, it was
adopted in EFS encryption in older versions of Windows

Des-X

3DES, as the name suggests, is the DES algorithm applied three times to the same data block:
• A data block is first encrypted using the first key
• Next, it is decrypted using the second key
• And encrypted again, using the third key

Because encryption and decryption are symmetric operations, the second phase does not enhance the
algorithm or make it stronger

The basic flaw of 3DES is its low efficiency: it is three times slower than DES and only about two times
stronger than this algorithm

The practical security of 3DES is about 100 bits of strength (the factual strength of 3DES has not been
verified yet): it is the only DES algorithm than can still be used now

3des

RC ciphers have been created by Ron Rivest

RC2 was developed in 1987 as a commission from Lotus

The mechanism behind the algorithm remained secret until
1996, when it was anonymously published on Usenet

The flaws include using 64-bit blocks and vulnerability to
chosen-plaintext attacks

The actual strength is 34 bits, which makes it not
recommended

RC5 was developed in 1994 for RSA

You can alter many variables, including round number as well
as block size and key length: round number ranges from 1 to 255,
the size of a single block can equal 32, 64 or 128 bits, while key
length may equal from 0 to 2,040 bits

How it works:
• A key is split into subkeys K0,K1, . . . ,K2r,K2r+1, where r is the

selected round number
• The message is split into two halves L0 + S0 and R0 + S1
• The first two subkeys are combined with both parts of the

message
• The following operations are executed in each round:

Li = ((Li−1 XOR Ri−1) <<< Ri−1) + K2i
Ri = (Ri−1 XOR Li) <<< Li) + K2i+1

Both RC5 and its modification, RC6, were entered in a NIST
competition that picked a DES successor and are not considered
too secure

Designed by two Belgians (Vincent Rijmen and Joan Daemen)
as an entry in the NIST competition for a new cryptographic
standard

The goal of this 1997-2000 competition was to find a
replacement for DES, which had been in use for thirty years at
that time

Shortlisted, Rijndael trumped MARS, RC6, Serpent and
TwoFish

Advanced encryption standard

Round number depends on key length: a 128-bit key takes
10 rounds, a 192-bit key takes 12 rounds, while a 256-bit key
takes 14 rounds

The transformations made in the rounds do not follow
Feistel’s network

Each round (except the last one) is made up from four
different reversible, homogeneous transformations that create
three layers: the non-linear layer, the mixing layer (where two
transformations occur except for the last round with only one
linear transformation) and the key addition layer

Advanced encryption standard

The changing plaintext values at the end of each algorithm
transformations are referred to as states. States can be
represented as tables where cells are message bytes. Also a key
is represented as a table

Advanced encryption standard

Encryption in each round:
• The non-linear SubByte transformation occurs. It is applied independently to each state byte and is a 8 x 8

S-box. Each S-box is a reversible transformation that is the combination of two non-linear operations
• The linear transformation ShiftRow is occurs. It periodically shifts rows in a state table by a specific number

of bytes: the zero row is not shifted, the first row is shifted by 1 byte, the second by 2 or 3 bytes
(depending on block size), and the third by 3 or 4 bytes (depending on block size)

• In all rounds except the last one, the MixColumn linear operation is carried out. In this transformation,
state table columns are treated as polynomials and multiplied modulo with a fixed polynomial

• AddRoundKey is the last operation, which involves XOR-ing round key bytes with state bytes

AES is both a fast and secure cipher and the current standard for symmetric cryptography

Advanced encryption standard

To encrypt a variable-length message using a block cipher, you first need to split it into fixed-length
blocks equal to the size of a block transformed by a given algorithm

Block cipher modes strongly influence the security of a ciphertext

Here are the most popular modes of transforming data streams into fixed-length blocks:
• Electronic codebook mode (ECB)
• Cipher-block chaining (CBC)
• Counter mode (CTR)
• Feedback modes (CFB and OFB)

Block cipher modes

The most basic block cipher mode

The plaintext is split into fixed-length blocks
of bits and the blocks are then separately
encrypted using the same key

Block cipher modes
Electronic codebook mode: ECB

The fundamental flaw of ECB that makes it
unusable is that equal plaintext blocks
generate equal ciphertext blocks. This discloses
a lot of valuable information about the cipher
and the original message

What’s more, attackers can transparently
modify the ciphertext and add additional
blocks to it, for example by repeating the first
block multiple times

Block cipher modes
Electronic codebook mode: ECB

Each message block, before encryption, is
XOR-ed with the ciphertext that is generated
from encrypting the previous message block,
while the first block is encrypted using an
initialisation vector

Block cipher modes
Cipher-block chaining: CBC

This mode is used by default in Microsoft
solutions. Here are the features of CBC:
• The IV doesn’t need to be encrypted (its

ciphertext would be as random as the IV
itself)

• Encrypting the same message using the
same key twice will generate two different
ciphertexts (because a randomised IV was
used)

• Even if one block is corrupted, the
remaining ciphertext blocks may be still
restored: since the corrupted block was
used to encrypt the next block, if it is used
to decrypt it, the damage can be
eliminated

Block cipher modes
Cipher-block chaining: CBC

The feedback modes work in a slightly
different way: they change a block cipher into
a generator of pseudorandom bits and then
use the XOR operation to combine a generated
string with plaintext bits

Block cipher modes
CFB and OFB

CFB uses a shift register with an initialisation
vector. This IV is the input for an encryption
function. Next, j-bits at the left side of function
result are XOR-ed with the first block of j-bits
of plaintext M1, and the output is the first
encrypted block C1. C1 is then shifted into the
shift register (at the right side), and shifting to
the left by j-bits is carried out the register.
Encrypting the next j-bit blocks follows the
same schema

Block cipher modes
CFB and OFB

The difference between CFB and OFB is
that in OFB it is the j-bit block from an
encryption function result is shifted to the
right side of a shift register, and not the j-bit
block from an encrypted block

Block cipher modes
CFB and OFB

Popular block cipher mode
Enables decrypting a selected block without
needing to decrypt the full ciphertext

Similar to OFB:
• An IV is chosen
• The IV is encrypted
• The resultant ciphertext is XOR-ed with the

plaintext

The cipher generates a key which as long as
the plaintext, and which is later used for the
XOR operation

Block cipher modes
CTR

The three last block cipher modes made block ciphers into stream ciphers: if a shift equals 1 bit, one bit at a
time is encrypted and decrypted

There are also symmetric stream ciphers that encrypt one bit at a time

An example of a cipher of this type is RC4. Developed in 1987, the mechanism behind it was published on the
Cypherpunks mailing list in 1994

While it is difficult to implement properly, and it is vulnerable to linear and differential attacks, RC4 remains
widely used today

Stream ciphers
RC4

Here’s how RC4 works:
• A pseudorandom bit stream is generated (a keystream)
• At encryption, the keystream is XOR-ed with the plaintext
• Decrypting takes the same XOR operation

A secret internal state is used to generate the keystream. It is comprised of two parts:
• A permutation of all 256 possible states
• Two 8-bit index-pointers

The initial permutation makes use of a key that has a size of from 40 and 256 bits. A keystream is created
based on this key. The generation involves modifying the state table as many times as many there are bits in
the plaintext

If the same message is encoded twice using the same key, you’ll get equal ciphertexts

Stream ciphers
RC4

Asymmetric-key algorithms

Encryption

“The quick
brown fox
jumps over

the lazy dog”

“AxCv;5bmEseTfid3
)fGsmWe#4^,sdgf

Mwir3:dkJeTsY8R\s
@!q3%”

“The quick
brown fox
jumps over

the lazy dog”

Decryption

Plaintext Ciphertext

Different keys

Plaintext

privatepublic

Pros:
• Make secure key exchange possible

 Each user only needs two keys: the public key (known by all system users) and the private key
(known only by its owner)

 You cannot recover the private key easily based on the public key
• Reduce the number of keys
• Enable trust building

Cons:
• Low efficiency

 Have not been build with encrypting long messages (like files) in mind and because of this, if
misused, they drastically reduce the security of ciphertexts

• Require much longer keys than symmetric keys
 The strength of a 512-bit asymmetric key is more or less equivalent to the strength of a 60-bit

symmetric key

Asymmetric-key algorithms

Extending trust relationships from computers to people (organisations) is problematic
Characteristic feature:
• Modulo (instead of XOR)

Asymmetric ciphers rely on one-way functions, operations that are easy and efficient to compute in one
direction but cannot be easily inverted

The ElGamal and DSA ciphers rely on discrete logarithm complexity (the a-base discrete logarithm of the
element b, in a given finite group is an integer c such that ac=b). If the modulo operation only requires
performing O(log c) operations, the only way to compute a discrete logarithm is to check all possible c integers.

The RSA algorithm’s security is relies on the fact that multiplying is easy, while the breakdown of a product
into factors, factorisation, has high computational complexity

Asymmetric-key algorithms

Developed in 1977 by Rona Rivest, Adi Shamir and Leonard Adleman

RSA Data Security Inc. was granted a patent for it that expired September 20, 2000

The mechanisms for generating a key pair (a private and public key):
• Pick two large primes p and q. Each prime should have at least 1,024 bits, but just for this example we’ll

pick these values: p = 7, q = 11
• Compute n = p*q. For our example, it’s n = 77
• Choose an exponent e such that (GCD(e, (p–1)(q–1)) = 1; where GCD is the greatest common devisor. In

practice, you usually choose the smallest of possible e values: choosing GCD doesn’t affect the security of
the ciphertext but may make quicken the encryption. For our example, it’s e = 37 (GCD(37, (7–1)(11–1)) =
1)

• Values n and e are the public key. Our public key are numbers 77 and 37
• Choose a number d such that e*d = 1 (mod (p–1)(q–1)). The number d should not be too small. In our case,

it’s d =13 (37*13 = 481 = 1(mod 60)).
• The number d is the private key. Our private key is 13

RSA

The factorisation problem is connected to the number n: determining p and q based on the number n only
is computationally complex. As it turns out, you can compute the key d if you have the product of (p − 1)(q − 1).

Since p and q are unknown, an attacker can only deduce them based on the public number n

RSA encryption is a process that treats a message as a number slightly smaller than n and performing the
following operation: s = me (mod n)

Let’s assume our message is the number 2 (m = 2), which means its ciphertext will be 51 (s = 237 mod 77 = 51)

Decryption is the m = cd (mod n) operation

Having the private key (the number d), the recipient of our message will perform this operation: m = 5113

mod 77 and retrieve the original plaintext message 2 (5113 mod 77 = 2)

RSA

Designed in the 80s by the Egyptian cryptographer Taher Elgamal

The ElGamal key generation mechanism:
• Choose a large prime number p
• Choose a random number g such that g< p2. Unlike RSA, p and g may be shared by many users
• Choose a random number x smaller than p
• Compute y = gx mod p
• The public key is p, g and y
• The private key is x

ElGamal

Encrypting the message M:
• Choose a random co-prime integer k from a range up to p-1
• Compute r = gk mod p and s = ykM mod p. The ciphertext is the pair (r, s)

Decrypting the ciphertext (r,s) involves computing this:

The security of ElGamal rests on the complexity of computing discrete logarithms

Knowing g, p and y, you cannot compute the exponent to which g was raised, which is necessary to determine
x

ElGamal

Encryption ensures data is confidential, but cannot ensure its authenticity

Likewise, encryption cannot let you verify the authenticity of a sender, which in turn means that a message
recipient cannot prove that it was really the sender who forwarded a message

Both problems (authenticity and non-repudiation) can be solved through using hash functions and digital
signatures

Hash Functions

A hash function is a one-way function that returns message hashes of a strict, specific length

Cryptographic hash functions should make output as random as possible, minimise the risk of returning the
same hash for two different messages and make output as different as possible for small changes made to a
message

In view of this:
• Computing a hash is easy, but mapping a message to an obtained hash is difficult
• Finding two different messages with the same hash is computationally complex

Hash Functions

The most critical problem hash functions have is that they are vulnerable to a type of brute-force attack
called the birthday attack

The name is derived from the well-known paradox: in a group of 23 people the likelihood that two of them
share the same birthday (of any year) is P2(365,23) ≈ 0,507, so it is more than 50%

What’s more, the likelihood of a match (collision) rises dramatically with an increase in group membership; for
a group of 30, it is P2(365,30) ≈ 0,706

Hash Functions
Birthday attack

Let’s try to calculate this:
• There are 365 days in a year, which means the first collision (birthday matching) will occur roughly after ,

or 19 attempts
• In a group of twenty people, you can create n(n–1)/2 (190) pairs, for each of them the likelihood that two

people in a pair share the same birthday is 1/365
• The total collision risk is 20(20–1)/2∗1/365, which equals 380/730 (more than 50%)
• The attacks of this type exploit the fact that finding a data set for which the computed hash will be the same

as for the original set is multiple times easier than determining the original set
• You can protect against this attack by doubling the length of the hash
• What reduces the popularity of hash functions used to authenticate data transmitted across computers is

the necessity of exchanging hashes computed before and after sending a message between the computers
through a secure channel

Hash Functions
Birthday attack

365

MD
• MD hash functions were developed by Ron Rivest:
• MD2 was created in 1989, MD4 in 1990, MD5 in 1991
• Each of them returns a hash of 128 bits
• In 2004 attack techniques for exploiting all three versions of MDs were published
The MD functions are now not considered safe and should not be used

SHA
• Developed by the NSA, the SHA function returns a message digest of 160 bits
• The two first versions of SHA, SHA-0 and SHA-1, are no longer considered safe to use now: after a new

attack technique was published in 2005 SHA-0 only offers a security that is 39-bit strong. The factual
security of SHA-1 is 63 bits

• Due to these deficiencies, works on the third version of SHA (SHA-2) were accelerated. SHA-2 generates
256-bit message digests (SHA-256) and 512-bit message digests (SHA-512) as well as makes it possible to
use AES keys

The SHA-2 functions are considered safe and are still widely deployed in computer systems

Hash Functions

DIGITAL SIGNATURE
Signing a message

Hash f.
(SHA, MD)

Jrf843kjfgf
£$&Hdif
7oUsd*&

@:<CHDFH
SD(**

Py75c%bn&*)9|fDe^bDFa
q#xzjFr@g5=&nmdFg$5kn

vMd’rkvegMs”

This is a
really long
message

about
Bill’s…

Asymmetric
encryption

Message or file Digital signature
Hash

Calculating a fixed-length
hash Sender’s private

key

DIGITAL SIGNATURE
Verifying signatures

Jrf843kjf
gf*£$&Hd
if*7oUsd

*&@:<CHD
FHSD(**

Py75c%bn&*)
9|fDe^bDFaq
#xzjFr@g5=

&nmdFg$5kn
vMd’rkvegMs”

Asymmetric
decryption

Everyone has access to
sender’s public key

Sender’s public key

Digital signature

This is a really long
message about Bill’s…

Same hash function

Message or file

Py75c%bn&*)
9|fDe^bDFaq
#xzjFr@g5=

&nmdFg$5kn
vMd’rkvegMs”

? == ?
Are they same?

The security of RSA digital signatures rests on the fact that none of the numbers d (private keys) and
numbers e (parts of public keys) are emphasised and may be used both for encryption and decryption

Digital signatures may be generated through the equation S = (SHA-2(M))d mod n, where first the SHA-2 hash
of the original message is calculated and then its digital signature is calculated using a private key

Checking the RSA signature is a process that involves calculating its SHA-2 hash and decrypting it using a
public key: SHA-1(M’) = Se

DIGITAL SIGNATURE
RSA

If you use your private key to encrypt a crafted message (it’ll look like a random string), an attacker will be
able to take it and use it to digitally sign any message using your signature. This is how the attack goes:
• The attacker composes a message M that contains info that is advantageous to the attacker (for example a

profitable contract)
• The attacker calculates the hash of this message
• The attacker generates a random message X
• The attacker generates a message out of z*xe where e is the target’s private key, and sends it requesting

encryption
• The target decrypts this message using his private key, executing this operation: (z · xe)d

• Encrypting the message is done by executing the following equation: (z · xe)d = zd · xed = zd · x. The attacker
only needs to divide the obtained ciphertext by x to get the target’s digital signature on the message M

DIGITAL SIGNATURE
RSA

The private and the public keys cannot be used interchangeably in ElGamal; however, they can be used to
sign messages

To sign a message digitally, you need to:
1. Choose a random co-prime k from a range up to p – 1 (with a part of the private key)
2. Calculate r = gk mod p
3. Sign the message digest with a private key x: s = k−1 (SHA-2(M) − xr) mod p – 1
4. The pair r,s is the digital signature

Verifying a digital signature requires you to compute:
• yrrs = (gx)r(gk)k−1(SHA-2(M)−xr) = gxrgkk−1(SHA-2(M)−xr) = gxr+ SHA-2(M)−xr = gh (mod p)
• If the result (gh) equals gSHA-1(M) mod p, the digital signature is correct

DIGITAL SIGNATURE
ElGamal

Because symmetric ciphers don’t offer secure key exchange over trusted channels and can’t authenticate
messages and identify their signatories but are fast and can be used to encrypt long messages, while
asymmetric ciphers cannot be used for long messages but provide a good solution to key exchange problems
and for message and signatory authenticity checking, if you combine the best of the two solutions, the
resultant crypto system is fully functional, secure and efficient

Almost all cryptographic systems used nowadays are hybrid in nature, including SSL and EFS

In hybrid schemes messages are encrypted symmetrically, and the keys used for it are encrypted
asymmetrically and put into a digital envelope and sent along the ciphertext

HYBRID SCHEMES

HYBRID SCHEMES
Encryption

Other potential copies
(recovery agent, …)

Digital
envelope

Other recipients’ public keys

€25m hidden
at 221b

Baker St.
Access

code is…

Symmetric key
encrypted asymmetrically

(e.g., RSA)

Digital
envelope

User’s public key
(certificate)

RNG

Pseudo-random, symmetric
session key

Symmetric cipher
(e.g., AES)

*#$fjda^j
u539!3t

t389E *&\@
5e%32\^kd

HYBRID SCHEMES
Decryption

*#$fjda^j
u539!3t

t389E *&\@
5e%32\^kd

€25m hidden
at 221b

Baker St.
Access

code is…

Symmetric
decryption
(e.g., AES)

Digital
envelope

Asymmetric decryption
of session key (e.g., RSA)

Symmetric session key

Only the right private key can be
used to decrypt session key

Digital envelope contains
encrypted session key

Recipient’s private
key

Creating a secure cryptographic system is extremely difficult to accomplish:
• If you use algorithms that are vulnerable to attacks, the security of the system drops significantly. This

means that even if you’re a cryptographer/mathematician, you should never use algorithms you created
in live computer systems. Developing a secure cipher takes a lot of time, and proving it is resistant to
attacks will take years. Because of this, do not use any secret cipher (whether developed by you or an
application’s producer): security through obscurity gives you very little protection!

• The practical security of a system is a matter of both using a good algorithm and implementing it in the
right way: even the most secure algorithm, if ill-implemented, will not be immune to attacks. This is
especially applicable to block cipher modes and confidential data protection methods (above all, keys).
Even if you’re a programming guru, do not implement cryptographic algorithms by yourself: there is a
huge gap between a program that 'works' (encrypts and decrypts data) and a program that is actually able
to protect confidential information.

• A cryptographic system is only as secure as its weakest element: even if a web application is protected
with a 4-kilobyte RSA key, it’s meaningless if the data sent across a web server and browser is DES-
encrypted

Cryptographic systems

THANKS

	Slajd numer 1
	Information Theory
	Information Theory
	Symmetric-key Algorithms
	Symmetric-key algorithms
	Symmetric-key algorithms
	Block CIPHERS
	Block CIPHERS
	Block Ciphers
	Data Encryption standard
	Data Encryption standard
	Data Encryption standard
	Data Encryption standard
	Data Encryption standard
	Des-X
	Des-X
	3des
	RC
	RC
	RC
	Advanced encryption standard
	Advanced encryption standard
	Advanced encryption standard
	Advanced encryption standard
	Block cipher modes
	Block cipher modes
	Block cipher modes
	Block cipher modes
	Block cipher modes
	Block cipher modes
	Block cipher modes
	Block cipher modes
	Block cipher modes
	Stream ciphers
	Stream ciphers
	Asymmetric-key algorithms
	Asymmetric-key algorithms
	Asymmetric-key algorithms
	RSA
	RSA
	ElGamal
	ElGamal
	Hash Functions
	Hash Functions
	Hash Functions
	Hash Functions
	Hash Functions
	DIGITAL SIGNATURE
	DIGITAL SIGNATURE
	DIGITAL SIGNATURE
	DIGITAL SIGNATURE
	DIGITAL SIGNATURE
	HYBRID SCHEMES
	HYBRID SCHEMES
	HYBRID SCHEMES
	Cryptographic systems
	Slajd numer 57

