

VOD-3486

Course Prerequisites

Course Objectives

- To introduce you to the concepts of virtualization as it applies to virtual machine technology
- + To explain the benefits and challenges of machine virtualization
- + To expose you to common terms related to virtualization of machines
- + Demonstration of virtualization

Introduction To Virtualization

ine.com

Topic Overview

- + The Typical Compute Architecture
- + Challenges & Problems Defined
- + What Is Virtualization
- + Benefits Of Virtualization
- + Three Common Virtual Machine Terms

Divide HDD into multiple partitions Only one app runs at a time Apps can't communicate with each other

How do you provide groups of users access to a common app but keep them separated?

-----Multiple, physical machines running the same app

-----Different access credentials

-----Network security implemented with ACLs & firewalls

The Problem Defined

- + Networks prior to virtualization
 - + Dedicated physical devices
 - + Geographically dispersed systems
- + Resource challenges
 - Application downtime as hardware necessitated upgrades (memory, faster graphics cards, etc)
 - + Hardware underutilized (CPU and memory goes unused)
 - + Hardware quickly became obsolete and recycled
- + What challenges were presented?

\$\$\$

Challenges with monitoring geographically disparate resources Delays in procuring hardware Challenges in finding physical locations to house equipment Challenges in determining power and HVAC budgets

What Is Virtualization?

- Combining multiple machines into one
- + Sharing of hardware resources via a Hypervisor
- Maintaining logical separation via virtual switches
- + Terminology
 - + Host OS
 - + Guest OS

Benefits Of Virtualization

- Reduced hardware costs
- Efficient utilization of hardware
- Elasticity
- Management centralization
- Redundancy and backups

Virtual Machine Terminology

- + Snapshot
 - + A copy of the virtual machine's disk file at a given point in time
 - + Used to restore a VM to a particular point in time when a failure or system error occurs

+ Cluster

- + A group of hosts whose resources are shared
- + VM's on a failed host can be dynamically restarted on another host within a cluster
- + Virtual Appliance
 - + A pre-packaged VM with an application already installed on it

An Overview Of Hypervisors

ine.com

Topic Overview

- + Introduction To Hypervisors
- + Type-1 Hypervisors
- + Type-2 Hypervisors
- + Examples Of Each

Introduction To Hypervisors

- In a non-virtualized environment, an Operating System has exclusive, dedicated access to physical hardware
- In a virtualized environment there can be multiple OS's on a single physical server
- A Hypervisor sits between the Guest OS and the physical hardware which:
 - + Has access to the physical hardware of the Host
 - + Provides access to a set of emulated hardware to each VM
 - + Does this in a way that is transparent to the Guest OS

Each virtual machine only "sees" the amount of CPU, RAM and HDD space that has been allocated to that VM. The Hypervisor coordinates the sharing of requests for the physical CPU among all the VMs.

Type-1 Hypervisors

- + Also called "Native" or "Bare Metal" Hypervisors
- + Run directly on the host's hardware
- Provide a direct interface between VM's and hardware resources
- + Examples:
 - + Citrix Xen
 - + Oracle VM Server for SPARC
 - + Oracle VM Server for x86
 - + Microsoft's Hyper-V
 - + VMwares ESX/ESXi
 - + Kernel-based Virtual Machine (KVM) ...built into Linux

Xen is an open-source hypervisor.

almore Eski	1.0 million through the star				10000100_100_200_100 = 1	and the second
- Line	0 eracercational					
Manage	🗧 🥔 Get vCenter Server 🛛 🔭 C	🥔 Get «Center Server 🐮 Crisate Register VM 🎥 Shut down 🐁 Netoxit 🦉 Aeteon 🗔 Actions			ON .	FREE 17.4 GHz
Monitor	localhost.localdomain				USED: 1.7 GHz	CAPACITY 19.2 GHz
	Vesion	Version: 6.7.0 Update 1 (Build 10002008)			MEMORY	FREE: 42.32-GB
• S Virtual Machines	Uptrue	18.22 days			1000 33.46.08	CAPACITY IS NO OR
Monitor					STORAGE	FREE 254 HL CR
1.00 100.1					CONTRACTOR OF THE OWNER OF	(10) (10) (10) (10)
* Disco-sWLC-1					LGED 424.35 GB	CAPACITY 123.5-DB
+ /b ONSO-VM	+ Hardware			* Configuration		
More VMs	Menufacturer	Del Inc.		image profile	ESR-4.7.0-20181002001-standard (/Mware, Inc.)	
torage	Mudel	Model Preserbige RE12		vilginere int. state		
• Q Networking	· D CPU	# CPUs x Intel/R Xeon/R CPU E5620 @ 2.40GHz		vMotion	Supported	
 Bat-PG-A More networks 	Menory	Mumory 91.09-08				
	Resident Memory 0.8		*	System information		
	 E. Wheel Resh 	Di Vitual Bash Di Vitual Bash Di Vitual Bash		Date/time on host	Montany, september 20, 2019, 18:18:17 UTU	
	- Q Networking			Install date	Thursday, April 34, 2018, 20.11.05 UTG	
	Hostrane	Incalhoet Incaldonain		Asset: top		
	P addresses	1. vmk0: 182.168.200.185		Sena number	2864071	
		2. vmid), fe80; 104e3087.6e83;4629		BIOS WISION	6.4.2	
	ONS servers	1.192.168.200.1		BUD means para	Monday, July 22, 2013, 2010000 (0000	
	Default paterway	162.168.200.1	*	Performance summary last hour		
	Pv6 enabled	Ves		B Constant Loss (201		
	Host adapters	d alighters 4		Consumed hoat memory		
	Neteorio	Name	VM	100		
		Q. (M-1	3	2.00		e0 8
		Q Far	3	5		5
		Q Ret	1	0 eo		40 <u>1</u>
		<u>Q</u> MT	1	2		
		Q PG-2	3			
		9 swit	2	8 20		20 2
		Q Test-PG-A	4			***************************************
		Q 144 PG-8	0	15an 13an	13.63 54.10	14.24 14.30
		Q Test PG-0	0		Time	
		Sec. Po-0	2			
		Q Turk-1	1			

• VMware's ESXi is an example of a Type-1 Hypervisor

Type-2 Hypervisors

- + Also called "Hosted Hypervisor"
- + Run on top of conventional OS as another application
- + Separates the Guest OS from the Host OS

+ Examples:

- + VMware Workstation
- + VMware Player
- + VirtualBox
- + VMware Fusion for Mac

Oracle's VirtualBox						
Oracle VM VirtualBox Manager						
Tools	Take Delete Restore Properties Clone Settings Discard Start					
Windows-7 (Packet-Tracer Added) Powered Off	Name Taken v Current State (changed)					
Arista vEOS						
Windows 10 (Windows 10 no apps)						

Virtual box by Oracle is software that you would install on top of your existing OS (such as Windows or Microsoft OSX) and from within VirtualBox you can create virtual machines.

+ Virtual Machine Segmentation + Virtual Switch Implementation

Virtual Machine Segmentation

- Connections between VMs governed by virtual switches
- Virtual switches also provide external network connectivity to VMs
- Virtual switches contain Mac tables and some can perform security features
- Examples of virtual switches
 - + Microsoft Hyper-V
 - + VMware's ESXi vSwitch

Virtual switches are a concept typically implemented with Type-1 Hypervisors. A topology with multiple VMs that utilize a Type-2 Hypervisor (such as VirtualBox) can still have VMs interconnected internally...but a virtual switch would not be used for that purpose. Instead you would create point-to-point network connections between VMs by modifying their vnic settings. See this link for an example of this: https://www.brianlinkletter.com/how-to-use-virtualbox-to-emulate-a-network/

Virtual Switch Implementation

- + NICs in a VM environment consist of:
 - + Virtual nics (vnics)
 - + Physical nics of the host machine
- Quantity of vnics on a VM is not limited like physical devices
- Connections between virtual switch and vnics can be placed into VLANs
- Typically a hypervisor will have one, default virtual switch, and others can be created on-demand

Each virtual machine Guest OS will typically tell you what the maximum quantity of vnics that are supported.

VMware vSwitch

VSwitch1 Type: Port groups: Uplote:	Bandard vSwitch 4 1						
* vSwitch Details		* vSwitch topology					
MTU	1500	513					
Ports	4096 (4081 available)	R EVE-1 / Internet adapters					
Link discovery	Listen / Cisco discovery protocol (CDP)	VUNIC 0 VUNIC 0 VUNIC 1 VUNIC 1 VUNIC 1					
Attached VMs	8 (1 active)						
Beacon interval	1	8 0942-1					
v NR teaming policy							
Notify switches	Yes	(9 Torial					
Policy	Route based on originating port ID	VLAN (2: 4005					
Neverse policy Wes		+ Virtual Machines (1)					
Failback	Yes						
* Benefit and re		(D Text PD B					
Allow promiscuous mode	No	VLAN ID: 3					
Allow forged transmits	Yes						
Allow MAC changes	Yes	R Test PG-A					
		VLAN IO: 2 - Vitual Machines (i)					
 Shaping policy 		B Uburtu-Desktop-2					
Enacodd	nu nu	B EVE-ND, Community, Edition-2					
		WAC ASSess US 55/58 12:56 rdf					
		B APC-EM					

Virtual Machine Resource Considerations

ine.com

Topic Overview

- + Virtual Machine Resources
- + Virtual Machine Considerations
- + Where Is Your VM?
- + VM Location Considerations

Virtual Machine Resources

- + Virtual machines consume real resources on the host
- + How many vCPUs are needed?
 - + How many CPU Cores?
 - + How many Sockets?
 - + How many Cores per Socket?
- + How much memory (RAM) is needed?
- + How much hard disk space will be required?

Virtual Machine Considerations

- + Which hypervisors support the VM?
- + What resources are required by the VM?
- + Are enough resources still available on the host machine?
- Does the host's physical nic have sufficient bandwidth for all VM's?

Where Is Your VM?

- Hosts running hypervisors can be located in oneof-two places:
 - + On-premises
 - + Cloud-Based
 - + Amazon AWS
 - + Microsoft Azure

Microsoft Azure

VM Location Considerations

- + On-premises VM considerations
 - + No internet connectivity required to reach your VMs
 - + You are fully responsible for all hardware and software
 - + Fixed cost
- + Cloud-based VM considerations
 - + Internet connectivity required
 - + Host maintenance transferred to cloud provider
 - + Incremental costs based on usage/uptime

Virtualization Networking & Management Considerations

ine.com

Topic Overview

- + L2/L3 Addressing
 Considerations With VM's
- + Networking Usage Considerations
- + VM Monitoring Considerations

L2/L3 Addressing Considerations With Virtualization

- Each Guest OS will require an IP address if networking is required
- + L2/L3 address considerations
 - + Static addresses for VMs?
 - + What happens when the host fails and that VM is replicated on another Host?
 - + If DHCP is required, where will DHCP Server be located?
 - + MAC address allocation considerations

When allocating static IP addresses to VMs ensure you don't accidentally overlap IP addresses.

If a host fails and High Availability has been configured in a Host Cluster, will the static address you configured on the VM (on the failed host) be appropriate for the location of the new Host?

DHCP can be an option for VMs. In this case, the DHCP Server could be located on a real, physical network segment connected to the Host, or a VM could serve as a DHCP Server for other VMs.

VMs can be configured with static, configured MAC addresses or addresses dynamically derived by the Host OS. If a VM has a pre-configured MAC will there be an issue if the host fails, the VM automatically spins-up on another host, but features like DHCP Snooping or Port Security are configured on your physical switches?

-

Networking Usage Considerations

- + Network Usage
 - + All VM's share the physical bandwidth of uplink NIC's on the Host
 - + Oversubscribing these uplinks will cause poor network performance on busy VM's
- + VM Segmentation
 - + VM's on separate IP subnets also need to be separated at Layer-2
 - + VLANs are utilized for this
 - + Physical host uplinks will perform 802.1q trunking
 - + Ensure VLAN trunking configured appropriately on physical switch connected to the host

Remember that all VMs ultimately share the bandwidth of the physical NIC uplinks on the Host. While a single VM might believe it has access to a 100Mbps FastEthernet NIC, that VM might be sharing the physical bandwidth with dozens of other VMs.

VM Monitoring Considerations

- + Virtual Machine Monitoring
 - + Guest Operating Systems only see what the hypervisor wants them to see
 - Monitoring applications written for Guest OS's don't see the full picture
 - + Network, CPU or memory problems may manifest within the Guest OS, but their root cause may not be visible
 - Best solution is to utilize a blended approach of network monitoring software that resides on the hypervisor as well as Guest OS's

• The image shown is a screenshot of a product from Solar Winds called "Virtualization Manager"

Virtualization Demonstration

ine.com

Topics Overview

- + Creating a virtual machine with a Type-2 Hypervisor
- + Networking two virtual machines together

Topics Covered

- Introduced virtual machine technology and its benefits
- Covered the differences between Type-1 and Type-2 Hypervisors
- Looked at how Virtual Switches could benefit us in a virtualized environment
- + Covered various considerations in creating virtualized environments
- + Performed a demonstration of creating and networking virtual machines

