
MAC Address

● Media Access Control
○ Permanent.
○ Physical.
○ Unique.

● Assigned by manufacturer.

Why change the MAC Address?

1. Increase anonymity.
2. Impersonate other devices.
3. Bypass filters.

Client1 Access Point

Resources

eg:internet
 Client2

 Mac = 00:11:22:33:44:55

 Mac = 00:22:22:22:22:22

 Mac = 00:11:11:11:11:11

Client1 Access Point

Resources

eg:internet
 Client2

 Mac = 00:11:22:33:44:55

Source Mac: 00:11:11:11:11:11
Destination Mac: 00:22:22:22:22:22

 Mac = 00:22:22:22:22:22

 Mac = 00:11:11:11:11:11

Mac_Changer

● The subprocess module contains a number of functions.
● These functions allow us to execute system commands.
● Commands depend on the OS which executes the script.

Syntax:
import subprocess
subprocess.call(“COMMAND”, Shell=True)

Using a Module To Execute System Commands

Mac_Changer

● A variable is a location in memory that contains a certain value.
● Similar to maths, its a name that is used to store information.

Ex:
X = 1
Now x has a value of one, so we can do
Y = x + x
And y has a value of 2 now.
print(y)
Will print the value of y on screen which is 2.

Variables

Mac_Changer

● Easiest way of getting user input is through keyboard.
● There are a number of ways to achieve that.
● input() function prompts the user to enter a value.

Ex:
age = input(“What is your age?”)
Result
What is your age ?
The variable age will hold the value of the user input

Handling User Input

Mac_Changer

● Set of instructions to carry out a task.
● Can take input, and return result.
● Make the code clearer, reusable, and more abstract.
● input() function prompts the user to enter a value.

Ex, we can define a function like so:
def function_name(variable1, variable2 ...etc)
And call it in code like so:
function_name(value1, value2)

Functions

Mac_Changer

● Execute code ONLY if a condition is true.

Decision Making

if condition:

#Code to execute when
#condition is true

else:

#Code to execute when
#condition is false

#Rest of code

if condition1:

#Code to execute when
#condition1 is true

elif condition2:

#Code to execute when
#condition2 is true AND
#condition 1 is false

else:

#Code to execute when
#ALL conditions are FALSE

#Rest of code

if condition1:

#Code to execute when
#condition1 is true

if condition2:

#Code to execute when
#condition2 is true

#Rest of code

Mac_Changer

Goal → Check if MAC address was changed.

Setps:
1. Execute and read ifconfig.

2. Read the mac address from output.
3. Check if MAC in ifconfig is what the user requested.
4. Print appropriate message.

Simple Algorithm

Mac_Changer

Goal → Check if MAC address was changed.

Setps:
1. Execute and read ifconfig.

2. Read the mac address from output.
3. Check if MAC in ifconfig is what the user requested.
4. Print appropriate message.

Simple Algorithm

Mac_Changer

Goal → Check if MAC address was changed.

Setps:
1. Execute and read ifconfig.

2. Read the mac address from output.
3. Check if MAC in ifconfig is what the user requested.
4. Print appropriate message.

Simple Algorithm

Mac_Changer

● Search for specific patterns within a string.
● Uses rules to match pattern.

→ Great to tell a program what to look for in a large text.

Regular Expressions

Mac_Changer

Goal → Check if MAC address was changed.

Setps:
1. Execute and read ifconfig.

2. Read the mac address from output.
3. Check if MAC in ifconfig is what the user requested.
4. Print appropriate message.

Simple Algorithm

Mac_Changer

Goal → Check if MAC address was changed.

Setps:
1. Execute and read ifconfig.

2. Read the mac address from output.
3. Check if MAC in ifconfig is what the user requested.
4. Print appropriate message.

Simple Algorithm

