
Pipe
Pipe Creator

This C++ program demonstrates inter-process communication using named pipes in a Windows environment. Here’s an explanation of the code without code snippets:

1. Include Headers: The code includes the necessary headers, such as <iostream> for input and output and <windows.h> for Windows API functions.

2. main() Function:

◦ The main() function takes command-line arguments, argc (argument count) and argv (argument vector), although it doesn’t use them in this code.

◦ It declares several variables, including:

▪ HANDLE hPipe: This variable will store the handle to the named pipe.

▪ DWORD dwBytesWritten: This variable will store the number of bytes written to the pipe.

▪ const char* message: This variable stores the message you want to send through the named pipe.

▪ DWORD messageSize: This variable calculates the size of the message.

◦ It creates a named pipe using the CreateNamedPipe function. The parameters specify the pipe’s name, access mode, type, maximum number of instances, input and output buffer sizes, default
timeout values, and security attributes.

◦ It checks if the pipe creation was successful by comparing hPipe with INVALID_HANDLE_VALUE. If there’s an error, it prints an error message and returns with an error code of 1.

3. Connect to the Pipe:

◦ It connects to the named pipe using the ConnectNamedPipe function. This function waits until a client process connects to the pipe.

◦ If the connection fails (e.g., if no client connects within the timeout period), it prints an error message, closes the pipe handle, and returns with an error code of 1.

4. Write to the Pipe:

◦ It writes the message to the pipe using the WriteFile function. The function parameters specify the pipe handle, the message to write, the message size, a pointer to store the number of bytes
written (dwBytesWritten), and optional overlapped I/O (set to NULL in this case).

◦ If the write operation fails, it prints an error message, closes the pipe handle, and returns with an error code of 1.

5. Clean Up and Exit:

◦ It flushes the file buffers using the FlushFileBuffers function to ensure that the data is sent.

◦ It disconnects from the named pipe using the DisconnectNamedPipe function.

◦ Finally, it closes the pipe handle and waits for user input using std::getchar().

◦ The program exits with a return code of 0, indicating successful execution.

This code represents the server-side of a named pipe communication, where it creates a named pipe, waits for a client to connect, sends a message to the client, and then cleans up the resources.
The client-side code would connect to this named pipe and read the message. Named pipes are commonly used for inter-process communication on Windows systems.

Pipe Reader

This C++ program serves as the client-side of an inter-process communication (IPC) scenario using named pipes in a Windows environment. Here’s an explanation of the code without code snippets:

1. Include Headers: The code includes the necessary headers, <iostream> for input and output and <windows.h> for Windows API functions.

2. main() Function:

◦ The main() function takes command-line arguments, argc (argument count) and argv (argument vector), although it doesn’t use them in this code.

◦ It declares several variables, including:

▪ HANDLE hPipe: This variable will store the handle to the named pipe.

▪ DWORD dwBytesRead: This variable will store the number of bytes read from the pipe.

▪ const DWORD bufferSize = 256: This sets the size of the buffer used to read data from the pipe.

▪ char buffer[bufferSize]: This character array is used to store the data read from the pipe.

3. Connect to the Pipe:

◦ It connects to the named pipe using the CreateFile function. The parameters specify the pipe’s name, desired access (read-only in this case), share mode, security attributes (set to NULL),
creation disposition (open an existing pipe), flags and attributes (set to 0).

◦ If the connection fails (e.g., if the pipe doesn’t exist or is not accessible), it prints an error message, closes the pipe handle, and returns with an error code of 1.

4. Read from the Pipe:

◦ It reads data from the pipe using the ReadFile function. The function parameters specify the pipe handle, the buffer to read into, the maximum number of bytes to read, a pointer to store the
number of bytes actually read (dwBytesRead), and optional overlapped I/O (set to NULL in this case).

◦ If the read operation fails (e.g., if there’s no data to read or an error occurs), it prints an error message, closes the pipe handle, and returns with an error code of 1.

5. Process the Data:

◦ After reading data from the pipe, it adds a null character '\0' to the end of the character array buffer, effectively converting it into a C-style string.

◦ It then prints the received data as “Malicious Domain” followed by the string read from the pipe.

6. Clean Up and Exit:

◦ It closes the pipe handle using the CloseHandle function.

◦ It waits for user input using std::getchar().

◦ The program exits with a return code of 0, indicating successful execution.

This code represents the client-side of a named pipe communication, where it connects to an existing named pipe, reads data from it, and processes the received information. In a real-world scenario,
this client could be part of a larger application, and the server (pipe writer) might send various types of data to the client for further processing. Named pipes are commonly used for inter-process
communication on Windows systems

C++ Code

#include <iostream>
#include <windows.h>

int main(int argc, char* argv[]){
HANDLE hPipe;
DWORD dwBytesWritten;
const char* message = "http://maliciousDomain.com";
DWORD messageSize = strlen(message) + 1;

// Create the pipe
hPipe = CreateNamedPipe(

"\\\\.\\pipe\\myPipe",
PIPE_ACCESS_OUTBOUND,
PIPE_TYPE_BYTE,
10, // Max number of instances
0,
0,
0,
NULL

);

if (hPipe == INVALID_HANDLE_VALUE) {
std::cerr << "Error creating the pipe" << std::endl;
return 1;

}

// Connect to the pipe
if (ConnectNamedPipe(hPipe, NULL) == FALSE) {

std::cerr << "Error connecting to the pipe" << std::endl;
CloseHandle(hPipe);
return 1;

}

// Write to the pipe
if (WriteFile(hPipe, message, messageSize, &dwBytesWritten, NULL) == FALSE) {

std::cerr << "Error writing to the pipe" << std::endl;
CloseHandle(hPipe);
return 1;

}
FlushFileBuffers(hPipe);
DisconnectNamedPipe(hPipe);
CloseHandle(hPipe);
std::getchar();

return 0;
}

C++ Code

#include <iostream>
#include <windows.h>

int main(int argc, char* argv[]){
HANDLE hPipe;
DWORD dwBytesRead;
const DWORD bufferSize = 256;
char buffer[bufferSize];

// Connect to the pipe
hPipe = CreateFile(

"\\\\.\\pipe\\myPipe",
GENERIC_READ,
0,
NULL,
OPEN_EXISTING,
0,
NULL

);

if (hPipe == INVALID_HANDLE_VALUE) {
std::cerr << "Error trying to connect to the pipe" << std::endl;
return 1;

}

// Read from the pipe
if (ReadFile(hPipe, buffer, bufferSize - 1, &dwBytesRead, NULL) == FALSE) {

std::cerr << "Error reading from pipe" << std::endl;
CloseHandle(hPipe);
return 1;

}

// Add null character to the end of the string read
buffer[dwBytesRead] = '\0';
std::cout << "Malicious Domain: " << buffer << std::endl;
CloseHandle(hPipe);
std::getchar();

return 0;
}

http://maliciousdomain.com/
http://maliciousdomain.com/

