l Intro to Advanced Web
Application Penetration Testing

YINE

MAJOR TOPICS

Web Application
Pentesting Methodology
Planning Web App
Pentests

Pre-Engagement Phase
Web App Mapping &
Crawling
Reconnaissance
Session Security

NE
LEARNING OUTCOMES

+ Solid understanding of the web app pentesting
methodology

+ Ability to plan and orchestrate a web app pentest

+ Ability to perform web app reconnaissance

+ Ability to map a web application through techniques
like crawling

+ Solid understanding of session management & security

+ Good understanding of
the web & the HTTP
protocol

+ Experience with web

PREREQUISITES proxies like Burp or
ZAP

+ Familiarity with Linux
command line tools

LET’'S GO!

The primary objective of this course is to introduce you to the process of

planning, orchestrating and managing a professional web application security
assessment/penetration test.

+ This course seeks to demonstrate how to professionally plan and
orchestrate a web application penetration test.

+ You will also learn how to streamline your activities/actions and improve

the efficiency of your pentests while maintaining technical accuracy and
rigor.

INE

NE

Web App Pentesting Methodology

Web App Pentesting

Web application penetration testing, is a comprehensive security
assessment aimed at identifying vulnerabilities and weaknesses in web
applications.

It involves simulating real-world attacks to evaluate the application's
security posture and provide recommendations for remediation.

Using a methodology for web application penetration testing is vitally
Important as it provides a structured and systematic approach to conduct
thorough security assessments.

INE

Importance of Web App Pentesting
Methodologies

Consistency and Standardization - A methodology ensures that penetration
tests are performed consistently across different web applications and projects.
It provides standardized procedures, tools, and techniques, ensuring that all
necessary areas of the application's security are thoroughly tested.
Comprehensive Coverage - A well-defined methodology helps ensure
comprehensive coverage of the web application's security. [t guides testers to
assess all critical components and functionalities, reducing the risk of
overlooking crucial security flaws.

Efficiency and Time Management - Following a methodology streamlines the
testing process, making it more efficient and time-effective. Testers can
prioritize tasks, focus on high-risk areas, and avoid wasting time on redundant

activities. .
INE&

Importance of Web App Pentesting
Methodologies

Thorough Identification of Vulnerabilities - A methodology encourages detailed
testing and comprehensive assessments. It helps testers identify both common
and rare vulnerabilities, improving the overall security posture of the web
application.

Risk Prioritization - A methodology allows testers to assign risk levels to
identified vulnerabilities based on their potential impact on the application and
business. This assists stakeholders in prioritizing and addressing critical issues
first.

Effective Reporting and Communication - A structured methodology
encourages well-documented reports that are easy to understand for both
technical and non-technical stakeholders. Clear communication of findings and
recommendations is vital for remediation efforts. iNE

Importance of Web App Pentesting
Methodologies

Industry Standards and Best Practices - Many methodologies are based on
industry standards and best practices, such as those provided by organizations
like OWASP and NIST. Following established guidelines ensures a
comprehensive and relevant assessment.

Legal and Ethical Compliance - A methodology helps ensure that penetration
testing is conducted in an ethical and lawful manner, respecting the rules of
engagement and gaining proper authorization from the target organization.
Detection of Complex Vulnerabilities - Advanced security vulnerabilities often
require a structured approach to be identified. A methodology enables testers
to apply specialized techniques and tools to detect complex vulnerabilities that
might be missed in ad-hoc testing.

INE

Web App Pentesting Methodology

Web application penetration testing methodology is a structured and
systematic approach to conducting security assessments of web
applications.

It helps identify potential vulnerabilities and weaknesses, assesses the
application's security posture, and provides actionable recommendations
for remediation.

While specific methodologies may vary, the following steps are
commonly included in a web application penetration testing
methodology:

INE

Web App Pentesting Methodology

1 Pre-Engagement ° Define the scope and objectives of the penetration test, including the target web application, URLs, and
functionalities to be tested.
Obtain proper authorization and permission from the application owner to conduct the test.

° Gather relevant information about the application, such as technologies used, user roles, and business-critical
functionalities.

2 Information Gathering & ° Perform passive reconnaissance to gather publicly available information about the application and its

Reconnaissance infrastructure. o _ _ _ _ y
Enumerate subdomains, directories, and files to discover hidden or sensitive content.
° Use tools like "Nmap" to identify open ports and services running on the web server.
° Utilize "Google Dorks" to find indexed information, files, and directories on the target website.

3 Threat Modeling e Analyze the application's architecture and data flow to identify potential threats and attack vectors.
° Build an attack surface model to understand how attackers can interact with the application.
° Identify potential high-risk areas and prioritize testing efforts accordingly.

4 Vulnerability Scanning e Use automated web vulnerability scanners like "Burp Suite" or "OWASP ZAP" to identify common security
flaws.
° Verify and validate the scan results manually to eliminate false positives and false negatives.

7INE

Web App Pentesting Methodology

5 Manual Testing & Exploitation e Perform manual testing to validate and exploit identified vulnerabilities in the application.

° Test for input validation issues, authentication bypass, authorization flaws, and business logic
vulnerabilities.

° Attempt to exploit security flaws to demonstrate their impact and potential risk to the application.

6 Authentication & Authorization e Test the application's authentication mechanisms to identify weaknesses in password policies, session

Testing management, and account lockout procedures.

° Evaluate the application's access controls to ensure that unauthorized users cannot access sensitive
functionalities or data.

7 Session Management Testing ° Evaluate the application's session management mechanisms to prevent session fixation, session
hijacking, and session-related attacks.
° Check for session timeout settings and proper session token handling.

8 Information Disclosure ° Review how the application handles sensitive information such as passwords, user data, and
confidential files.

) Test for information disclosure through error messages, server responses, or improper access
controls.

7INE

Web App Pentesting Methodology

Phase Objectives

9 Business Logic Testing ° Analyze the application's business logic to identify flaws that could lead to unauthorized access or
data manipulation.
° Test for order-related vulnerabilities, privilege escalation, and other business logic flaws.
10 Client-Side Testing ° Evaluate the client-side code (HTML, JavaScript) for potential security vulnerabilities, such as DOM-
based XSS.
° Test for insecure client-side storage and sensitive data exposure.
11 Reporting & Remediation e Document and prioritize the identified security vulnerabilities and risks.
° Provide a detailed report to developers and stakeholders, including recommendations for remediation.
° Assist developers in fixing the identified security issues and retesting the application to ensure that the
fixes were successful.
12 Post-Engagement ° Conduct a post-engagement meeting to discuss the test results with stakeholders.
° Provide security awareness training to the development team to promote secure coding practices.

7INE

Penetration Testing Methodologies

There are several web application penetration testing methodologies
that security professionals and organizations can follow to conduct
comprehensive and structured assessments.

Each methodology has its approach and focus areas, but they all share
the common goal of identifying and mitigating security vulnerabilities in
web applications.

Here are some popular web application penetration testing
methodologies:

INE

Penetration Iesting Execution
Standard

PTES is a complete penetration testing methodology that covers all
aspects of security assessments, including web application testing.
It provides a structured approach from pre-engagement through
reporting and follow-up, making it suitable for comprehensive

assessments.

penetration-testing-
execution-standard/ptes

The Penetration Testing Execution Standard (PTES

A = A Eramawnrk
Automation Framework

INE

OWASP Web Security Testing Guide
(WSTG)

The OWASP Web Security Testing Guide (WSTG) is a comprehensive
resource provided by the Open Web Application Security Project
(OWASP).

It offers a structured methodology for performing web application
security testing.

@ ownsp

WEB SECURITY
TESTING GUIDE

INE

INE

OWASP Top 10

OWASP Top 10

The OWASP Top 10 is a regularly updated list of the most critical web
application security risks.

It is maintained by the Open Web Application Security Project (OWASP),
a nonprofit organization focused on improving web application security.
The OWASP Top 10 serves as a valuable guide for developers, web app
pentesters, and organizations to understand and prioritize common
security risks in web applications.

INE

OWASP Top 10 Releases

The OWASP Top 10 is a well-known list of the ten most critical web
application security risks.

It undergoes periodic updates to ensure it reflects the current threat
landscape and the evolving security challenges faced by web
applications.

The first version of the OWASP Top 10 was released in 2003. It aimed
to raise awareness about common web application security risks and
help developers prioritize security efforts.

The list included risks like Cross-Site Scripting (XSS), SQL Injection, and
Session Management issues.

Each release of the OWASP Top 10 builds upon the previous versions,
Improving its accuracy, relevance, and practicality. INE

NE

Demo: OWASP Top 10

NE

Web Application Security Testing

Web Application Security Testing

Web application security testing is the process of evaluating and
assessing the security aspects of web applications to identify
vulnerabilities, weaknesses, and potential security risks.

It involves conducting various tests and assessments to ensure that web
applications are resistant to security threats and can effectively protect
sensitive data and functionalities from unauthorized access or malicious
activities.

The primary goal of web application security testing is to uncover
security flaws before they are exploited by attackers.

By identifying and addressing vulnerabilities, organizations can enhance
the overall security posture of their web applications, reduce the risk of
data breaches and unauthorized access, and protect their users and ,

INE

sensitive information.

Web Application Security Iesting
Types

Web application security testing typically involves a combination of

automated scanning tools and manual testing techniques.

Some common types of security testing conducted on web applications
include:

o Vulnerability Scanning: Using automated tools to scan the web application
for known vulnerabilities, such as SQL injection, Cross-Site Scripting (XSS),
insecure configurations, and outdated software versions.

o Penetration Testing: Simulating real-world attacks to assess the
application's defenses and identify potential security weaknesses. This

involves ethical hacking to gain insights into how an attacker might exploit
vulnerabilities.

o Code Review and Static Analysis: Manual examination of the application's

source code to identify coding flaws, security misconfigurations, and ,
potential security risks. INE

Web Application Security Iesting
Types

Authentication and Authorization Testing: Evaluating the effectiveness of
authentication mechanisms and access control features to ensure that
only authorized users have appropriate access levels.

Input Validation and Output Encoding Testing: Assessing how the
application handles user inputs to prevent common security
vulnerabilities like XSS and SQL injection.

Session Management Testing: Verifying how the application manages
user sessions and related tokens to prevent session-related attacks.

API Security Testing: Assessing the security of APIs (Application
Programming Interfaces) used by the web application for data exchange
and integration with other systems.

INE

Web Application Penetration Testing

Web application pentesting, is a subset of web application security
testing that specifically involves attempting to exploit identified
vulnerabilities.

It is a simulated attack on the web application conducted by skilled
security professionals known as pentesters, bug bounty hunters or
ethical hackers.

The process involves a systematic and controlled approach to assess the
application's security by attempting to exploit known vulnerabilities.

INE

Web App Pentesting vs Web App Security
Testing

Key differences between web app security testing and web app
pentesting:

o Scope: Web application security testing covers a broader range of
assessments, including static and dynamic analysis, while web application
pentesting focuses on actively exploiting vulnerabilities.

o Objective: The primary goal of security testing is to identify weaknesses,

whereas pentesting aims to validate vulnerabilities and assess the
organization's ability to detect and respond to attacks.

o Methodology: Security testing includes both manual and automated
technigues, while pentesting is predominantly a manual process, involving

the use of various tools and techniques for exploitation.
o Exploitation: Security testing does not involve exploitation of vulnerabilities,
while pentesting does, albeit in a controlled and authorized manner. .
IN&E

Web App Pentesting vs Web App Security

Aspect

Objective

Focus

Methodology

Exploitation

Impact

Reporting

Testing Approach

Goal

Testing

Web App Security Testing

Identify vulnerabilities and weaknesses in the web application
without actively exploiting them.

Broader in scope, includes both manual and automated testing
techniques.

Various types of assessments, such as SAST, DAST, IAST, SCA,
etc.

Does notinvolve exploitation of vulnerabilities.

Non-intrusive; primarily focused on identifying issues.

Identifies vulnerabilities and provides remediation
recommendations.

May include automation for vulnerability scanning.

Enhance overall security posture of the web application.

Web App Pentesting

Actively attempt to exploitidentified vulnerabilities and assess the
organization's response to attacks.

Specific to identifying vulnerabilities and exploiting them, mainly a
manual process.

Manual testing using tools and techniques to simulate real-world
attacks.

Involves controlled exploitation to validate vulnerabilities.

Can be intrusive, may cause application disruption during testing.

Documents successful exploits, identifies weaknesses, and
recommends remediation measures.

Primarily manual, using manual testing techniques and tools.

Validate the effectiveness of existing security controls and incident

response capabilities. .

7INE

NE

Planning Web Application
Pentests With WSTG

OWASP Web Security Testing Guide

The OWASP Web Security Testing Guide (WSTGQG) is a comprehensive

and community-driven resource provided by the Open Web Application
Security Project (OWASP).

The guide aims to help security professionals, developers, and
organizations conduct effective web application security assessments by
providing a structured and systematic approach to testing web
applications for security vulnerabilities.

It serves as a practical and hands-on reference for planning, executing,
and reporting on web application security testing activities.

INE

OWASP WSTG Checklist

The OWASP Web Security Testing Checklist is an spreadsheet based
checklist that can be used to help you track the status of completed and
pending test cases.

This checklistis based on OWASP Web Security Testing Guide and
includes a comprehensive penetration testing methodology/framework
that web app pentesters can implement in their pentests or security
assessments.

It also provides a set of detailed and granular web app security tests that
outline the various technigues that can be used to test most common
web application misconfigurations, flaws or and vulnerabilities.
Moreover, the checklist also contains the OWASP Risk Assessment
Calculator and the Summary Findings template. INE-

NE

Demo: OWASP Web Security
Testing Guide (WSTG) Checklist

NE

Pre-Engagement Phase

Pre-Engagement Phase

The pre-engagement phase of web application penetration testing is a
crucial step that lays the foundation for a successful and well-planned
security assessment.

It involves preliminary preparations, understanding project requirements,
and obtaining necessary authorizations before initiating the actual
testing.

During the pre-engagement phase, the penetration tester and the client
must discuss and agree upon a number of legal and technical details
pertinent to the execution and outcomes of the security assessment.

INE

Pre-Engagement Phase

This can be one or more documents with the objective to define the

Authorized
actions

following:
Slojeiies Timeline & Liabilities &
Scope of the . o
milestones responsibility
engagement
SpCasiiels Statement of
ik work
deliverables

INE

Pre-Engagement Steps

Understanding Project Objectives:
o Clearly define the objectives and goals of the penetration test.
o Understand what the stakeholders aim to achieve through the testing
process.
Scope Definition:
o |dentify the scope of the penetration test, including the specific web
applications, URLs, and functionalities to be tested.
o Define the scope boundaries and limitations, such as which systems or
networks are out-of-scope for testing.
Authorization and Legal Requirements:
o Obtain proper authorization from the organization's management or
application owners to conduct the penetration test.
o Ensure that the testing activities comply with any legal or regulatory “\—lE\
requirements, and that all relevant permissions are secured.

Pre-Engagement Steps

Rules of Engagement (RoE):
o Establish a set of Rules of Engagement that outline the specific rules,
constraints, and guidelines for the testing process.
o Include details about the testing schedule, testing hours, communication
channels, and escalation procedures.
Communication and Coordination:
o Establish clear communication channels with key stakeholders, including IT
personnel, development teams, and management.
o Coordinate with relevant personnel to ensure minimal disruption to the
production environment during testing.

INE

Pre-Engagement Steps

Contract and Non-Disclosure Agreements:
o Sign necessary contracts and non-disclosure agreements (NDASs) with the
organization to protect sensitive information and ensure confidentiality.
Scoping Meeting:
o Conduct a scoping meeting with key stakeholders to discuss the testing
objectives, scope, and any specific concerns or constraints.
o Use this meeting to clarify expectations and ensure everyone is aligned with
the testing approach.
Preparation of Tools and Resources:
o Ensure that the testing team has all the required tools, licenses, and
resources needed for the assessment.
o Set up a secure testing environment and any necessary virtual machines for

testing. INE

Pre-Engagement Steps

Risk Assessment and Acceptance:
o Perform a risk assessment to understand the potential impact of the
penetration test on the web application and the organization.
o Obtain management's acceptance of any risks associated with the testing
process.
Engagement Kick-off:
o Officially kick-off the penetration test, confirming the start date and timeline
with the organization's stakeholders.
o Share the RoE and any other relevant details with the testing team.

INE

NE

Defining The Pentest Scope

NE

Demo: OWASP ZAP Context Scope

NE

Defining The Scope - Website
Screenshots With EyeWitnhess

INE

Practical Demo

NE

Website Reconnnaissance

What are
we looking
for

IP addresses

Directories hidden from search
engines

Names

— o+

Email addresses

Phone Numbers

Physical Addresses

Web technologies being used

+ + + + +

INE

Practical Demo

NE

Harvesting Profiles & Contact
Information

INE

Practical Demo

NE

Finding Information in Data
Breaches

INE

Practical Demo

NE

Web App Technology Fingerprinting

INE

Practical Demo

INE

Google Dorks

INE

Practical Demo

NE

Mapping Tools - HTTRack

INE

Practical Demo

NE

Passive Crawling With Burp Suite

NE

Lab Demo: Passive Crawling With Burp
Suite

NE

Automated Crawling - Web App
Scanning

NE

Lab Demo: Web App Scanning With
OWASP ZAP

Session IDs & Cookies

YINE

Session IDs & Cookies

In the context of web application penetration testing, understanding
session IDs and cookies is crucial, as these components play a significant
role in user authentication and session management.

INE

Session IDs

Session IDs (Session Identifiers) are unique tokens or strings generated
by web applications to identify and track user sessions. They are
essential for maintaining stateful communication between the client
(user's browser) and the server.

Session IDs are typically used to associate requests from a user with
their session data stored on the server.

For example, suppose you're conducting a penetration test on an e-
commerce website. After a user logs in, the server generates a session
ID (e.g., "Session12345") and associates it with the user's session.

This session ID is then sent to the user's browser as a cookie.

-

TINE

Cookies

e Cookies are small pieces of data (usually text) that a web server sends to
the user's browser, which stores them locally.

e Cookies serve various purposes, such as session management, user
tracking, and personalization. In the context of session management,
session cookies are commonly used to store the session ID, allowing the
server to recognize and maintain the user's session.

e Forexample, during a penetration test, you discover that the website
uses cookies for session management. VWhen a user logs in, the server
sends a cookie named "sessionID" with the value "Session12345" to the
user's browser. On subsequent requests, the browser includes this
cookie, allowing the server to identify and associate the user's requests

with their session. INE

| Session Hijacking & Session
Fixation

YINE

Session Hijacking

Session hijacking, also known as session theft, is a security attack where
an attacker illegitimately takes over a user's active session on a web
application.

In this type of attack, the attacker gains unauthorized access to the user's
session token or identifier, allowing them to impersonate the victim and
perform actions on their behalf.

Session hijacking is a severe security threat because it can lead to
unauthorized access to user accounts, sensitive data, and potential
misuse of the hijacked session.

INE

Session Hijacking - Token Acquisition

Session Prediction: Predicting or guessing the session token, especially if
it's predictable or lacks sufficient randomness.

Session Sniffing: Intercepting the session token as it's transmitted over
an unsecured network, such as an open Wi-Fi hotspot.

Cross-Site Scripting (XSS): Exploiting a vulnerability in the web

application to inject malicious JavaScript into a victim's browser, which
can steal the session token.

INE

Session Hijacking - Impersonation

Once the attacker has the session token, they can impersonate the victim
by presenting this token during requests to the web application.

The application, unaware of the hijacking, treats the attacker as the
authenticated user.

INE

Session Hijacking - Impact
Data Theft: Access and steal the victim's sensitive data, such as personal

information, financial details, or confidential documents.

Account Takeover: Change the victim's account settings, passwords, or
email addresses, effectively locking the victim out of their account.

Malicious Transactions: Conduct unauthorized transactions, make
purchases, or manipulate the victim's data.

Data Manipulation: Modify or delete the victim's data or settings.
INE-

Session Fixation

Session fixation is a web application security attack where an attacker

sets or fixes a user's session identifier (session token) to a known value
of the attacker's choice.

Subsequently, the attacker tricks the victim into using this fixed session

identifier to log in, thereby granting the attacker unauthorized access to
the victim's session.

INE

Session Fixation - Token Acquisition

The attacker obtains a session token issued by the target web
application. This can be done in several ways, such as:

Predicting or guessing the session token: Some web applications
generate session tokens that are easy to predict or lack sufficient
randomness.

Intercepting the session token: If the application doesn't use secure
channels (e.g., HTTPS) to transmit session tokens, an attacker may
intercept them as they travel over an insecure network, such as an open
Wi-Fi hotspot.

INE

Session Fixation - Impersonation

With a session token in hand, the attacker sets or fixes the victim's
session token to a known value that the attacker controls. This value
could be one generated by the attacker or an existing valid session
token.

The attacker lures the victim into using the fixed session token to log in
to the web application. This can be accomplished through various

means.
o Sending the victim a link that includes the fixed session token.
o Manipulating the victim into clicking on a specially crafted URL.
o Social engineering tactics to convince the victim to log in under specific
circumstances.

INE

Session Fixation - Hijacking

Once the victim logs in with the fixed session token, the attacker can
now hijack the victim's session.

The web application recognizes the attacker as the legitimate user since
the session token matches what is expected.

INE

| Advanced Web Application Penetration
Testing - Summary

YINE

Key Concepts - Recap

Web Application Pentesting Methodology
Planning Web App Pentests
Pre-Engagement Phase

Web App Mapping & Crawling
Reconnaissance

Session Security

INE

YINE
Learning Outcomes Recap

+ Solid understanding of the web app pentesting
methodology

+ Ability to plan and orchestrate a web app pentest

+ Ability to perform web app reconnaissance

+ Ability to map a web application through techniques
like crawling

+ Solid understanding of session management & security

Next Steps

+ Additional Resources:
+ OWASP Web Security Testing Guide
+ OWASP Penetration Testing Cheklist: https:/owasp.ora/www -project-web-

security-testing-
quide/assets/archive/OWASP_Web_Application_Penetration_Checklist_ v1_

1.pdf

+ Additional Tools: Caido - Web Security Auditing Toolkit: https://caido.io/

L

TNE

https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Web_Application_Penetration_Checklist_v1_1.pdf
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Web_Application_Penetration_Checklist_v1_1.pdf
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Web_Application_Penetration_Checklist_v1_1.pdf
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Web_Application_Penetration_Checklist_v1_1.pdf
https://caido.io/

Thank
You!

EXPERTS AT MAKING YOU AN EXPERT

XNE

	Slide 1: Intro to Advanced Web Application Penetration Testing
	Slide 2: Alexis Ahmed
	Slide 3: MAJOR TOPICS
	Slide 4: LEARNING OUTCOMES
	Slide 5: PREREQUISITES
	Slide 6: LET’S GO!
	Slide 7: Web App Pentesting Methodology
	Slide 8: Web App Pentesting
	Slide 9: Importance of Web App Pentesting Methodologies
	Slide 10: Importance of Web App Pentesting Methodologies
	Slide 11: Importance of Web App Pentesting Methodologies
	Slide 12: Web App Pentesting Methodology
	Slide 13: Web App Pentesting Methodology
	Slide 14: Web App Pentesting Methodology
	Slide 15: Web App Pentesting Methodology
	Slide 16: Penetration Testing Methodologies
	Slide 17: Penetration Testing Execution Standard
	Slide 18: Penetration Testing Execution Standard
	Slide 19: OWASP Top 10
	Slide 20: OWASP Top 10
	Slide 21: OWASP Top 10 Releases
	Slide 22: Demo: OWASP Top 10
	Slide 23: Web Application Security Testing
	Slide 24: Web Application Security Testing
	Slide 25: Web Application Security Testing Types
	Slide 26: Web Application Security Testing Types
	Slide 27: Web Application Penetration Testing
	Slide 28: Web App Pentesting vs Web App Security Testing
	Slide 29: Web App Pentesting vs Web App Security Testing
	Slide 30: Planning Web Application Pentests With WSTG
	Slide 31: OWASP Web Security Testing Guide
	Slide 32: OWASP WSTG Checklist
	Slide 33: Demo: OWASP Web Security Testing Guide (WSTG) Checklist
	Slide 34: Pre-Engagement Phase
	Slide 35: Pre-Engagement Phase
	Slide 36: Pre-Engagement Phase
	Slide 37: Pre-Engagement Steps
	Slide 38: Pre-Engagement Steps
	Slide 39: Pre-Engagement Steps
	Slide 40: Pre-Engagement Steps
	Slide 41: Defining The Pentest Scope
	Slide 42: Demo: OWASP ZAP Context Scope
	Slide 43: Defining The Scope - Website Screenshots With EyeWitness
	Slide 44: Practical Demo
	Slide 45: Website Reconnnaissance
	Slide 46: What are we looking for
	Slide 47: Practical Demo
	Slide 48: Harvesting Profiles & Contact Information
	Slide 49: Practical Demo
	Slide 50: Finding Information in Data Breaches
	Slide 51: Practical Demo
	Slide 52: Web App Technology Fingerprinting
	Slide 53: Practical Demo
	Slide 54: Google Dorks
	Slide 55: Practical Demo
	Slide 56: Mapping Tools - HTTRack
	Slide 57: Practical Demo
	Slide 58: Passive Crawling With Burp Suite
	Slide 59: Lab Demo: Passive Crawling With Burp Suite
	Slide 60: Automated Crawling - Web App Scanning
	Slide 61: Lab Demo: Web App Scanning With OWASP ZAP
	Slide 62: Session IDs & Cookies
	Slide 63: Session IDs & Cookies
	Slide 64: Session IDs
	Slide 65: Cookies
	Slide 66: Session Hijacking & Session Fixation
	Slide 67: Session Hijacking
	Slide 68: Session Hijacking - Token Acquisition
	Slide 69: Session Hijacking - Impersonation
	Slide 70: Session Hijacking - Impact
	Slide 71: Session Fixation
	Slide 72: Session Fixation - Token Acquisition
	Slide 73: Session Fixation - Impersonation
	Slide 74: Session Fixation - Hijacking
	Slide 75: Advanced Web Application Penetration Testing - Summary
	Slide 76: Key Concepts - Recap
	Slide 77: Learning Outcomes Recap
	Slide 78: Next Steps
	Slide 79: Thank You!
	Slide 80

