

“Mastering the Terminal”
Cheat Sheet

1. Opening and Closing the Terminal

Opening The Terminal CTRL + ALT +T

Closing The Terminal CTRL + D

2. Basic Commands

echo Prints command line arguments to

standard output.

date Show the current date and time.

cal Display a calendar.

cat Stick files together and write joined

file to standard output. Good for

viewing the contents of 1 file.

3. Command History

history Show commands previously entered

(command history).

!! Run the previous command.

!50 Run the command that is on line 50

of the output from the history

command. (replace “50” as needed).

NB: history –c; history –w; will clear the history of commands.

4. Some Important Definitions

Command An instruction typed in the terminal

and submitted to the shell for

interpretation.

Shell A program that interprets

commands for meaning.

Terminal A graphical window where

commands can be typed and

submitted to the shell.

5. Command Structure

Each command follows the same overarching structure:

commandName –options arguments

5.1 Command Names

commandName must be a valid program on the Shell’s Path. To check this, use the which

command like so:

which commandName

If a path is returned, then the commandName is valid and vice versa.

5.2 Options

You can specify options for each command to customise the commands behaviour. These can

be either “short-form” options or “long-form” options.

Each command behaves differently so check the command’s manual (man) page for the

specifics of each command’s behaviour.

5.2.1 Short-form Options

Short-form options are where a letter defines an option. Each option is prepended by a dash

“-“ like so:

commandName –a –b –c args

To save typing, you could join together the options:

commandName –abc args

Both of these formats are equivalent.

5.2.2 Long-form Options

For some commands, there are long-form options defined to make options easier to identify.

Longform options are usually prepended by a double dash “--“.

Long-form options cannot be joined together like short-form options can.

Whether they are defined or not depends on each specific command, so consult the

command’s manual page for more information.

If long form options are defined for options “a”, “b” and “c”, then:

commandName –a –b -c arguments

is equivalent to

commandName --alpha --beta --charlie arguments

5.2.3 Command Line Arguments

Command line arguments are a type of input that commands operate on.

Some commands can take an unlimited amount of inputs, some take a specific amount, and

some take none at all. Consult the manual page for the specific command for more

information.

cal 12 2017

Here the cal command has 2 command line arguments. The number 12 and the number 2017.

5.2.4 Arguments for Options

Sometimes, command options can also take their own arguments (inputs).

cal –A 1 –B 1 12 2017

Here the cal command has 2 options; A and B.

The A option has its own argument (1).

The B option has its own argument (1).

And the cal command has 2 command line arguments (12 and 2017).

6. Using the Manual

man –k <search term> Search the manual for pages

matching <search term>.

man 5 <page name> Open the man page called <page

name> in section 5 of the manual.

(replace <page name> and 5 as

required)

man <page name> Open the man page called <page

name> in section 1 of the manual.

See the Linux manual cheat sheet under the appropriate video for more information about the

Linux manual and man pages.

7. Command Input and Output

Standard Data Streams can be redirected and are identified using their stream number.

Redirection of the standard output of one command to the standard input of another

command is known as piping.

7.1 Redirecting Standard Output:
Standard output is stream number 1. There are 2 methods to redirect standard output.

The long form, using the stream number:

commandName –options arguments 1> destination

Or the short form, with no stream number:

commandName –options arguments > destination

7.2 Redirecting Standard Error:
Standard error is stream number 2.

Here is how to redirect standard error

commandName –options arguments 2> destination

Standard error can be redirected at the same time as standard output:

commandName –options arguments 1> output_destination 2> error_destination

7.3 Redirecting Standard Input:
Standard Input is stream number 0. There are 2 methods to redirect standard Input.

The long form, using the stream number:

commandName –options arguments 0< input_source

Or the short form, with no stream number:

commandName –options arguments < input_source

8. Piping

Piping is the connection of the standard output of one command to the standard input of

another command. Piping using the pipe character (|) which is accessed by pressing

SHIFT + BACKSLASH (\) on most keyboards.

Here is how you would pipe together commandOne and commandTwo:

commandOne –options arguments | commandTwo –options arguments

Notice how both commands can have their own options and command line arguments as

usual. This piping can go on for as long as is required with as many commands as is required.

8.1 Taking “Snapshots” of pipeline data using the tee command
Redirecting during a pipeline breaks the pipeline.

For example, this wouldn’t work:

commandOne –options arguments > snapshot.txt | commandTwo –options arguments

Because redirection is processed by the shell before piping is, snapshot.txt would be created,

but this locks up the standard output stream and therefore no data can be passed through the

pipeline to commandTwo.

NB: Redirection breaks pipelines

However, the tee command allows us to take a “snapshot” of the data in the pipeline without

breaking the pipeline.

commandOne –options arguments | tee snapshot.txt | commandTwo –options arguments

Here, a snapshot of the data coming out of commandOne is saved in snapshot.txt, but the data

is also successfully piped through to commandTwo.

8.2 Piping to commands that only accept command line arguments by using xargs
Piping connects the standard output of one command to the standard input of another

command.

But what if the second command doesn’t accept standard input? e.g. the echo command.

The key is to transform the data coming in, into command line arguments.

This is possible using the xargs command.

For example, this would not work:

commandOne –options arguments | echo

This would work:

commandOne –options arguments | xargs echo

“ ”

9. Aliases

Aliases allow you to save your pipelines and commands with easy to remember nicknames so

that they can be used later much easier.

You define aliases in your .bash_aliases file in your home directory. If it does not exist, you

need to create it spelled exactly as shown. Note that the preceding period (.) must be included

and there should be no file extension (such as .txt, or .pdf).

Here is how you define an alias in .bash_aliases:

alias aliasName=”THING YOU WANT TO ALIAS”

Notice that there are no spaces between the equals sign (=) and the aliasName and the quotes

(“). The quotes can be double quote (“) or single quotes (‘).

Let’s take an example:

alias calmagic=”cal –A 1 –B 1 12 2017”

With this alias defined in our .bash_aliases file, whenever we run the calmagic command it is as

if we ran the cal –A 1 –B 1 12 2017 command.

calmagic is now said to be an alias of “cal –A 1 –B 1 12 2017”.

NB: Aliases may contain either one command or an entire pipeline!

9.1 Piping to an alias
If the first command in an alias accepts standard input, then the alias can be piped to; even if it

is an entire pipeline!

Our alias is currently:

alias calmagic=”cal –A 1 –B 1 12 2017”

cal is the first command in this alias, but cal doesn’t accept standard input.

Therefore, this would not work:

commandOne –options arguments | calmagic

However, if we adjust our alias so that it can accept standard input.

alias calmagic=”xargs cal –A 1 –B 1 12 2017”

This will now work:

commandOne –options arguments | calmagic

And yes, you can pipe out of an alias as well, if the alias produces standard output.

commandOne –options arguments | calmagic | commandTwo –options arguments

Think of aliases as building blocks that you can use in more sophisticated pipelines.

“Well done! You have learned an incredible amount of stuff in this section of the course and

I hope that this cheat sheet is useful to you!

Best wishes, Ziyad.

