

File Archiving and Compression
Cheat Sheet

The Overall Process

Archiving and compressing files in Linux is a two-step process.

1) Create a Tarball

First, you will create what is known as a tar file or “tarball”. A tarball is a way of

bundling together the files that you want to archive.

2) Compress the tarball with a compression algorithm

Secondly, you will then compress that tarball with one of a variety of compression

algorithms; leaving you with a compressed archive.

1. Creating a Tarball

Tarballs are created using the tar command.

Creating a Tar Ball tar –cvf <name of tarball> <file>…

The –c option: “create”. This allows us to create a tarball. [required]

The –v option: “verbose”. This makes tar give us feedback on its progress. [optional]

The –f option: Tells tar that the next argument is the name of the tarball. [required]

<name of tarball>: The absolute or relative file path to where you want the tarball to be placed;

e.g. ~/Desktop/myarchive.tar. It is recommended that you add .tar to your proposed filename

for clarity.

<file>: The absolute or relative file paths to files that you want to insert into the tarball. You

can have as many as you like and wildcards are accepted.

1.1 Checking a Tarball’s Contents

Once the tarball has been created, you can check what is inside it using the tar command.

Checking the contents of a Tarball tar –tf <name of tarball>

The –t option: “test-label”. This allows us to check the contents of a tarball. [required]

The –f option: Tells tar that the next argument is the name of the tarball. [required]

<name of tarball>: The absolute or relative file path to where you want the tarball to be placed;

e.g. ~/Desktop/myarchive.tar

1.2 Extracting From a Tar ball

Let’s say that you download a tar file from the internet and you want to extract its contents

using the command line. How can you do that?

For this you would again use the tar command

The –x option: “extract”. This allows us to extract a tarball’s contents. [required]

The –v option: “verbose”. This makes tar give us feedback on its progress. [optional]

The –f option: Tells tar that the next argument is the name of the tarball. [required]

<name of tarball>: The absolute or relative file path to where the tarball is located; e.g.

~/Desktop/myarchive.tar

Extracting a tarball does not empty the tarball. You can extract from a tarball as many times as

you want without affecting the tarball’s contents.

2. Compressing Tarballs

Tarballs are just containers for files. They don’t by themselves do any compression, but the can

be compressed using a variety of compression algorithms

The main types of compression algorithms are gzip and bzip2.

The gzip compression algorithm tends to be faster than bzip2 but, as a trade-off, gzip usually

offers less compression.

You can find a comparison of various compression algorithms using this excellent blog post.

2.1 Compressing and Decompressing with gzip

Compressing with gzip gzip <name of tarball>

Decompressing with gzip gunzip <name of tarball>

When compressing with gzip, the file extension .gz is automatically added to the .tar archive.

Therefore, the gzip compressed tar archive would, by convention, have the file

extension .tar.gz

2.2 Compressing and Decompressing with bzip2

Compressing with bzip2 bzip2 <name of tarball>

Decompressing with bzip2 bunzip2 <name of tarball>

When compressing with bzip2, the file extension .bz2 is automatically added to the .tar archive.

Therefore, the bzip2 compressed tar archive would, by convention, have the file

extension .tar.bz2

Extracting a Tar ball’s

Contents

tar –xvf <name of tarball>

https://www.rootusers.com/gzip-vs-bzip2-vs-xz-performance-comparison/

3. Doing it all in one step

Because compressing tar archives is such a common function, it is possible to create a tar

archive and compress it all in one step using the tar command. It is also possible to decompress

and extract a compressed archive in one step using the tar command too.

To perform compression/decompression using gzip compression algorithm in the tar command,

you provide the z option in addition to the other options required.

Creating a tarball and compressing via gzip tar –cvzf <name of tarball> <file>…

Decompressing a tarball and extracting via xzip tar –xvzf <name of tarball>

To perform compression/decompression using bzip2 compression algorithm in the tar

command, you provide the j option to the other options required.

To perform compression/decompression using the xzip compression algorithm in the tar

command, you provide the J option to the other options required.

Creating a tarball and compressing via xzip tar –cvJf <name of tarball> <file>…

Decompressing a tarball and extracting via xzip tar –xvJf <name of tarball>

4. Creating .zip files

Although .tar.gz and .tar.bz2 archives are the archives of choice on Linux, .zip archives are

common on other operating systems such as Windows and Mac OSX.

In order to create such archives, you can use the following commands.

Creating a .zip archive zip <name of zipfile> <file>…

Extracting a .zip archive unzip <name of zipfile>

<name of zipfile>: The absolute or relative file path to the .zip file e.g. ~/ myarchive.zip

<file>: The absolute or relative file paths to files that you want to insert into the .zip file. You

can have as many as you like and wildcards are accepted.

Creating a tarball and compressing via bzip2 tar –cvjf <name of tarball> <file>…

Decompressing a tarball and extracting via bzip2 tar –xvjf <name of tarball>

