
Intro to Advanced Web 

Application Penetration Testing



Alexis Ahmed

Offensive Security/Red Team Instructor @INE

Senior Pentester & Red Team Lead @HackerSploit



MAJOR TOPICS

+ Web Application 
Pentesting Methodology

+ Planning Web App 
Pentests

+ Pre-Engagement Phase
+ Web App Mapping & 

Crawling
+ Reconnaissance
+ Session Security



LEARNING OUTCOMES

+ Solid understanding of the web app pentesting 
methodology

+ Ability to plan and orchestrate a web app pentest
+ Ability to perform web app reconnaissance
+ Ability to map a web application through techniques 

like crawling
+ Solid understanding of session management & security



PREREQUISITES

+ Good understanding of 
the web & the HTTP 
protocol

+ Experience with web 
proxies like Burp or 
ZAP

+ Familiarity with Linux 
command line tools



LET’S GO!

The primary objective of this course is to introduce you to the process of 
planning, orchestrating and managing a professional web application security 
assessment/penetration test.

+ This course seeks to demonstrate how to professionally plan and 
orchestrate a web application penetration test.

+ You will also learn how to streamline your activities/actions and improve 
the efficiency of your pentests while maintaining technical accuracy and 
rigor.



Web App Pentesting Methodology



Web App Pentesting

● Web application penetration testing, is a comprehensive security 
assessment aimed at identifying vulnerabilities and weaknesses in web 
applications. 

● It involves simulating real-world attacks to evaluate the application's 
security posture and provide recommendations for remediation.

● Using a methodology for web application penetration testing is vitally 
important as it provides a structured and systematic approach to conduct 
thorough security assessments.



Importance of Web App Pentesting 
Methodologies

● Consistency and Standardization - A methodology ensures that penetration 
tests are performed consistently across different web applications and projects. 
It provides standardized procedures, tools, and techniques, ensuring that all 
necessary areas of the application's security are thoroughly tested.

● Comprehensive Coverage - A well-defined methodology helps ensure 
comprehensive coverage of the web application's security. It guides testers to 
assess all critical components and functionalities, reducing the risk of 
overlooking crucial security flaws.

● Efficiency and Time Management - Following a methodology streamlines the 
testing process, making it more efficient and time-effective. Testers can 
prioritize tasks, focus on high-risk areas, and avoid wasting time on redundant 
activities.



Importance of Web App Pentesting 
Methodologies

● Thorough Identification of Vulnerabilities - A methodology encourages detailed 
testing and comprehensive assessments. It helps testers identify both common 
and rare vulnerabilities, improving the overall security posture of the web 
application.

● Risk Prioritization - A methodology allows testers to assign risk levels to 
identified vulnerabilities based on their potential impact on the application and 
business. This assists stakeholders in prioritizing and addressing critical issues 
first.

● Effective Reporting and Communication - A structured methodology 
encourages well-documented reports that are easy to understand for both 
technical and non-technical stakeholders. Clear communication of findings and 
recommendations is vital for remediation efforts.



Importance of Web App Pentesting 
Methodologies

● Industry Standards and Best Practices - Many methodologies are based on 
industry standards and best practices, such as those provided by organizations 
like OWASP and NIST. Following established guidelines ensures a 
comprehensive and relevant assessment.

● Legal and Ethical Compliance - A methodology helps ensure that penetration 
testing is conducted in an ethical and lawful manner, respecting the rules of 
engagement and gaining proper authorization from the target organization.

● Detection of Complex Vulnerabilities - Advanced security vulnerabilities often 
require a structured approach to be identified. A methodology enables testers 
to apply specialized techniques and tools to detect complex vulnerabilities that 
might be missed in ad-hoc testing.



Web App Pentesting Methodology

● Web application penetration testing methodology is a structured and 
systematic approach to conducting security assessments of web 
applications. 

● It helps identify potential vulnerabilities and weaknesses, assesses the 
application's security posture, and provides actionable recommendations 
for remediation.

● While specific methodologies may vary, the following steps are 
commonly included in a web application penetration testing 
methodology:



Web App Pentesting Methodology

Phase Objectives

1 Pre–Engagement ● Define the scope and objectives of the penetration test, including the target web application, URLs, and 
functionalities to be tested.

● Obtain proper authorization and permission from the application owner to conduct the test.

● Gather relevant information about the application, such as technologies used, user roles, and business-critical 
functionalities.

2 Information Gathering & 

Reconnaissance

● Perform passive reconnaissance to gather publicly available information about the application and its 
infrastructure.

● Enumerate subdomains, directories, and files to discover hidden or sensitive content.

● Use tools like "Nmap" to identify open ports and services running on the web server.
● Utilize "Google Dorks" to find indexed information, files, and directories on the target website.

3 Threat Modeling ● Analyze the application's architecture and data flow to identify potential threats and attack vectors.
● Build an attack surface model to understand how attackers can interact with the application.
● Identify potential high-risk areas and prioritize testing efforts accordingly.

4 Vulnerability Scanning ● Use automated web vulnerability scanners like "Burp Suite" or "OWASP ZAP" to identify common security 
flaws.

● Verify and validate the scan results manually to eliminate false positives and false negatives.



Web App Pentesting Methodology

Phase Objectives

5 Manual Testing & Exploitation ● Perform manual testing to validate and exploit identified vulnerabilities in the application.
● Test for input validation issues, authentication bypass, authorization flaws, and business logic 

vulnerabilities.

● Attempt to exploit security flaws to demonstrate their impact and potential risk to the application.

6 Authentication & Authorization 

Testing

● Test the application's authentication mechanisms to identify weaknesses in password policies, session 
management, and account lockout procedures.

● Evaluate the application's access controls to ensure that unauthorized users cannot access sensitive 

functionalities or data.

7 Session Management Testing ● Evaluate the application's session management mechanisms to prevent session fixation, session 
hijacking, and session-related attacks.

● Check for session timeout settings and proper session token handling.

8 Information Disclosure ● Review how the application handles sensitive information such as passwords, user data, and 
confidential files.

● Test for information disclosure through error messages, server responses, or improper access 

controls.



Web App Pentesting Methodology

Phase Objectives

9 Business Logic Testing ● Analyze the application's business logic to identify flaws that could lead to unauthorized access or 
data manipulation.

● Test for order-related vulnerabilities, privilege escalation, and other business logic flaws.

10 Client-Side Testing ● Evaluate the client-side code (HTML, JavaScript) for potential security vulnerabilities, such as DOM-
based XSS.

● Test for insecure client-side storage and sensitive data exposure.

11 Reporting & Remediation ● Document and prioritize the identified security vulnerabilities and risks.
● Provide a detailed report to developers and stakeholders, including recommendations for remediation.
● Assist developers in fixing the identified security issues and retesting the application to ensure that the 

fixes were successful.

12 Post-Engagement ● Conduct a post-engagement meeting to discuss the test results with stakeholders.
● Provide security awareness training to the development team to promote secure coding practices.



Penetration Testing Methodologies

● There are several web application penetration testing methodologies 
that security professionals and organizations can follow to conduct 
comprehensive and structured assessments. 

● Each methodology has its approach and focus areas, but they all share 
the common goal of identifying and mitigating security vulnerabilities in 
web applications. 

● Here are some popular web application penetration testing 
methodologies:



● PTES is a complete penetration testing methodology that covers all 
aspects of security assessments, including web application testing.

● It provides a structured approach from pre-engagement through 
reporting and follow-up, making it suitable for comprehensive 
assessments.

Penetration Testing Execution 
Standard

Penetration Testing Execution 
Standard



● The OWASP Web Security Testing Guide (WSTG) is a comprehensive 
resource provided by the Open Web Application Security Project 
(OWASP). 

● It offers a structured methodology for performing web application 
security testing. 

Penetration Testing Execution 
Standard

OWASP Web Security Testing Guide 
(WSTG)



OWASP Top 10



OWASP Top 10

● The OWASP Top 10 is a regularly updated list of the most critical web 
application security risks. 

● It is maintained by the Open Web Application Security Project (OWASP), 
a nonprofit organization focused on improving web application security.

● The OWASP Top 10 serves as a valuable guide for developers, web app 
pentesters, and organizations to understand and prioritize common 
security risks in web applications. 



OWASP Top 10 Releases

● The OWASP Top 10 is a well-known list of the ten most critical web 
application security risks. 

● It undergoes periodic updates to ensure it reflects the current threat 
landscape and the evolving security challenges faced by web 
applications. 

● The first version of the OWASP Top 10 was released in 2003. It aimed 
to raise awareness about common web application security risks and 
help developers prioritize security efforts. 

● The list included risks like Cross-Site Scripting (XSS), SQL Injection, and 
Session Management issues.

● Each release of the OWASP Top 10 builds upon the previous versions, 
improving its accuracy, relevance, and practicality.



Demo: OWASP Top 10



Web Application Security Testing



Web Application Security Testing
● Web application security testing is the process of evaluating and 

assessing the security aspects of web applications to identify 
vulnerabilities, weaknesses, and potential security risks. 

● It involves conducting various tests and assessments to ensure that web 
applications are resistant to security threats and can effectively protect 
sensitive data and functionalities from unauthorized access or malicious 
activities.

● The primary goal of web application security testing is to uncover 
security flaws before they are exploited by attackers. 

● By identifying and addressing vulnerabilities, organizations can enhance 
the overall security posture of their web applications, reduce the risk of 
data breaches and unauthorized access, and protect their users and 
sensitive information.



Web Application Security Testing 
Types

● Web application security testing typically involves a combination of 
automated scanning tools and manual testing techniques. 

● Some common types of security testing conducted on web applications 
include:
○ Vulnerability Scanning: Using automated tools to scan the web application 

for known vulnerabilities, such as SQL injection, Cross-Site Scripting (XSS), 
insecure configurations, and outdated software versions.

○ Penetration Testing: Simulating real-world attacks to assess the 
application's defenses and identify potential security weaknesses. This 
involves ethical hacking to gain insights into how an attacker might exploit 
vulnerabilities.

○ Code Review and Static Analysis: Manual examination of the application's 
source code to identify coding flaws, security misconfigurations, and 
potential security risks.



Web Application Security Testing 
Types

● Authentication and Authorization Testing: Evaluating the effectiveness of 
authentication mechanisms and access control features to ensure that 
only authorized users have appropriate access levels.

● Input Validation and Output Encoding Testing: Assessing how the 
application handles user inputs to prevent common security 
vulnerabilities like XSS and SQL injection.

● Session Management Testing: Verifying how the application manages 
user sessions and related tokens to prevent session-related attacks.

● API Security Testing: Assessing the security of APIs (Application 
Programming Interfaces) used by the web application for data exchange 
and integration with other systems.



Web Application Penetration Testing

● Web application pentesting, is a subset of web application security 
testing that specifically involves attempting to exploit identified 
vulnerabilities. 

● It is a simulated attack on the web application conducted by skilled 
security professionals known as pentesters, bug bounty hunters or 
ethical hackers. 

● The process involves a systematic and controlled approach to assess the 
application's security by attempting to exploit known vulnerabilities.



Web App Pentesting vs Web App Security 
Testing

● Key differences between web app security testing and web app 
pentesting:
○ Scope: Web application security testing covers a broader range of 

assessments, including static and dynamic analysis, while web application 
pentesting focuses on actively exploiting vulnerabilities.

○ Objective: The primary goal of security testing is to identify weaknesses, 
whereas pentesting aims to validate vulnerabilities and assess the 
organization's ability to detect and respond to attacks.

○ Methodology: Security testing includes both manual and automated 
techniques, while pentesting is predominantly a manual process, involving 
the use of various tools and techniques for exploitation.

○ Exploitation: Security testing does not involve exploitation of vulnerabilities, 
while pentesting does, albeit in a controlled and authorized manner.



Web App Pentesting vs Web App Security 
Testing

Aspect Web App Security Testing Web App Pentesting

Objective Identify vulnerabilities and weaknesses in the web application 
without actively exploiting them.

Actively attempt to exploit identified vulnerabilities and assess the 
organization's response to attacks.

Focus Broader in scope, includes both manual and automated testing 
techniques.

Specific to identifying vulnerabilities and exploiting them, mainly a 
manual process.

Methodology Various types of assessments, such as SAST, DAST, IAST, SCA, 
etc.

Manual testing using tools and techniques to simulate real-world 
attacks.

Exploitation Does not involve exploitation of vulnerabilities. Involves controlled exploitation to validate vulnerabilities.

Impact Non-intrusive; primarily focused on identifying issues. Can be intrusive, may cause application disruption during testing.

Reporting Identifies vulnerabilities and provides remediation 
recommendations.

Documents successful exploits, identifies weaknesses, and 
recommends remediation measures.

Testing Approach May include automation for vulnerability scanning. Primarily manual, using manual testing techniques and tools.

Goal Enhance overall security posture of the web application. Validate the effectiveness of existing security controls and incident 
response capabilities.



Planning Web Application 
Pentests With WSTG



OWASP Web Security Testing Guide

● The OWASP Web Security Testing Guide (WSTG) is a comprehensive 
and community-driven resource provided by the Open Web Application 
Security Project (OWASP). 

● The guide aims to help security professionals, developers, and 
organizations conduct effective web application security assessments by 
providing a structured and systematic approach to testing web 
applications for security vulnerabilities. 

● It serves as a practical and hands-on reference for planning, executing, 
and reporting on web application security testing activities.



OWASP WSTG Checklist

● The OWASP Web Security Testing Checklist is an spreadsheet based 
checklist that can be used to help you track the status of completed and 
pending test cases.

● This checklist is based on OWASP Web Security Testing Guide and 
includes a comprehensive penetration testing methodology/framework 
that web app pentesters can implement in their pentests or security 
assessments.

● It also provides a set of detailed and granular web app security tests that 
outline the various techniques that can be used to test most common 
web application misconfigurations, flaws or and vulnerabilities.

● Moreover, the checklist also contains the OWASP Risk Assessment 
Calculator and the Summary Findings template.



Demo: OWASP Web Security 
Testing Guide (WSTG) Checklist



Pre-Engagement Phase



Pre-Engagement Phase

● The pre-engagement phase of web application penetration testing is a 
crucial step that lays the foundation for a successful and well-planned 
security assessment. 

● It involves preliminary preparations, understanding project requirements, 
and obtaining necessary authorizations before initiating the actual 
testing.

● During the pre-engagement phase, the penetration tester and the client 
must discuss and agree upon a number of legal and technical details 
pertinent to the execution and outcomes of the security assessment.



Pre-Engagement Phase

● This can be one or more documents with the objective to define the 
following:

Objectives & 
Scope of the 
engagement

Timeline & 
milestones

Liabilities & 
responsibility

Authorized 
actions

Expectations 
and 

deliverables

Statement of 
work



Pre-Engagement Steps

● Understanding Project Objectives:
○ Clearly define the objectives and goals of the penetration test. 
○ Understand what the stakeholders aim to achieve through the testing 

process.
● Scope Definition:

○ Identify the scope of the penetration test, including the specific web 
applications, URLs, and functionalities to be tested.

○ Define the scope boundaries and limitations, such as which systems or 
networks are out-of-scope for testing.

● Authorization and Legal Requirements:
○ Obtain proper authorization from the organization's management or 

application owners to conduct the penetration test.
○ Ensure that the testing activities comply with any legal or regulatory 

requirements, and that all relevant permissions are secured.



Pre-Engagement Steps

● Rules of Engagement (RoE):
○ Establish a set of Rules of Engagement that outline the specific rules, 

constraints, and guidelines for the testing process.
○ Include details about the testing schedule, testing hours, communication 

channels, and escalation procedures.
● Communication and Coordination:

○ Establish clear communication channels with key stakeholders, including IT 
personnel, development teams, and management.

○ Coordinate with relevant personnel to ensure minimal disruption to the 
production environment during testing.



Pre-Engagement Steps

● Contract and Non-Disclosure Agreements:
○ Sign necessary contracts and non-disclosure agreements (NDAs) with the 

organization to protect sensitive information and ensure confidentiality.
● Scoping Meeting:

○ Conduct a scoping meeting with key stakeholders to discuss the testing 
objectives, scope, and any specific concerns or constraints.

○ Use this meeting to clarify expectations and ensure everyone is aligned with 
the testing approach.

● Preparation of Tools and Resources:
○ Ensure that the testing team has all the required tools, licenses, and 

resources needed for the assessment.
○ Set up a secure testing environment and any necessary virtual machines for 

testing.



Pre-Engagement Steps

● Risk Assessment and Acceptance:
○ Perform a risk assessment to understand the potential impact of the 

penetration test on the web application and the organization.
○ Obtain management's acceptance of any risks associated with the testing 

process.
● Engagement Kick-off:

○ Officially kick-off the penetration test, confirming the start date and timeline 
with the organization's stakeholders.

○ Share the RoE and any other relevant details with the testing team.



Defining The Pentest Scope



Demo: OWASP ZAP Context Scope



Defining The Scope - Website 
Screenshots With EyeWitness



Practical Demo



Website Reconnnaissance



What are 
we looking 

for
+ IP addresses
+ Directories hidden from search 

engines
+ Names
+ Email addresses
+ Phone Numbers
+ Physical Addresses
+ Web technologies being used



Practical Demo



Harvesting Profiles & Contact 
Information



Practical Demo



Finding Information in Data 
Breaches



Practical Demo



Web App Technology Fingerprinting



Practical Demo



Google Dorks



Practical Demo



Mapping Tools - HTTRack



Practical Demo



Passive Crawling With Burp Suite



Lab Demo: Passive Crawling With Burp 
Suite



Automated Crawling - Web App 
Scanning



Lab Demo: Web App Scanning With 
OWASP ZAP



Session IDs & Cookies



● In the context of web application penetration testing, understanding 
session IDs and cookies is crucial, as these components play a significant 
role in user authentication and session management. 

Session IDs & Cookies



● Session IDs (Session Identifiers) are unique tokens or strings generated 
by web applications to identify and track user sessions. They are 
essential for maintaining stateful communication between the client 
(user's browser) and the server. 

● Session IDs are typically used to associate requests from a user with 
their session data stored on the server.

● For example, suppose you're conducting a penetration test on an e-
commerce website. After a user logs in, the server generates a session 
ID (e.g., "Session12345") and associates it with the user's session. 

● This session ID is then sent to the user's browser as a cookie.

Session IDs



● Cookies are small pieces of data (usually text) that a web server sends to 
the user's browser, which stores them locally. 

● Cookies serve various purposes, such as session management, user 
tracking, and personalization. In the context of session management, 
session cookies are commonly used to store the session ID, allowing the 
server to recognize and maintain the user's session.

● For example, during a penetration test, you discover that the website 
uses cookies for session management. When a user logs in, the server 
sends a cookie named "sessionID" with the value "Session12345" to the 
user's browser. On subsequent requests, the browser includes this 
cookie, allowing the server to identify and associate the user's requests 
with their session.

Cookies



Session Hijacking & Session 

Fixation



● Session hijacking, also known as session theft, is a security attack where 
an attacker illegitimately takes over a user's active session on a web 
application. 

● In this type of attack, the attacker gains unauthorized access to the user's 
session token or identifier, allowing them to impersonate the victim and 
perform actions on their behalf. 

● Session hijacking is a severe security threat because it can lead to 
unauthorized access to user accounts, sensitive data, and potential 
misuse of the hijacked session.

Session Hijacking



● Session Prediction: Predicting or guessing the session token, especially if 
it's predictable or lacks sufficient randomness.

● Session Sniffing: Intercepting the session token as it's transmitted over 
an unsecured network, such as an open Wi-Fi hotspot.

● Cross-Site Scripting (XSS): Exploiting a vulnerability in the web 
application to inject malicious JavaScript into a victim's browser, which 
can steal the session token.

Session Hijacking - Token Acquisition



● Once the attacker has the session token, they can impersonate the victim 
by presenting this token during requests to the web application.

● The application, unaware of the hijacking, treats the attacker as the 
authenticated user.

Session Hijacking - Impersonation



● Data Theft: Access and steal the victim's sensitive data, such as personal 
information, financial details, or confidential documents.

● Account Takeover: Change the victim's account settings, passwords, or 
email addresses, effectively locking the victim out of their account.

● Malicious Transactions: Conduct unauthorized transactions, make 
purchases, or manipulate the victim's data.

● Data Manipulation: Modify or delete the victim's data or settings.

Session Hijacking - Impact



● Session fixation is a web application security attack where an attacker 
sets or fixes a user's session identifier (session token) to a known value 
of the attacker's choice. 

● Subsequently, the attacker tricks the victim into using this fixed session 
identifier to log in, thereby granting the attacker unauthorized access to 
the victim's session. 

Session Fixation



● The attacker obtains a session token issued by the target web 
application. This can be done in several ways, such as:

● Predicting or guessing the session token: Some web applications 
generate session tokens that are easy to predict or lack sufficient 
randomness.

● Intercepting the session token: If the application doesn't use secure 
channels (e.g., HTTPS) to transmit session tokens, an attacker may 
intercept them as they travel over an insecure network, such as an open 
Wi-Fi hotspot.

Session Fixation - Token Acquisition



● With a session token in hand, the attacker sets or fixes the victim's 
session token to a known value that the attacker controls. This value 
could be one generated by the attacker or an existing valid session 
token.

● The attacker lures the victim into using the fixed session token to log in 
to the web application. This can be accomplished through various 
means:
○ Sending the victim a link that includes the fixed session token.
○ Manipulating the victim into clicking on a specially crafted URL.
○ Social engineering tactics to convince the victim to log in under specific 

circumstances.

Session Fixation - Impersonation



● Once the victim logs in with the fixed session token, the attacker can 
now hijack the victim's session. 

● The web application recognizes the attacker as the legitimate user since 
the session token matches what is expected.

Session Fixation - Hijacking



Advanced Web Application Penetration 

Testing - Summary



Key Concepts - Recap

+ Web Application Pentesting Methodology
+ Planning Web App Pentests
+ Pre-Engagement Phase
+ Web App Mapping & Crawling
+ Reconnaissance
+ Session Security



Learning Outcomes Recap

+ Solid understanding of the web app pentesting 
methodology

+ Ability to plan and orchestrate a web app pentest
+ Ability to perform web app reconnaissance
+ Ability to map a web application through techniques 

like crawling
+ Solid understanding of session management & security



+ Additional Resources: 
+ OWASP Web Security Testing Guide
+ OWASP Penetration Testing Cheklist: https://owasp.org/www-project-web-

security-testing-
guide/assets/archive/OWASP_Web_Application_Penetration_Checklist_v1_
1.pdf

+ Additional Tools: Caido - Web Security Auditing Toolkit: https://caido.io/

Next Steps 

https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Web_Application_Penetration_Checklist_v1_1.pdf
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Web_Application_Penetration_Checklist_v1_1.pdf
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Web_Application_Penetration_Checklist_v1_1.pdf
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Web_Application_Penetration_Checklist_v1_1.pdf
https://caido.io/


Thank 
You!



EXPERTS AT MAKING YOU AN EXPERT


	Slide 1: Intro to Advanced Web Application Penetration Testing
	Slide 2: Alexis Ahmed
	Slide 3: MAJOR TOPICS
	Slide 4: LEARNING OUTCOMES
	Slide 5: PREREQUISITES
	Slide 6: LET’S GO!
	Slide 7: Web App Pentesting Methodology
	Slide 8: Web App Pentesting
	Slide 9: Importance of Web App Pentesting Methodologies
	Slide 10: Importance of Web App Pentesting Methodologies
	Slide 11: Importance of Web App Pentesting Methodologies
	Slide 12: Web App Pentesting Methodology
	Slide 13: Web App Pentesting Methodology
	Slide 14: Web App Pentesting Methodology
	Slide 15: Web App Pentesting Methodology
	Slide 16: Penetration Testing Methodologies
	Slide 17: Penetration Testing Execution Standard
	Slide 18: Penetration Testing Execution Standard
	Slide 19: OWASP Top 10
	Slide 20: OWASP Top 10
	Slide 21: OWASP Top 10 Releases
	Slide 22: Demo: OWASP Top 10
	Slide 23: Web Application Security Testing
	Slide 24: Web Application Security Testing
	Slide 25: Web Application Security Testing Types
	Slide 26: Web Application Security Testing Types
	Slide 27: Web Application Penetration Testing
	Slide 28: Web App Pentesting vs Web App Security Testing
	Slide 29: Web App Pentesting vs Web App Security Testing
	Slide 30: Planning Web Application Pentests With WSTG
	Slide 31: OWASP Web Security Testing Guide
	Slide 32: OWASP WSTG Checklist
	Slide 33: Demo: OWASP Web Security Testing Guide (WSTG) Checklist
	Slide 34: Pre-Engagement Phase
	Slide 35: Pre-Engagement Phase
	Slide 36: Pre-Engagement Phase
	Slide 37: Pre-Engagement Steps
	Slide 38: Pre-Engagement Steps
	Slide 39: Pre-Engagement Steps
	Slide 40: Pre-Engagement Steps
	Slide 41: Defining The Pentest Scope
	Slide 42: Demo: OWASP ZAP Context Scope
	Slide 43: Defining The Scope - Website Screenshots With EyeWitness
	Slide 44: Practical Demo
	Slide 45: Website Reconnnaissance
	Slide 46: What are we looking for
	Slide 47: Practical Demo
	Slide 48: Harvesting Profiles & Contact Information
	Slide 49: Practical Demo
	Slide 50: Finding Information in Data Breaches
	Slide 51: Practical Demo
	Slide 52: Web App Technology Fingerprinting
	Slide 53: Practical Demo
	Slide 54: Google Dorks
	Slide 55: Practical Demo
	Slide 56: Mapping Tools - HTTRack
	Slide 57: Practical Demo
	Slide 58: Passive Crawling With Burp Suite
	Slide 59: Lab Demo: Passive Crawling With Burp Suite
	Slide 60: Automated Crawling - Web App Scanning
	Slide 61: Lab Demo: Web App Scanning With OWASP ZAP
	Slide 62: Session IDs & Cookies
	Slide 63: Session IDs & Cookies
	Slide 64: Session IDs
	Slide 65: Cookies
	Slide 66: Session Hijacking & Session Fixation
	Slide 67: Session Hijacking
	Slide 68: Session Hijacking - Token Acquisition
	Slide 69: Session Hijacking - Impersonation
	Slide 70: Session Hijacking - Impact
	Slide 71: Session Fixation
	Slide 72: Session Fixation - Token Acquisition
	Slide 73: Session Fixation - Impersonation
	Slide 74: Session Fixation - Hijacking
	Slide 75: Advanced Web Application Penetration Testing - Summary
	Slide 76: Key Concepts - Recap
	Slide 77: Learning Outcomes Recap
	Slide 78: Next Steps 
	Slide 79: Thank You!
	Slide 80

