
Network_Scanner

● Discover all devices on the network.
● Display their IP address.
● Display their MAC address.

Network_Scanner

● The subprocess module contains a number of functions.
● These functions allow us to execute system commands.
● Commands depend on the OS which executes the script.

Syntax:
import subprocess
subprocess.call(“COMMAND”, Shell=True)

Discovering Clients On The Same Network

A
Router

 B

 C

 D

IP: 10.0.2.5
MAC: 00:11:22:33:44:44

IP: 10.0.2.6
 MAC: 00:11:22:33:44:66

IP: 10.0.2.7
 MAC: 00:11:22:33:44:55

IP: 10.0.2.1
MAC: 00:11:22:33:44:20

A
Router

 B

 C

 D

WHO HAS 10
.0.2.6

IP: 10.0.2.5
MAC: 00:11:22:33:44:44

IP: 10.0.2.6
 MAC: 00:11:22:33:44:66

IP: 10.0.2.7
 MAC: 00:11:22:33:44:55

IP: 10.0.2.1
MAC: 00:11:22:33:44:20

ARP Request

A
Router

 B

 C

 D

IP: 10.0.2.5
MAC: 00:11:22:33:44:44

IP: 10.0.2.6
 MAC: 00:11:22:33:44:66

IP: 10.0.2.7
 MAC: 00:11:22:33:44:55

IP: 10.0.2.1
MAC: 00:11:22:33:44:20

I have 10.0.2.6

My MAC is 00:11:22:33:44:66

ARP Response

Network Scanner

Goal → Discover clients on network.

Setps:
1. Create arp request directed to broadcast MAC asking for IP.

2. Send packet and receive response.
3. Parse the response.
4. Print result.

Algorithm

Network Scanner

Goal → Discover clients on network.

Setps:
1. Create arp request directed to broadcast MAC asking for IP.

Two main parts:
➔ Use ARP to ask who has target IP.
➔ Set destination MAC to broadcast MAC.

Algorithm

Network Scanner

Goal → Discover clients on network.

Setps:
1. Create arp request directed to broadcast MAC asking for IP.

2. Send packet and receive response.
3. Parse the response.
4. Print result.

Algorithm

Network Scanner

Goal → Discover clients on network.

Setps:
1. Create arp request directed to broadcast MAC asking for IP.

2. Send packet and receive response.
3. Parse the response.
4. Print result.

Algorithm

Network Scanner

Goal → Discover clients on network.

Setps:
1. Create arp request directed to broadcast MAC asking for IP.

2. Send packet and receive response.
3. Parse the response.
4. Print result.

Algorithm

Lists

● List of values/elements, all can be stored in one variable.
Ex:
lucky_numbers_list = [3, 7, 8, 17, 24]
Python will interpret this as

Elements can be accessed using their index
print(lucky_numbers_list[0]) #prints 3
print(lucky_numbers_list[1]) #prints 7
print(lucky_numbers_list[2]) #prints 8

index 0 1 2 3 4

value 3 7 8 17 24

Network Scanner

Goal → Discover clients on network.

Setps:
1. Create arp request directed to broadcast MAC asking for IP.

2. Send packet and receive response.
3. Parse the response.
4. Print result.

Algorithm

Dictionaries

● Similar to lists but use key instead of index.
Ex:
target_client = {“mac”: “00:11:22:33:44:55”, “ip”: “10.0.2.1”, “os”: “windows”}
Python will interpret this as

Elements can be accessed using their key
print(target_client[“mac”]) #prints 00:11:22:33:44:55
print(target_client[“ip”]) #10.0.2.1
print(target_client[“os”]) #windows

Key mac ip os

value 00:11:22:33:44:55 10.0.2.1 windows

List of Dictionaries

Elements can be accessed using list index and dict key
print(list[0][“mac”]) #prints 00:11:11:11:11:11
print(list[1][“mac”]) #prints 00:22:22:22:22
print(list[2][“ip”]) #prints 10.0.2.7

index 0 1 2

value Key mac ip

value 00:11:11:11:11:11 10.0.2.1

Key mac ip

value 00:33:33:33:33 10.0.2.7

Key mac ip

value 00:22:22:22:22 10.0.2.2

index 0 1 2

value {“ip”: “10.0.2.1”, “mac”:
“00:11:22:33:44:55”}

{“ip”: “10.0.2.2”, “mac”:
“00:24:A2:31:11:22”}

{“ip”: “10.0.2.4”, “mac”:
“00:11:A2:44:44:23”}

