Shellcode Execution via Timer

C++ Code

VOID CALLBACK TimerProc(HWND hWnd, UINT message, UINT_PTR timerId, DWORD dwTime);

char shellcode[] 1\x41\x50
51\

xa1\ w%z' XFf\x

X72\x6F\x6a
0" ;
int main(){

UINT_PTR timerId = SetTimer(NULL, 1, 10000, TimerProc);

MSG msg;

(GetMessage(amsg, NULL, 0, @)){
TranslateMessage(&msg);
DispatchMessage (&msg) ;

}
KillTimer(NULL, timerId);
°;

VOID CALLBACK TimerProc(HWND hhnd, UINT message, UINT_PTR timerId, DWORD dwTime){
HANDLE hAlloc V)rtualAllu((NULL (s}wllcode), MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
memcpy (hAlloc c (shellc
Enumcmmmuauw:((m-mn) uuu,(wmusnunpnm) hAlln: NULL);

This code is a Windows program that sets a timer to execute a function (TimerProc) after a delay of 10 seconds.
The TimerProc function allocates memory, copies shellcode into it, and then attempts to execute the shellcode.
Let's break down the key components and explain its functionality:

1. Shellcode:

The char shellcode[] array contains shellcode in hexadecimal representation. Shellcode is typically a small

piece of code used in various contexts, including penetration testing and exploitation.

2. Timer Function:
TimerProc is a callback function that is called when the timer expires. It takes four parameters: hhnd,

message, timerId, and dwTime. In this code, it is used to allocate memory, copy the shellcode into it,

and attempt to execute it.

3. Memory Allocation:

Inside TimerProc, it uses VirtualAlloc to allocate memory with the MEM_COMMIT | MEM_RESERVE flags and
PAGE_EXECUTE_READWRITE protection. This means the allocated memory is both executable and readable.

4. Shellcode Cop,

The shellcode is then copied into the allocated memory using memcpy.

5. Execution Attempt:

The code attempts to execute the shellcode using EnumChildWindows, passing the allocated memory as a

callback function. This is a creative way to attempt to execute the shellcode.

6. Main Function:
In the main function, a timer is set to execute TimerProc after a 10-second delay using SetTimer.
This sets the stage for the execution of the shellcode.

7. Message Loop:
The program enters a message loop using GetMessage, TranslateMessage, and DispatchMessage. This loop
keeps the program running until a message is received.

8. Timer Cleanup:

After the timer expires and TimerProc is executed, the timer is killed using KillTimer.



