

Welcome to INE's Presentation of:

IP Routing Basics

Course Objectives

- » Provide an understanding of what is meant by the term "Routing", why it is necessary in networks, and the actual process involved of routing data.
- » Understand how routers learn the information needed to route, and where that information is stored.
- » Compare and contrast different routing protocols from a high-level perspective.

Course Agenda

- » Why do we need routing?
- » What happens to a packet?
- » Where are routes stored?
- » How are routes selected?
- » Contrasting Routing Protocols
 - IGP vs EGP
 - High-Level Differences
 - Distance Vector
 - Link State
 - Advanced Distance Vector
 - Path Vector

Why Do We Need Routing?

When Routing Isn't Necessary

- » Devices need addresses to operate on a network
- » Non-Routable Addresses
- » Network applications that assume flat networks typically utilize broadcasts.
- » ZeroConf (IETF) is an example of this.
 - Bonjour by Apple
 - Airplay by Apple

So what's the problem?

- » Each broadcast interrupts everyone.
- » Each broadcast consumes bandwidth.
- » No security…every device can see every other device.
- » Fault Isolation difficult to diagnose.
- » The solution...break the network up into different broadcast domains...and allow devices to identify which broadcast domain they belong to.

Copyright © www.ine.com

Addressing with Broadcast Domains

- » End-to-end reachability requires Routable addresses.
- » Protocols that use Routable Addresses must provide:
 - Method for obtaining an address.
 - Method for determining the local network.
 - Method for determining the address of off-network destinations.
 - Method for sending packets off-network.
 - Devices that can route packets between networks.

Identifying Routable Addresses

What Happens to a Packet?

What is it to ROUTE?

What is "Routing"?

- » Process of forwarding packets between networks.
- » Basic components needed to route:
 - Routable Packet (IPv4, IPv6, etc)
 - Network address
 - Subnet mask
 - Next Hop
 - Egress Interface

Routing: What Happens to the Packet (1)

Routing: What Happens to the Packet (2)

Routing: What Happens to the Packet (3)

Routing: What Happens to the Packet (4)

Routing: What Happens to the Packet (5)

= L2 Header

= L3 Header

Routing: What Happens to the Packet (6)

Routing: What Happens to the Packet (7)

Routing: What Happens to the Packet (8)

Where Are Routes Stored?

Types of Routes

» Connected

» Static

» Dynamic

General Rules of Routing

- » Router will only accept routes that match its own, active protocols
 - No IPv6 routes accepted if router not an IPv6 host
- » Router will only use routes with reachable "next hops"
- » Next-Hop must be paired with a usable L2 address.
- » Routers will only use the "best" routes
- » Routes must be "believable" (how do I know this route is still good?)

Where Are Routes Stored? (Part-2)

"Switching" within Routers

»Switching methods in routers:

Process-Based Switching

```
Rtr1#sho processes 87
Process ID 87 [IP Input] TTY 0
Memory usage [In bytes]
Holding: 13204, Maximum: 13204, Allocated: 0, Freed: 2744
Getbufs: 0, Retbufs: 0, Stack: 9616/12000
CPU usage
PC: 612A53B0, Invoked: 7475, Giveups: 0, uSec: 3
5Sec: 0.00%, 1Min: 0.00%, 5Min: 0.00%, Average: 0.00%
Age: 444776752 msec, Runtime: 24 msec
State: Waiting for Event, Priority: Normal
```

- Fast Switching
- Cisco Express Forwarding

Forwarding Information Base

»CEF Components (FIB)

- Forwarding Information Base
- Copy of IP Routing Table

- Show ip cef [detail]
- Show ip cef <ip addr> <mask> detail

Adjacency Table

» CEF Components (Adjacency Table)

- Populated with L2 adjacency information
- Populated by L2 tables such as:
 - **ARP** Table
 - Frame-Relay Mapping Table
 - P2P Header Formats

- Show adjacency < intf type/number > [summary | detail]
- Show adjacency detail

Adjacency Types

- » Some adjacency types can't be CEF switched and must be dropped, or sent to CPU for processing:
 - Glean
 - Null
 - Drop
 - Discard
 - Punt

How Are Routes Selected?

Prioritizing Route Sources

» Administrative Distance (AD)

- Defines trustworthiness of a routing protocol
- 8-bit numbering system
- Ranges from 0 through 255

Administrative Distance Values

Protocols	AD Value
Connected	0
Static	1
EIGRP (Internal routes)	90
OSPF	110
IS-IS	115
RIP	120
EIGRP (External routes)	170
iBGP/eBGP	200/20
Unreachable	255

Routing Metric

- » Used for best path selection process
- » IGPs use metric for shortest path calculation
- » Lower value is preferred
- » Depends on the routing protocol architecture
 - EIGRP metric = composite formula utilizing link bandwidth + delay
 - RIP metric = hop count
 - OSPF metric = link bandwidth

Contrasting Routing Protocols (IGP and EGP)

Dynamic Protocols: IGP or EGP?

» Autonomous System;

Collection of networks all under one administrative authority.

» IGP;

- Interior Gateway Protocol
- Designed to provide prefix reachability information within an Autonomous System

» EGP;

- Exterior Gateway Protocol
- Designed to provide prefix reachability information between different Autonomous Systems.

Contrasting Routing Protocols (High-Level Differences)

Protocol Characteristics (1)

- » RPs can be classified into one-of-four categories that broadly define operational characteristics;
 - Distance Vector (IGPs)
 - Link-State (IGPs)
 - Advanced Distance Vector (Hybrid) (IGPs)
 - Path Vector (EGP)

Protocol Characteristics (2)

- » Once categorized, assumptions about the protocol can be made about such things as:
 - Neighbor requirements
 - Route Maintenance (is this route still believable after some prolonged time?)
 - Visibility into network topology
 - Necessity of different data structures (tables, databases, etc)

Protocol Characteristics - Routing Updates

» Incremental update

Only changes are sent in the routing update

» Full update

• All of the routing table is sent in the update

» Periodic update

Sent in the specified time interval

» Triggered update

Sent whenever change is detected

Contrasting Routing Protocols (Distance Vector)

Distance Vector

- » Neighbor requirements;
 - No neighborships required
- » Route Maintenance (is this route still believable after some prolonged time?)
 - Resend routes after defined interval
- » Visibility into network topology
 - Knowledge of topology only extends to directly-connected routers.
- » Necessity of different data structures (tables, databases, etc)
 - Database of learned routes
- » Protocol Examples:
 - RIP (v1 and v2), IGRP (deprecated)

Contrasting Routing Protocols (Link State)

Link State (1)

- » Neighbor requirements;
 - Neighborships required
- » Route Maintenance (is this route still believable after some prolonged time?)
 - Periodic Hello's between neighbors
 - Regenerate LSAs after defined interval
- » Visibility into network topology
 - Complete visibility of entire topology for directly-connected areas.

Link State (2)

- » Necessity of different data structures (tables, databases, etc)
 - Database of learned LSAs (Link State Database)
 - Neighbor Table
 - SPF Tree
- » Protocol Examples:
 - OSPF, ISIS

Contrasting Routing Protocols (Advanced Distance Vector)

Advanced Distance Vector / Hybrid (1)

- » Neighbor requirements;
 - Neighborships required (Link State characteristic)
- » Route Maintenance (is this route still believable after some prolonged time?)
 - Periodic Hello's between neighbors (Link State characteristic)
- » Visibility into network topology
 - Knowledge of topology only extends to directly-connected routers. (Distance Vector characteristic)

Advanced Distance Vector / Hybrid (2)

- » Data structures (tables, databases, etc)
 - Topology Table of learned routes (Distance Vector characteristic)
 - Neighbor Table (Link State characteristic)
- »Protocol Examples:
 - EIGRP

Contrasting Routing Protocols (Path Vector)

Path Vector

- » Neighbor requirements;
 - Neighborships required
- » Route Maintenance (is this route still believable after some prolonged time?)
 - Periodic Hello's between neighbors
- » Visibility into network topology
 - No Knowledge of topology. Relies on IGP's for this.
- » Necessity of different data structures (tables, databases, etc)
 - Not necessary to know at ICND1 level
- » Protocol Examples:
 - BGP

Thank you!!