

Enhancing Network Operations With QoS

Keith Bogart

CCIE #4923

kbogart@ine.com

@keithbogart1

linkedin.com/in/keith-bogart-2a75042

CCIE Routing & Switching

Course Objectives

- To explain why we need QoS in today's networks
- To help you become familiar with common QoS terminology
- To give you exposure to some common QoS techniques

- A basic understanding of how routers and switches forward IP packets
- Familiarity with the IPv4 packet header

Course Prerequisites

Introduction To QoS

Topic Overview

- + What Problems Are Solved By QoS?
- + How Does QoS Control Traffic?
- + Day In The Life Of A Packet
- + The Differences Between Buffers
 & Queues

QoS Overview

- + QoS = Quality of Service
- + What problem does it solve?
 - Provides predictable management of network
 resources during times of congestion
 - + Assists in maximizing the end-user experience of critical sessions
 - Provides differentiated services to packets based upon pre-defined user criteria

How Does QoS Control Network Traffic?

- Many different QoS features
- Some designed to accomplish only a single task
- + Others designed to accomplish multiple tasks
- In general, the tasks that a QoS feature can accomplish can be categorized as:
 - + Classification of data
 - + Queue Management
 - + Size, Placement of packets, Scheduling Order, Transmission Rate
 - + Pre-Emptive Drops
 - + Marking of packets

Memory Buffers

+ Buffers

- Physical memory used to store packets before and after a forwarding decision is made
- On routers, this same memory can be allocated to interfaces as ingress/egress queues
- Shared memory (of which, part is allocated as buffers) is also used by lots of other CPU processes

Memory Queues

+ Queues

- On routers, a queue is a logical part of the shared memory buffers
- On switches, individual interfaces (or linecards)
 have their own memory which is used as interface
 queues

Routers: Day In The Life Of A Packet

- 1. Packet arrives on ingress interface (Rx-Ring)
- 2. Packet queued in memory buffer
- 3. Forwarding decision is made
- 4. Packet placed on hardware transmit ring
- 5. Packet transmitted onto egress media

Switches (Shared Memory): Packet Forwarding

- 1. Packet arrives on ingress interface
- 2. Interface/Module ASIC immediately forwards packet into a common, shared memory pool
- 3. Forwarding decision is made by forwarding ASIC(s)
- 4. Memory ownership of packet buffer transferred to egress interface
- 5. Packet transmitted onto egress media

Switches (Distributed Memory): Packet Forwarding

- 1. Packet arrives on ingress interface
- Interface/Module ASIC places packet into a queue (buffer)
- 3. Forwarding decision is made by forwarding ASIC(s)
- Packet transmitted (along with lookup result) onto shared ring/bus to all egress interfaces
- Appropriate egress interface queues and then schedules the packet

Queuing & Congestion

- + DMA = Direct Memory Access
- When egress traffic cannot immediately be transmitted, it is placed in an egress queue
- Without QoS = The queue is one large piece of memory
 - + FIFO

 With QoS = One can control characteristics of the queue

What Is Affected By QoS?

- + Bandwidth
- + Delay
- + Jitter
- + Loss (or Drops)

Thanks for Watching!

Classification & Marking

Topic Overview

- Definition Of Classification
- + Layer-2 Classification
- + Layer-3 Classification
- + Overview Of NBAR
- + Trust Boundaries

Classification Defined

- You know what traffic is important to you...but how does the ROUTER know that?
- + Traffic must first be divided into "classes"
 - A "class" of traffic will receive the same type of QoS treatment
 - + Analyze packets to differentiate flows
- Classification = features that identify traffic based distinctive differences

Classification Defined

- Packets belonging to same class typically marked on ingress to allow for easier classification by upstream devices
- + Most common ways of classifying traffic:
 - + Markings
 - + Addressing
 - + Application Signatures

Layer-2 Classification

 Ethernet frames contain no distinctive "priority" field UNLESS carried by 802.1q or ISL trunks

Layer-3 Classification (ToS byte)

Both IPv4 and IPv6 contain a byte used for indicating relative priority of a packet

Ver	IHL	Type of Service	Total Length		Version	Version Traffic class Flow label				
				-	Pay	load length	Next header	Hop limit		
	Identification		Flags	Fragment Offset						
Time to Live Protocol		Header Checksum			Source address					
Source Address										
Destination Address						Destination address				
Options + Padding										
					-					

NBAR

- Network-Based Application Recognition
- Most protocols can be identified by matching on their well-known L3 or L4 numbers
 - Some protocols negotiate dynamic numbers and can't be matched this way
 - + NBAR examines the data payload
 - More CPU intensive than other classification features

NBAR

- NBAR supports recognition of a large quantity of protocols
- Example: NBAR can be used to match on a full URL name, or a word or phrase within a URL
- Implemented by CPU of the device...so most (not all) Cisco switches don't support NBAR because their CPUs never see the traffic

Trust Boundaries

- + Some host devices may mark traffic upon creation
- + Do you "trust" these devices?
- QoS Trust Boundaries
 - Logical point in network beyond which, received
 QoS markings are not trusted
 - + Typically access-layer ports
 - + Default when QoS enabled = Untrusted

Thanks for Watching!

IP Precedence & DSCP

Topic Overview

- + Explaining The IPv4 ToS Byte
- Understanding DSCP
- Common DSCP Per-Hop Behavior Classes

IPv4 & ToS

+ Original meanings of ToS byte per RFC 791

Bits	0-2	: P	rec	eden	ce.					
Bit	3	: 0	=	Norm	al D	elay,		1 =	Low	Delay.
Bits	4	: 0	=	Norm	al T	hroug	hput,	1 =	High	Throughput
Bits	5	: 0	=	Norm	al F	elibi	lity,	1 =	High	Relibility
Bit	6-7	: R	ese	rved	for	Futu	ire Us	e.		
0		1		2	3	4		5	6	7
+	+-		+	+		*****	+	+		++
	PREC	EDEN	CE		D	i T		R	0	0
	NEC	LPLIN	CL.		0	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			-	
'	+-		+			1				
 + Pre	+- eced	ence	+	¦ +			+			++
 + Pre	+- eced 111	ence - Ne	+	+	ontr	-+		 		++
 + Pre	+- eced 111	ence - Ne	+		ontr					++
 + Pre	+- eced 111 110	ence - Ne - In	+ two		ontr ork	-+				++
 + Pre	+- eced 111 110 101	ence - Ne - In - CR	+ two ter ITI	netw	ontr ork P	i rol Contr				++
Pre	eced 111 110 101 100	ence - Ne - In - CR	+ two ter ITI ash	C/EC Ove	ontr ork P	i rol Contr				++
Pre	eced 111 110 101 100 011	ence - Ne - In - CR - Fl - Fl	two ter ITI ash	C/EC Ove	ontr ork P rrid	i rol Contr				++
Pre	eced 111 110 101 100 011 010	ence - Ne - In - CR - Fl - Fl	two ter ITI ash ash	netw C/EC Ove	ontr ork P rrid	i rol Contr				++

DSCP

- + DSCP = Differentiated Services Code Point
- + Utilizes six bits within ToS byte for QoS Prioritization

Defined DSCP Per-Hop Behavior Classes

- There are four high-level traffic classes defined for DSCP per-hop behaviors
 - + Default Forwarding (DH) PHB 00000xx (DCSP value 0)
 - + Expedited Forwarding (EF) PHB
 101110xx (DSCP value 46)
 - + Assured Forwarding (AF) PHB
 - + AF11 through AF43
 - + Class Selector (CS) PHB
 - Backwards compatible with older systems implementing IP
 Precedence

Thanks for Watching!

Congestion Avoidance With Policing & Shaping

Topic Overview

- + Overview Of Congestion
 Avoidance
- Defining Policing, Shaping & Markdown
- + Policing & Shaping Compared

Congestion Avoidance - Overview

- Term used to define a set of features that attempt to prevent queues from becoming congested
- Can be done in three places (depending on hardware platform)
 - Ingress interface queue, prior to lookup by forwarding engine
 - + At the forwarding engine (policing)
 - + Within the egress queue (queuing and shaping)
Policing, Shaping & Markdown

- Between ISP and Customer there is a pre-defined, contracted rate (called CIR)
- + ISP will police ingress traffic
 - + Traffic that is non-conforming is caught by policer and:
 - + Dropped
 - + Marked-down
- Customer typically doesn't want any traffic dropped (delay is better than drops)
 - + Shaping done on egress interface leading to ISP

Sample Policing Configuration

policy-map INE class Prec3

police cir <rate in bps> pir <rate in bps> conform-action transmit exceed-action set-prec-transmit 0 violate-action drop

Policing & Shaping Compared

+ On routers:

- + Policers can be applied on ingress or egress interfaces...but usually done on ingress
- + Typically ISPs will enforce contracts with Policers
- + Shapers usually done on egress connection TO the ISP
- Most Cisco Switches do not support Traffic Shaping

Sample Traffic Shaping Configuration

R2(config)#policy-map INE	
R2(config-pmap)# class Prec0	
R2(config-pmap-c)#shape ?	
adaptive	Enable Traffic Shaping adaptation to BECN
average	configure token bucket: CIR (bps) [Bc (bits) [Be (bits)]],
	send out Bc only per interval
fecn-adapt	Enable Traffic Shaping reflection of FECN as BECN
	Enable rate adjustment depending on voice presence
peak	configure token bucket: CIR (bps) [Bc (bits) [Be (bits)]],
	send out Bc+Be per interval
R2(config-pmap-c)#shape av	
R2(config-pmap-c)#shape average ?	
<1000-154400000	<pre>> Target Bit Rate (bits/sec). (postfix k, m, g optional;</pre>
<1000 1J4400000.	decimal point allowed)
percent	% of interface bandwidth for Committed information rate
percent	in the salar for committeed information rate

Thanks for Watching!

Congestion Avoidance With Pre-Emptive Queue Drops

Topic Overview

- + What Is Queuing-Based Congestion Avoidance?
- + Types Of Congestion Avoidance
- Overview Of WRED & WTD

Queuing-Based Congestion Avoidance

- Set of features to pre-emptively drop traffic within queues
- The goal: Prevent queues from becoming saturated with low-priority traffic by randomly dropping that traffic...thus leaving room in the queue for future, high-priority traffic

Congestion Avoidance At The Queue

- + Congestion Avoidance within queues on Switches
 - + WTD (Weighted Tail Drop)
 - + WRED (Weighted Random Early Discard)
 - + DBL (Dynamic Buffer Limiting)
- + Congestion Avoidance within queues on Routers
 - + WRED (Weighted Random Early Discard)

WRED & WTD Terminology

+ Drop Thresholds

- + Minimums
- + Maximums
- Minimum Threshold = When drops begin
- Maximum Threshold = Point at which 100% of matched traffic is dropped

Weighted Tail Drop

- Mechanism used on most switching hardware
- Configurable thresholds
 and DSCP-to-Threshold
 Mappings

WRED Operation

- + Random packet drops start at the min-threshold
- Increase in a linear format until max-threshold is reached
- After max-threshold is reached, WRED drops
 100% of all subsequent packets received

Thanks for Watching!

Congestion Management Control With Queuing & Scheduling

Topic Overview

- Queuing Defined
- + Scheduling Defined
- + What Is Congestion Management
 & Why Do We Need It?
- + Queuing & Scheduling Features

Queuing

- A single egress interface may have multiple, associated egress queues differentiated by priority
- QoS features designed for queuing provide control over which classified traffic is placed into each of these queues
- + Can also pre-emptively drop traffic from within queues to make room for higher-priority traffic

Scheduling

- + What is the "Scheduler"?
- On routers, QoS queuing features (such as WFQ) typically affect queuing and scheduling behaviors
- On switches, queuing and scheduling can be separate functions/features
- + Traffic Shaping is a function of Scheduling

What Is Congestion Management?

- Congestion management features allow you to control congestion by determining the order in which packets are sent out an interface based on priorities assigned to those packets
 - + Creation of queues
 - + Assignment of packets to those queues based on the classification of the packet
 - + Selectively dropping packets from within queues when those queues reach pre-defined thresholds
 - + Scheduling of the packets in a queue for transmission

Why Do We Need Congestion Management?

- The fundamental reason we need Congestion Management is because:
 - + By default, queues are configured for FIFO (First-In First-Out)
 - + FIFO provides no control over the order of packet transmission
 - + Incoming bursts can cause congestion of queues
 - + Congestion management techniques provide some control of the order-of-transmission

Queuing & Scheduling Features

Queuing features

- + FIFO (no congestion management)
- + Weighted Fair Queuing
- + LLQ
- + CBWFQ

Scheduling Features

- + Round Robin
- + Weighted Round Robin
- + LLQ
- + CBWFQ

Thanks for Watching!